首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cohesin is a multi-subunit, ring-shaped protein complex that holds sister chromatids together from the time of their synthesis in S phase until they are segregated in anaphase. In yeast, the loading of cohesin onto chromosomes requires the Scc2 protein. In vertebrates, cohesins first bind to chromosomes as cells exit mitosis, but the mechanism is unknown. Concurrent with cohesin binding, pre-replication complexes (pre-RCs) are assembled at origins of DNA replication through the sequential loading of the initiation factors ORC, Cdc6, Cdt1 and MCM2-7 (the 'licensing' reaction). In S phase, the protein kinase Cdk2 activates pre-RCs, causing origin unwinding and DNA replication. Here, we use Xenopus egg extracts to show that the recruitment of cohesins to chromosomes requires fully licensed chromatin and is dependent on ORC, Cdc6, Cdt1 and MCM2-7, but is independent of Cdk2. We further show that Xenopus Scc2 is required for cohesin loading and that binding of XScc2 to chromatin is MCM2-7 dependent. Our results define a novel pre-RC-dependent pathway for cohesin recruitment to chromosomes in a vertebrate model system.  相似文献   

2.
DNA replication in all eukaryotes starts with the process of loading the replicative helicase MCM2–7 onto chromatin during late mitosis of the cell cycle. MCM2–7 is a key component of the prereplicative complex (pre-RC), which is loaded onto chromatin by the concerted action of origin recognition complex, Cdc6, and Cdt1. Here, we demonstrate that And-1 is assembled onto chromatin in late mitosis and early G1 phase before the assembly of pre-RC in human cells. And-1 forms complexes with MCM2–7 to facilitate the assembly of MCM2–7 onto chromatin at replication origins in late mitosis and G1 phase. We also present data to show that depletion of And-1 significantly reduces the interaction between Cdt1 and MCM7 in G1 phase cells. Thus, human And-1 facilitates loading of the MCM2–7 helicase onto chromatin during the assembly of pre-RC.  相似文献   

3.
Rad52 is a key player in homologous recombination (HR), a DNA repair pathway that is dedicated to double strand breaks repair and recovery of perturbed replication forks. Here we show that fission yeast Rad52 homologue is phosphorylated when S phase cells are exposed to ROS inducers such as ultraviolet A radiation or hydrogen peroxide, but not to ultraviolet C or camptothecin. Phosphorylation does not depend on kinases Chk1, Rad3, Tel1 or Cdc2, but depends on a functional stress activated protein kinase (SAPK) pathway and can be partially prevented by anti-oxidant treatment. Indeed, cells lacking Sty1, the major fission yeast MAP kinase of the SAPK pathway, do not display Rad52 phosphorylation and have UVA induced Rad52 foci that persist longer if compared to wild type cells. In addition, spontaneous intrachromosomal HR is diminished in cells lacking Sty1 and, more precisely, gene conversion is affected. Moreover, HR induced by site-specific arrest of replication forks is twice less efficient in cells that do not express Sty1. Importantly, impairing HR by deletion of the gene encoding the recombinase Rhp51 leads to Sty1 dependent Rad52 phosphorylation. Thus, SAPK pathway impinges on early step of HR through phosphorylation of Rad52 in cells challenged by oxidative stress or lacking Rhp51 and is required to promote spontaneous gene conversion and recovery from blocked replication forks.  相似文献   

4.
The minichromosome maintenance (MCM) complex, consisting of six subunits, Mcm2-7, is loaded onto replication origins through loading factors (origin recognition complex [ORC], Cdc6, and Cdt1) and forms an MCM double hexamer that licenses the initiation of DNA replication. Previous studies with Xenopus egg extracts showed that loading factors, especially Cdc6, dissociate from chromatin on MCM loading, but the molecular mechanism and physiological significance remain largely unknown. Using a cell-free system for MCM loading onto plasmid DNA in Xenopus egg extracts, we found that MCM loaded onto DNA prevents DNA binding of the loading factors ORC, Cdc6, and Cdt1. We further report that a peptide of the C-terminal region of MCM3 (MCM3-C), previously implicated in the initial association with ORC/Cdc6 in budding yeast, prevents ORC/Cdc6/Cdt1 binding to DNA in the absence of MCM loading. ATP-γ-S suppresses inhibitory activities of both the MCM loaded onto DNA and the MCM3-C peptide. Other soluble factors in the extract, but neither MCM nor Cdt1, are required for the activity. Conservation of the amino acid sequences of MCM3-C and its activity in vertebrates implies a novel negative autoregulatory mechanism that interferes with MCM loading in the vicinity of licensed origins to ensure proper origin licensing.  相似文献   

