首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We determined the biochemical characteristics of nitric oxide synthase (NOS) in hemocytes of the crayfish Procambarus clarkii and investigated the roles of hemocyte-derived NO in host defense. Biochemical analysis indicated the presence of a Ca2+ -independent NOS activity, which was elevated by lipopolysaccharide (LPS) treatment. When bacteria (Staphylococcus aureus) and hemocytes were co-incubated, adhesion of bacteria to hemocytes was observed. NO donor sodium nitroprusside (SNP) significantly increased the numbers of hemocytes to which bacteria adhered. Similarly, LPS elicited bacterial adhesion and the LPS-induced adhesion was prevented by NOS inhibitor NG-monomethyl-L-arginine (L-NMMA). Finally, plate count assay demonstrated that addition of LPS to the hemocytes/bacteria co-incubation resulted in a significant decrease in bacterial colony forming unit (CFU), and that L-NMMA reversed the decreasing effect of LPS on CFU. The combined results demonstrate the presence of a Ca2+ -independent LPS-inducible NOS activity in crayfish hemocytes and suggest that hemocyte-derived NO is involved in promoting bacterial adhesion to hemocytes and enhancing bactericidal activity of hemocytes.  相似文献   

2.
We previously reported that a cytostatic protein that is found in ASC-17D Sertoli cell-conditioned media was Mycoplasma arginine deiminase (ADI), which hydrolyzes L-arginine into L-citrulline and ammonia. Here, we report the over-expression of recombinant ADI (rADI) in E. coli and the down-regulation of lipopolysaccharide (LPS) induced-nitric oxide (NO) production by rADI treatment. We cloned the ADI gene from Mycoplasma arginini genomic DNA by a polymerase chain reaction, and changed five TGA tryptophan codons (stop codon in E. coli) to TGG codons in the coding region by site-directed mutagenesis in order to express in E. coli. The rADI was purified to apparent homogeneity by DEAE-Sepharose and arginine-affinity chromatography. The rADI expressed in E. coli was identified as 45 kDa on SDS-PAGE and 90 kDa on native PAGE, implying that it exists as a dimer like ADI of M. arginini. The Km for arginine of rADI was approximately 370+/-50 microM. Its optimal temperature and pH were 41 degrees C and pH 6.4, respectively, and enzyme activity remained > or = 50% for 5 d at physiological temperature and pH. Treatment of purified rADI suppressed NO production in macrophage-like RAW 264.7 and primary glial cells that were exposed to LPS. Furthermore, an intraperitoneal injection of rADI significantly suppressed the rise of blood nitrite/nitrate levels that were induced by the systemic administration of bacterial endotoxin LPS to mice, resulting in an improvement in their survival rate. These results suggest that the depletion of blood arginine with an arginine-metabolizing enzyme, such as ADI, could suppress excessive production of NO that is caused by inducible NOS (iNOS) during the endotoxemia. Also, rADI may be used as a new approach to control NO-related diseases, such as sepsis.  相似文献   

3.
4.
Contractile dysfunction of the respiratory muscles plays an important role in the genesis of respiratory failure during sepsis. Nitric oxide (NO), a free radical that is cytotoxic and negatively inotropic in the heart and skeletal muscle, is produced in large amounts during sepsis by a NO synthase inducible (iNOS) by LPS and/or cytokines. The aim of this study was to investigate whether iNOS was induced in the diaphragm of Escherichia coli endotoxemic rats and whether inhibition of iNOS induction or of NOS synthesis attenuated diaphragmatic contractile dysfunction. Rats were inoculated intravenously (IV) with 10 mg/kg of E. coli endotoxin (LPS animals) or saline (C animals). Six hours after LPS inoculation animals showed a significant increase in diaphragmatic NOS activity (L-citrulline production, P < 0.005). Inducible NOS protein was detected by Western-Blot in the diaphragms of LPS animals, while it was absent in C animals. LPS animals had a significant decrease in diaphragmatic force (P < 0.0001) measured in vitro. In LPS animals, inhibition of iNOS induction with dexamethasone (4 mg/kg IV 45 min before LPS) or inhibition of NOS activity with N(G)-methyl-L-arginine (8 mg/kg IV 90 min after LPS) prevented LPS-induced diaphragmatic contractile dysfunction. We conclude that increased NOS activity due to iNOS was involved in the genesis of diaphragmatic dysfunction observed in E. coli endotoxemic rats.  相似文献   

