首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary Escherichia coli strain O 127: K63: (B8): H—was grown in nutrient broth (Difco). Penicillinase activity was found in the culture supernatant after only five hours of incubation, i.e. during the exponential phase of growth. At this phase the levels of typical intracellular markers, did not indicate cell lysis or gross cell damage. The bioautographic revelation of penicillin-splitting enzymes on electropherograms of cell-free liquids confirmed the presence of one basic broad-spectrum -lactamase. This possibly extracellular -lactamase seems to be also present in the cellular extracts where it coexists with several other cell-bound penicillinases.  相似文献   

3.
4.
We have used the technique of continuous culture to study the expression of β-galactosidase in Escherichia coli. In these experiments the cultures were grown on carbon-limited media in which half of the available carbon was supplied as glycerol, glucose, or glucose 6-phosphate, and the other half as lactose. Lactose itself provided the sole source of inducer for the lac operon. The steady-state specific activity of the enzyme passed through a maximal value as a function of dilution rate. Moreover, the rate at which activity was maximal (0.40 h?1) and the observed specific activity of the enzyme at a given growth rate were found to be identical in each of the three media tested. This result was unexpected, since the steady-state specific activity can be shown to be equal to the differential rate of enzyme synthesis, and since it is known that glycerol, glucose, and glucose-6-P-cause different degrees of catabolite repression in batch culture. The differential rate of β-galactosidase synthesis was an apparently linear function of the rate of lactose utilization per milligram protein regardless of the composition of the input medium. That is, it is independent of the rate of metabolism of substrates other than lactose which are concurrently being utilized and the enzyme level appears to be matched to the metabolic requirement for it. If this relationship is taken to indicate the existence of a fundamental control mechanism, it may represent a form of attenuation of the rate of β-galactosidase synthesis which is independent of cyclic AMP levels.  相似文献   

5.
Summary A fast 4-step isolation procedure for -D-galactosidase from E. coli has been developed: cell disruption, two-stage aqueous two-phase extraction and ultrafiltration. A 60-fold purification of the enzyme with a total yield of 75% was achieved.  相似文献   

6.
Hagan CL  Kahne D 《Biochemistry》2011,50(35):7444-7446
β-Barrel proteins are folded and inserted into the outer membranes of Escherichia coli by the Bam complex. The Bam complex has been purified and functionally reconstituted in vitro. We report conditions for reconstitution that increase the folding yield 10-fold and allow us to monitor the time course of folding directly. We use these conditions to analyze the effect of a mutation in the Bam complex and to demonstrate the ability of the reconstituted complex to catalyze more than one round of substrate assembly.  相似文献   

7.
Fang J  Engen JR  Beuning PJ 《Biochemistry》2011,50(26):5958-5968
Escherichia coli DNA polymerase III is a highly processive replicase because of the presence of the β clamp protein that tethers DNA polymerases to DNA. The β clamp is a head-to-tail ring-shaped homodimer, in which each protomer contains three structurally similar domains. Although multiple studies have probed the functions of the β clamp, a detailed understanding of the conformational dynamics of the β clamp in solution is lacking. Here we used hydrogen exchange mass spectrometry to characterize the conformation and dynamics of the intact dimer β clamp and a variant form (I272A/L273A) with a weakened ability to dimerize in solution. Our data indicate that the β clamp is not a static closed ring but rather is dynamic in solution. The three domains exhibited different dynamics, though they share a highly similar tertiary structure. Domain I, which controls the opening of the clamp by dissociating from domain III, contained several highly flexible peptides that underwent partial cooperative unfolding (EX1 kinetics) with a half-life of ~4 h. The comparison between the β monomer variant and the wild-type β clamp showed that the β monomer was more dynamic. In the monomer, partial unfolding was much faster and additional regions of domain III also underwent partial unfolding with a half-life of ~1 h. Our results suggest that the δ subunit of the clamp loader may function as a "ring holder" to stabilize the transient opening of the β clamp, rather than as a "ring opener".  相似文献   