5.
Swi1 is required for programmed pausing of replication forks near the mat1 locus in the fission yeast Schizosaccharomyces pombe. This fork pausing is required to initiate a recombination event that switches mating type. Swi1 is also needed for the replication checkpoint that arrests division in response to fork arrest. How Swi1 accomplishes these tasks is unknown. Here we report that Swi1 copurifies with a 181-amino-acid protein encoded by swi3(+). The Swi1-Swi3 complex is required for survival of fork arrest and for activation of the replication checkpoint kinase Cds1. Association of Swi1 and Swi3 with chromatin during DNA replication correlated with movement of the replication fork. swi1Delta and swi3Delta mutants accumulated Rad22 (Rad52 homolog) DNA repair foci during replication. These foci correlated with the Rad22-dependent appearance of Holliday junction (HJ)-like structures in cells lacking Mus81-Eme1 HJ resolvase. Rhp51 and Rhp54 homologous recombination proteins were not required for viability in swi1Delta or swi3Delta cells, indicating that the HJ-like structures arise from single-strand DNA gaps or rearranged forks instead of broken forks. We propose that Swi1 and Swi3 define a fork protection complex that coordinates leading- and lagging-strand synthesis and stabilizes stalled replication forks.  相似文献   

6.
7.
A central requirement to maintain genome stability is that DNA replication must be tightly controlled so that genomic DNA is replicated only once in a single cell cycle. The prevention of DNA re-replication is achieved by restricting the assembly of pre-replicative complexes (pre RCs) to the period prior to S phase, and ensuring that pre-RCs cannot reform during S phase. The regulation of the replication licensing factors Cdt1 and Cdc6 during S phase is critical to prevent the reformation of pre-RCs. In yeast, Cdc6 is degraded during S phase to block DNA re-replication. In mammals, Cdc6 is exported from the nucleus; however, a variable percentage of endogenous Cdc6 remains nuclear throughout S phase. The perdurance of nuclear Cdc6 has led a number of groups to question whether the nuclear export of Cdc6 is relevant in restricting its activity. A recent study in C. elegans shows that the nuclear export of Cdc6 is in fact critical to prevent DNA re-replication. This work also identifies the CUL-4 ubiquitin ligase as a master regulator that controls DNA replication by regulating both Cdt1 and Cdc6 replication licensing factors.  相似文献   

8.
Ataxia-telangiectasia mutated (ATM), ataxia-telangiectasia Rad3-related (ATR) and the Mre11/Rad50/Nbs1 complex ensure genome stability in response to DNA damage. However, their essential role in DNA metabolism remains unknown. Here we show that ATM and ATR prevent accumulation of DNA double-strand breaks (DSBs) during chromosomal replication. Replicating chromosomes accumulate DSBs in Xenopus laevis egg extracts depleted of ATM and ATR. Addition of ATM and ATR proteins to depleted extracts prevents DSB accumulation by promoting restart of collapsed replication forks that arise during DNA replication. We show that collapsed forks maintain MCM complex but lose Pol epsilon, and that Pol epsilon reloading requires ATM and ATR. Replication fork restart is abolished in Mre11 depleted extracts and is restored by supplementation with recombinant human Mre11/Rad50/Nbs1 complex. Using a novel fluorescence resonance energy transfer-based technique, we demonstrate that ATM and ATR induce Mre11/Rad50/Nbs1 complex redistribution to restarting forks. This study provides direct biochemical evidence that ATM and ATR prevent accumulation of chromosomal abnormalities by promoting Mre11/Rad50/Nbs1 dependent recovery of collapsed replication forks.  相似文献   