5.
The importance of the nitric oxide synthase (NOS) gene family is demonstrated by many studies in vertebrates and invertebrates in recent years. However, it keeps unknown of nitric oxide (NO) system and NOS gene family in mud crab Scylla paramamosain, an important cultured commercial crustacean in China and Pacific area. In this report, the cDNA of NOS containing full-length ORF was cloned from mud crab, S. paramamosain. It was of 4424 bp, including a 5′-terminal untranslated region (UTR) of 239 bp, a 3′-terminal UTR of 540 bp, which contained two ATTTA motifs, and an open reading frame (ORF) of 3645 bp encoding a polypeptide of 1214 amino acids. Structural analysis indicated that NOS contained a typical NO synthase domain at the N-terminal, next to a flavodoxin 1 domain, a flavin adenine dinucleotide (FAD) binding domain, respectively, and a conservative nicotinamide adenine dinucleotide (NAD) binding domain structure at the C-terminal. Quantitative real-time PCR analysis revealed S. paramamosain NOS (SpNOS) to be expressed in all tissues examined, with the highest expression in midintestine and the weakest level in heart and eyestalk. The expression profiles of SpNOS indicated that the NOS expression levels were significantly induced in midintestine, hepatopancrease and hemocytes after challenged with Vibrio Parahaemolyticus, the synthetic double-stranded RNA polyinosinic polycytidylic acid (poly I:C) and lipopolysaccharides (LPS). The NOS activity in hemocytes showed significant increase during at 24 h-48 h time period after immune challenges with V. Parahaemolyticus, poly I:C and LPS. Results here may suggest that the inducible NOS play an important role in mud crab’s defense against pathogenic infection.  相似文献   

6.
7.
The search for a nitric oxide synthase (NOS) sequence in the plant kingdom yielded two sequences from the recently published genomes of two green algae species of the Ostreococcus genus, O. tauri and O. lucimarinus. In this study, we characterized the sequence, protein structure, phylogeny, biochemistry, and expression of NOS from O. tauri. The amino acid sequence of O. tauri NOS was found to be 45% similar to that of human NOS. Folding assignment methods showed that O. tauri NOS can fold as the human endothelial NOS isoform. Phylogenetic analysis revealed that O. tauri NOS clusters together with putative NOS sequences of a Synechoccocus sp strain and Physarum polycephalum. This cluster appears as an outgroup of NOS representatives from metazoa. Purified recombinant O. tauri NOS has a K(m) for the substrate l-Arg of 12 ± 5 μM. Escherichia coli cells expressing recombinant O. tauri NOS have increased levels of NO and cell viability. O. tauri cultures in the exponential growth phase produce 3-fold more NOS-dependent NO than do those in the stationary phase. In O. tauri, NO production increases in high intensity light irradiation and upon addition of l-Arg, suggesting a link between NOS activity and microalgal physiology.  相似文献   

8.
A murine macrophage cell line, J774, expresses high levels of the enzyme nitric oxide synthase (NOS) and produces large amounts of nitric oxide (NO) when activated with recombinant interferon (IFN)-gamma and a low concentration of LPS (10 ng/ml). Both the expression of NOS and the production of NO were inhibited by recombinant IL-10 in a dose-dependent manner. The inhibition was effective only when the cells were pretreated with IL-10; addition of IL-10 at the same time or after IFN-gamma activation was without effect. These results demonstrate that IL-10, a product of Th2 (helper T lymphocyte 2) cells, can antagonise the function of IFN-gamma, a product of Th1 cells, by modulating the mechanism of synthesis of nitric oxide in the macrophages.  相似文献   