9.
The specification of mammalian chromosomal replication origins is incompletely understood. To analyze the assembly and activation of prereplicative complexes (pre-RCs), we tested the effects of tethered binding of chromatin acetyltransferases and replication proteins on chromosomal c-myc origin deletion mutants containing a GAL4-binding cassette. GAL4DBD (DNA binding domain) fusions with Orc2, Cdt1, E2F1 or HBO1 coordinated the recruitment of the Mcm7 helicase subunit, the DNA unwinding element (DUE)-binding protein DUE-B and the minichromosome maintenance (MCM) helicase activator Cdc45 to the replicator, and restored origin activity. In contrast, replication protein binding and origin activity were not stimulated by fusion protein binding in the absence of flanking c-myc DNA. Substitution of the GAL4-binding site for the c-myc replicator DUE allowed Orc2 and Mcm7 binding, but eliminated origin activity, indicating that the DUE is essential for pre-RC activation. Additionally, tethering of DUE-B was not sufficient to recruit Cdc45 or activate pre-RCs formed in the absence of a DUE. These results show directly in a chromosomal background that chromatin acetylation, Orc2 or Cdt1 suffice to recruit all downstream replication initiation activities to a prospective origin, and that chromosomal origin activity requires singular DNA sequences.  相似文献   

10.
From late mitosis to the G(1) phase of the cell cycle, ORC, CDC6, and Cdt1 form the machinery necessary to load MCM2-7 complexes onto DNA. Here, we show that SNF2H, a member of the ATP-dependent chromatin-remodeling complex, is recruited onto DNA replication origins in human cells in a Cdt1-dependent manner and positively regulates MCM loading. SNF2H physically interacted with Cdt1. ChIP assays indicated that SNF2H associates with replication origins specifically during the G(1) phase. Binding of SNF2H at origins was decreased by Cdt1 silencing and, conversely, enhanced by Cdt1 overexpression. Furthermore, SNF2H silencing prevented MCM loading at origins and moderately inhibited S phase progression. Although neither SNF2H overexpression nor SNF2H silencing appeared to impact rereplication induced by Cdt1 overexpression, Cdt1-induced checkpoint activation was inhibited by SNF2H silencing. Collectively, these data suggest that SNF2H may promote MCM loading at DNA replication origins via interaction with Cdt1 in human cells. Because efficient loading of excess MCM complexes is thought to be required for cells to tolerate replication stress, Cdt1- and SNF2H-mediated promotion of MCM loading may be biologically relevant for the regulation of DNA replication.  相似文献   

11.
Kanemaki M  Labib K 《The EMBO journal》2006,25(8):1753-1763
The Cdc45 protein is crucial for the initiation of chromosome replication in eukaryotic cells, as it allows the activation of prereplication complexes (pre-RCs) that contain the MCM helicase. This causes the unwinding of origins and the establishment of DNA replication forks. The incorporation of Cdc45 at nascent forks is a highly regulated and poorly understood process that requires, in budding yeast, the Sld3 protein and the GINS complex. Previous studies suggested that Sld3 is also important for the progression of DNA replication forks after the initiation step, as are Cdc45 and GINS. In contrast, we show here that Sld3 does not move with DNA replication forks and only associates with MCM in an unstable manner before initiation. After the establishment of DNA replication forks from early origins, Sld3 is no longer essential for the completion of chromosome replication. Unlike Sld3, GINS is not required for the initial recruitment of Cdc45 to origins and instead is necessary for stable engagement of Cdc45 with the nascent replisome. Like Cdc45, GINS then associates stably with MCM during S-phase.  相似文献   

12.
Previous experiments in Xenopus egg extracts identified what appeared to be two independently assembled prereplication complexes (pre-RCs) for DNA replication: the stepwise assembly of ORC, Cdc6, and Mcm onto chromatin, and the FFA-1-mediated recruitment of RPA into foci on chromatin. We have investigated whether both of these pre-RCs can be detected in Chinese hamster ovary (CHO) cells. Early- and late-replicating chromosomal domains were pulse-labeled with halogenated nucleotides and prelabeled cells were synchronized at various times during the following G1-phase. The recruitment of Mcm2 and RPA to these domains was examined in relation to the formation of a nuclear envelope, specification of the dihydrofolate reductase (DHFR) replication origin and entry into S-phase. Mcm2 was loaded gradually and cumulatively onto both early- and late-replicating chromatin from late telophase throughout G1-phase. During S-phase, detectable Mcm2 was rapidly excluded from PCNA-containing active replication forks. By contrast, detergent-resistant RPA foci were undetectable until the onset of S-phase, when RPA joined only the earliest-firing replicons. During S-phase, RPA was present with PCNA specifically at active replication forks. Together, our data are consistent with a role for Mcm proteins, but not RPA, in the formation of mammalian pre-RCs during early G1-phase.  相似文献   

13.
Replication stress from stalled or collapsed replication forks is a major challenge to genomic integrity. The anticancer agent camptothecin (CPT) is a DNA topoisomerase I inhibitor that causes fork collapse and double-strand breaks amid DNA replication. Here we report that hMSH5 promotes cell survival in response to CPT-induced DNA damage. Cells deficient in hMSH5 show elevated CPT-induced γ-H2AX and RPA2 foci with concomitant reduction of Rad51 foci, indicative of impaired homologous recombination. In addition, CPT-treated hMSH5-deficient cells exhibit aberrant activation of Chk1 and Chk2 kinases and therefore abnormal cell cycle progression. Furthermore, the hMSH5-FANCJ chromatin recruitment underlies the effects of hMSH5 on homologous recombination and Chk1 activation. Intriguingly, FANCJ depletion desensitizes hMSH5-deficient cells to CPT-elicited cell killing. Collectively, our data point to the existence of a functional interplay between hMSH5 and FANCJ in double-strand break repair induced by replication stress.  相似文献   

14.
Recruitment of the homologous recombination machinery to sites of double‐strand breaks is a cell cycle‐regulated event requiring entry into S phase and CDK1 activity. Here, we demonstrate that the central recombination protein, Rad52, forms foci independent of DNA replication, and its recruitment requires B‐type cyclin/CDK1 activity. Induction of the intra‐S‐phase checkpoint by hydroxyurea (HU) inhibits Rad52 focus formation in response to ionizing radiation. This inhibition is dependent upon Mec1/Tel1 kinase activity, as HU‐treated cells form Rad52 foci in the presence of the PI3 kinase inhibitor caffeine. These Rad52 foci colocalize with foci formed by the replication clamp PCNA. These results indicate that Mec1 activity inhibits the recruitment of Rad52 to both sites of DNA damage and stalled replication forks during the intra‐S‐phase checkpoint. We propose that B‐type cyclins promote the recruitment of Rad52 to sites of DNA damage, whereas Mec1 inhibits spurious recombination at stalled replication forks.  相似文献   

15.
The initiation of eukaryotic DNA replication requires the assembly of active CMG (Cdc45‐MCM‐GINS) helicases at replication origins by a set of conserved and essential firing factors. This process is controlled during the cell cycle by cyclin‐dependent kinase (CDK) and Dbf4‐dependent kinase (DDK), and in response to DNA damage by the checkpoint kinase Rad53/Chk1. Here we show that Sld3, previously shown to be an essential CDK and Rad53 substrate, is recruited to the inactive MCM double hexamer in a DDK‐dependent manner. Sld3 binds specifically to DDK‐phosphorylated peptides from two MCM subunits (Mcm4, 6) and then recruits Cdc45. MCM mutants that cannot bind Sld3 or Sld3 mutants that cannot bind phospho‐MCM or Cdc45 do not support replication. Moreover, phosphomimicking mutants in Mcm4 and Mcm6 bind Sld3 without DDK and facilitate DDK‐independent replication. Thus, Sld3 is an essential “reader” of DDK phosphorylation, integrating signals from three distinct protein kinase pathways to coordinate DNA replication during S phase.  相似文献   