9.
Quantitative nitric oxide production by rat, bovine and porcine macrophages   总被引:1,自引:0,他引:1  
The aim of this work was to compare in vitro nitric oxide (NO) production by rat, bovine and porcine macrophages. NO production was induced by lipopolysaccharide (LPS) or by phorbol 12-myristate 13-acetate (PMA) with ionomycin or recombinant interferon gamma (rIFN-γ) and was assessed by Griess reaction. NO synthase type II (NOS II) expression was quantified by immunocytochemistry, Western blot and real-time polymerase chain reaction (RT-PCR). There were differences in NO production by pulmonary alveolar macrophages (PAM) in all species tested. The largest amounts of NO were produced by rat PAM. Less NO was produced by bovine PAM. Moreover, PAM in rats and cows differed in their abilities to respond to various stimulators. Neither porcine PAM nor Kupffer cells produced NO. Stimulation of porcine PAM with alternative concentrations of LPS did not lead to inducing NO production. Stimulation of porcine PAM with rIFN-γ together with LPS led to a significant increase in the expression of NOS II mRNA, albeit without detectable NO production or NOS II expression on the protein level.  相似文献   

10.
Nitric oxide production by the hemocytes of the last instar larvae and sessile pharate prepupa of Galleria mellonella (Lepidoptera: Pyralidae) was demonstrated in vitro in response to preparations of bacterial lipopolysaccharide (LPS) from Escherichia coli using the Griess reaction. Augmented, dose dependent nitric oxide production was observed in the pharate prepupal hemocytes compared with larval hemocytes. This was partially reversed in a dose dependent manner with S-methyl thiourea (SMT), a specific inhibitor of inducible nitric oxide synthase (iNOS). A decrease in NO production was also observed when non-selective inhibitors such as N(G)-nitro-L-arginine (L-NAME) and N-omega-nitro-L-arginine (L-NNA) were used, albeit the inhibition was not to the extent of SMT. Challenge with the entomopathogenic Gram-negative bacterium Photorhabdus asymbiotica also enhanced NO production by hemocytes of both stages. SMT, alone or in combination with P. asymbiotica significantly decreased levels of NO production. However, it was observed that phenoloxidase activity (a cascade for innate immune responses) was independent of NO production stimulation. NO donors, S-nitroso-N-acetyl-penicillamine (SNAP) and diethylenetriamine NO adduct (DETA/NO) at various concentrations (100-500 microM) resulted in the lysis of hemocytes dose dependently. The nitrite production in these cases was however similar to LPS stimulation (10 microg/mL) and 1.5-3 fold lower than those observed upon P. asymbiotica (2.5 x 10(7) cfu/mL) stimulation. Survival analysis (Kaplan-Meier) following injection of P. asymbiotica alone or in combination with SMT revealed that only 12.5% (median survival 25.5 h) of co-injected larvae of G. mellonella survived in comparison to 28.6% (median survival 29 h) survivors in P. asymbiotica alone-injected groups till the end of the study. In contrast, co-injected pharate prepupa survived longer (median survival 28 h) than the P. asymbiotica alone-injected individuals (median survival 24 h); however, both co-injected and P. asymbiotica-injected groups showed 100% mortality at the end of the study. Based on the above, we propose that although NO production is involved in cellular immune responses of this insect to bacterial infection it does not appear to be a part of the signalling pathway that initiates the prophenoloxidase (PPO) cascade, and the extended NO production/overproduction by pharate prepupal hemocytes could result in cytotoxic rather than cytoprotective effects compared with larval hemocytes.  相似文献   

11.
Burdet J  Zotta E  Cella M  Franchi AM  Ibarra C 《PloS one》2010,5(12):e15127
Shiga toxin-producing Escherichia coli (STEC) infections could be one of the causes of fetal morbimortality in pregnant women. The main virulence factors of STEC are Shiga toxin type 1 and/or 2 (Stx1, Stx2). We previously reported that intraperitoneal (i.p.) injection of rats in the late stage of pregnancy with culture supernatant from recombinant E. coli expressing Stx2 and containing lipopolysaccharide (LPS) induces premature delivery of dead fetuses. It has been reported that LPS may combine with Stx2 to facilitate vascular injury, which may in turn lead to an overproduction of nitric oxide (NO). The aim of this study was to evaluate whether NO is involved in the effects of Stx2 on pregnancy. Pregnant rats were i.p. injected with culture supernatant from recombinant E. coli containing Stx2 and LPS (sStx2) on day 15 of gestation. In addition, some rats were injected with aminoguanidine (AG), an inducible isoform inhibitor of NO synthase (iNOS), 24 h before and 4 h after sStx2 injection. NO production was measured by NOS activity and iNOS expression by Western blot analysis. A significant increase in NO production and a high iNOS expression was observed in placental tissues from rats injected with sStx2 containing 0.7 ng and 2 ng Stx2/g body weight and killed 12 h after injection. AG caused a significant reduction of sStx2 effects on the feto-maternal unit, but did not prevent premature delivery. Placental tissues from rats treated with AG and sStx2 presented normal histology that was indistinguishable from the controls. Our results reveal that Stx2-induced placental damage and fetus mortality is mediated by an increase in NO production and that AG is able to completely reverse the Stx2 damages in placental tissues, but not to prevent premature delivery, thus suggesting other mechanisms not yet determined could be involved.  相似文献   

12.
The possible existence of a mitochondrially localized nitric oxide (NO) synthase (mtNOS) is controversial. To clarify this, we studied the ability of intact mitochondria to generate NO and the effect of mitochondrial NO on respiration. Respiratory rates and oxygen kinetics (P(50) values) were determined by high-resolution respirometry in skeletal-muscle mitochondria from control mice and mice injected with Escherichia coli lipopolysaccharide (LPS). In the presence of the NOS substrate L-arginine, mitochondria from LPS-treated mice had lower respiration rates and higher P(50) values than control animals. These effects were prevented by the NOS inhibitor L-NMMA. Our results suggest that mitochondrially derived NO is generated by an LPS-inducible NOS protein other than iNOS and modulates oxygen consumption in mouse skeletal muscle.  相似文献   

13.
Phagocytic responses in circulating hemocytes of the lobster Homarus americanus were measured before and after treatment of lobsters with 2 different immunogens: (1) lipolysaccharide (LPS) or endotoxin from a non-pathogenic Pseudomonas perolens, and (2) a vancomycin/live Gram-positive pathogen (Aerococcus viridans [var.] homari) combination, essentially attenuated cells, shown previously to induce a high degree of resistance to this pathogen. The responses elicited by each of the immunogens were markedly different. Hemocytes drawn from LPS-treated lobsters showed significant, largely non-specific, increases in phagocytic responses over baseline values against sheep red blood cells and an array of test bacteria, with the notable exception of the pathogen. In marked contrast, induction with the vancomycin/live pathogen combination resulted in highly significant and specific increases in phagocytic responses to the pathogen and to the related, (but avirulent) strains of the pathogen, as well as inducing in the lobsters the usual high degree of resistance to the pathogen. These results suggest that quantitative and qualitative variations in phagocytic and resistance levels induced in at least 1 crustacean genus are determined largely by the particular characteristics of the immunogen.  相似文献   

14.
Primary cultures of endothelial cells, grown on the three-dimensional matrix Gelfoam where they take on the morphology of these cells in vivo, were found to phagocytose Staphylococcus aureus and two strains of Escherichia coli. The phagocytosis was independent of opsonization, although once opsonized, these bacteria were phagocytosed by endothelial cells. As cytochalsin D inhibited the internationalization of S. aureus and E. coli, the phagocytosis by endothelial cells appears to be actin-dependent. Transducing the gene for nitric oxide synthase (NOS) II into endothelial cells allowed us to determine the importance of NO(*) in host immunity against these bacteria. While the growth of S. aureus was impeded by NOS II endothelial cells, two strains of E. coli were killed by an NO(*)-dependent pathway. We conclude that endothelial cells have microbicidal mechanisms that are selective for the type of pathogen encountered.  相似文献   