16.
The progression of replication forks is often impeded by obstacles that cause them to stall or collapse, and appropriate responses to replication-associated DNA damage are important for genome integrity. Here we identified a new gene, mus7(+), that is involved in the repair of replication-associated DNA damage in the fission yeast Schizosaccharomyces pombe. The Deltamus7 mutant shows enhanced sensitivity to methyl methanesulfonate (MMS), camptothecin, and hydroxyurea, agents that cause replication fork stalling or collapse, but not to ultraviolet light or X-rays. Epistasis analysis of MMS sensitivity indicates that Mus7 functions in the same pathway as Mus81, a subunit of the Mus81-Eme1 structure-specific endonuclease, which has been implicated in the repair of the replication-associated DNA damage. In Deltamus7 and Deltamus81 cells, the repair of MMS-induced DNA double-strand breaks (DSBs) is severely impaired. Moreover, some cells with either mutation are hyper-elongated or enlarged, and most of these cells accumulate in late G2 phase. Spontaneous Rad22 (recombination mediator protein RAD52 homolog) foci increase in S phase to late G2 phase in Deltamus7 and Deltamus81 cells. These results suggest that replication-associated DSBs accumulate in these cells and that Rad22 foci form in the absence of Mus7 or Mus81. We also found that the rate of spontaneous conversion-type recombination is reduced in mitotic Deltamus7 cells, suggesting that Rhp51- (RAD51 homolog) dependent homologous recombination is disturbed in this mutant. From these data, we propose that Mus7 functions in the repair of replication-associated DSBs by promoting RAD51-dependent conversion-type recombination downstream of Rad22 and Mus81.  相似文献   

17.
In eukaryotes, DNA replication requires the regulated assembly of pre-replicative complexes (pre-RCs) onto DNA during G1 phase. Pre-RCs render the chromatin competent to replicate, yet it is only at the G1-S phase transition that protein-kinase complexes trigger the transition to DNA replication. Central to the formation of pre-RCs and regulation of DNA replication is the Cdc6 protein. Two recent studies have shown that Cdc6 is the long-sought factor that confers the competence to replicate in unfertilized Xenopus eggs.  相似文献   

18.
19.
Yanow SK  Lygerou Z  Nurse P 《The EMBO journal》2001,20(17):4648-4656
Cdc18/Cdc6 and Cdt1 are essential initiation factors for DNA replication. In this paper we show that expression of Cdc18 in fission yeast G2 cells is sufficient to override the controls that ensure one S phase per cell cycle. Cdc18 expression in G2 induces DNA synthesis by re-firing replication origins and recruiting the MCM Cdc21 to chromatin in the presence of low levels of Cdt1. However, when Cdt1 is expressed together with Cdc18 in G2, cells undergo very rapid, uncontrolled DNA synthesis, accumulating DNA contents of 64C or more. Our data suggest that Cdt1 may potentiate re-replication by inducing origins to fire more persistently, possibly by stabilizing Cdc18 on chromatin. In addition, low level expression of a mutant form of Cdc18 that cannot be phosphorylated by cyclin-dependent kinases is not sufficient to induce replication in G2, but does so only when co-expressed with Cdt1. Thus, regulation of both Cdc18 and Cdt1 in G2 plays a crucial role in preventing the re-initiation of DNA synthesis until the next cell cycle.  相似文献   

20.
Prereplication complexes (pre-RCs) define potential origins of DNA replication and allow the recruitment of the replicative DNA helicase MCM2-7. Here, we characterize MCM9, a member of the MCM2-8 family. We demonstrate that MCM9 binds to chromatin in an ORC-dependent manner and is required for the recruitment of the MCM2-7 helicase onto chromatin. Its depletion leads to a block in pre-RC assembly, as well as DNA replication inhibition. We show that MCM9 forms a stable complex with the licensing factor Cdt1, preventing an excess of geminin on chromatin during the licensing reaction. Our data suggest that MCM9 is an essential activating linker between Cdt1 and the MCM2-7 complex, required for loading the MCM2-7 helicase onto DNA replication origins. Thus, Cdt1, with its two opposing regulatory binding factors MCM9 and geminin, appears to be a major platform on the pre-RC to integrate cell-cycle signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号