15.
氧化修饰LDL(OX-LDL)可抑制脂多糖(LPS)诱导的巨噬细胞NO释放, 而正常(N-LDL)和乙酰化LDL(AC-LDL)则没有抑制作用.OX-LDL对NO释放的抑制作用随LDL修饰程度的升高而增强,且具有浓度和时间效应.狭缝杂交结果显示OX-LDL处理可使LPS诱导的巨噬细胞NOS mRNA含量下降,提示OX-LDL对NO释放的抑制作用可能发生在转录水平.  相似文献   

16.
17.
Bacterial pathogens typically upregulate the host's production of nitric oxide synthase (NOS) and nitric oxide (NO) as antimicrobial agents, a response that is often mediated by microbe-associated molecular patterns (MAMPs) of the pathogen. In contrast, previous studies of the beneficial Euprymna scolopes/Vibrio fischeri symbiosis demonstrated that symbiont colonization results in attenuation of host NOS/NO, which occurs in high levels in hatchling light organs. Here, we sought to determine whether V. fischeri MAMPs, specifically lipopolysaccharide (LPS) and the peptidoglycan derivative tracheal cytotoxin (TCT), attenuate NOS/NO, and whether this activity mediates the MAMPs-induced light organ morphogenesis. Using confocal microscopy, we characterized levels of NOS with immunocytochemistry and NO with a NO-specific fluorochrome. When added exogenously to seawater containing hatchling animals, V. fischeri LPS and TCT together, but not individually, induced normal NOS/NO attenuation. Further, V. fischeri mutants defective in TCT release did not. Experiments with NOS inhibitors and NO donors provided evidence that NO mediates apoptosis and morphogenesis associated with symbiont colonization. Attenuation of NOS/NO by LPS and TCT in the squid-vibrio symbiosis provides another example of how the host's response to MAMPs depends on the context. These data also provide a mechanism by which symbiont MAMPs regulate host development.  相似文献   

18.
Hemocytes of the American lobster (Homarus americanus H. Milne Edwards) were classified after examination of Wright-Giemsa stained cytocentrifuge preparations by brightfield light microscopy. Eleven hemocyte types were identified using morphologic criteria. The classification system was then used to monitor changes in the differential hemocyte count (DHC) of lobsters infected with the Gram positive coccus Aerococcus viridans var. homari, etiologic agent of gaffkemia. The appearance of less mature hemocytes in the DHCs of lobsters in the late stages of infection was similar to the 'left shift' of vertebrate inflammation. Results from this study suggest that DHCs can be used to assess and characterize inflammation in H. americanus and possibly other crustaceans.  相似文献   

19.
Abstract: Müller glial cells from the rat retina were examined for their capacity to produce nitric oxide (NO). Treatment of retinal Müller glial (RMG) cells with lipopolysaccharide (LPS), interferon-γ, and tumor necrosis factor-α induced NO synthesis as determined by nitrite release in media. Simultaneous addition of LPS, interferon-γ, and tumor necrosis factor-α caused the largest increase in NO synthesis. NO biosynthesis was detected after 12 h and was dependent on the dose of LPS, interferon-γ, and tumor necrosis factor-α. Stereoselective inhibitors of NO synthase (NOS), cycloheximide and transforming growth factor-β, blocked cytokine-induced NO production. Cytosol from LPS/cytokine-treated RMG cultures, but not from unstimulated cultures, produced a calcium/calmodulin-independent conversion of l -arginine to l -citrulline that was completely blocked by NOS inhibitor. The expression of NOS in RMG cells was confirmed by northern blot analysis, in which stimulation of these cells led to an increase in NOS mRNA levels. We conclude that RMG cells can express an inducible form of NOS similar to the macrophage isoform. High NO release from activated RMG cells might represent a protection from infection but may also contribute to the development of retinal pathologies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号