8.
1. The location of the bivalent metal cation with respect to bound competitive inhibitors in Escherichia coli (lacZ) beta-galactosidase was investigated by proton magnetic resonance. 2. Replacement of Mg(2+) by Mn(2+) enhances both longitudinal and transverse relaxation of the methyl groups of the beta-d-galactopyranosyltrimethylammonium ion, and of methyl 1-thio-beta-d-galactopyranoside; linewidths are narrowed by increasing temperature. 3. The Mn(2+) ion is located 8-9A (0.8-0.9nm) from the centroid of the trimethylammonium group and 9A (0.9nm) from the average position of the methylthio protons. 4. The effective charge at the active site was probed by measurement of competitive inhibition constants (K(i) (o) and K(i) (+) respectively) for the isosteric ligands, beta-d-galactopyranosylbenzene and the beta-d-galactopyranosylpyridinium ion. 5. The ratio of inhibition constants (Q=K(i) (+)/K(i) (o)) obtained with 2-(beta-d-galactopyranosyl)-naphthalene and the beta-d-galactopyranosylisoquinolinium ion at pH7 with Mg(2+)-enzyme was identical, within experimental error, with that obtained with the monocyclic compounds. 6. The variation of Q for Mg(2+)-enzyme can be described by Q=0.1(1+[H(+)]/4.17x10(-10))/1+[H(+)]/10(-8)). 7. This, in the theoretical form for a single ionizable group, is ascribed to the ionization of the phenolic hydroxy group of tyrosine-501. 8. The variation of Q for Mg(2+)-free enzyme is complex, probably because of deprotonation of the groups normally attached to Mg(2+) as well as tyrosine-501.  相似文献   

9.
To produce recombinant β-carotene in vitro, synthetic operons encoding genes governing its biosynthesis were engineered into Escherichia coli. Constructs harboring these operons were introduced into either a high-copy or low-copy cloning vector. β-Carotene production from these recombinant E. coli cells was either constitutive or inducible depending upon plasmid copy number. The most efficient β-carotene production was with the low-copy based vector. The process was increased incrementally from a 5 l to a 50 l fermentor and finally into a 300 l fermentor. The maximal β-carotene yields achieved using the 50 l and 300 l fermentor were 390 mg l−1 and 240 mg l−1, respectively, with overall productivities of 7.8 mg l−1 h−1 and 4.8 mg l−1 h−1.  相似文献   

10.
11.
Why sequence genomes? The Escherichia coli imbroglio   总被引:2,自引:0,他引:2  
  相似文献   

12.
We have investigated the cultivation of an Escherichia coli strain producing the hybrid protein SpA-βgal. The hybrid protein consists of protein A from Staphylococcus aureus and β-galactosidase from E. coli with retained biological activity of both protein A and β-galactosidase. The expression was controlled by the temperature regulated PR promoter from phage lambda. By late induction of the product synthesis it was possible to circumvent the problem with plasmid instability. The amount of produced SpA-βgal corresponded to approximately 1256 of the cell dry weight. In shake flask cultures most of the hybrid protein was found in an insoluble form and typical inclusion bodies were observed. However, the major part of the protein could be produced in a soluble and biological active form under controlled conditions in a reactor.  相似文献   

13.
Catabolite repression of β-galactosidase synthesis in Escherichia coli   总被引:2,自引:2,他引:0  
1. Repression by glucose of β-galactosidase synthesis is spontaneously reversible in all strains of Escherichia coli examined long before the glucose has all been consumed. The extent of recovery and the time necessary for reversal differ among various strains. Other inducible enzymes show similar effects. 2. This transient effect of glucose repression is observed in constitutive (i) and permease-less (y) cells as well as in the corresponding i+ and y+ strains. 3. Repression is exerted by several rapidly metabolizable substrates (galactose, ribose and ribonucleosides) but not by non-metabolized or poorly metabolized compounds (2-deoxyglucose, 2-deoxyribose, phenyl thio-β-galactoside and 2-deoxyribonucleosides). 4. The transient repression with glucose is observed in inducible cells supplied with a powerful inducer of β-galactosidase synthesis (e.g. isopropyl thio-β-galactoside) but not with a weak inducer (lactose); in the latter instance glucose repression is permanent. Diauxic growth on glucose plus lactose can be abolished by including isopropyl thio-β-galactoside in the medium. 5. In some strains phosphate starvation increases catabolite repression; in others it relieves it. Adenine starvation in an adenine-requiring mutant also relieves catabolite repression by glycerol but not that by glucose. Restoration of phosphate or adenine to cells starved of these nutrients causes a pronounced temporary repression. Alkaline-phosphatase synthesis is not affected by the availability of adenine. 6. During periods of transient repression of induced enzyme synthesis the differential rate of RNA synthesis, measured by labelled uracil incorporation in 2min. pulses, shows a temporary rise. 7. The differential rate of uracil incorporation into RNA falls during exponential growth of batch cultures of E. coli. This is equally true for uracil-requiring and non-requiring strains. The fall in the rate of incorporation has been shown to be due to a real fall in the rate of RNA synthesis. The significance of the changes in the rate of RNA synthesis is discussed. 8. A partial model of catabolite repression is presented with suggestions for determining the chemical identification of the catabolite co-repressor itself.  相似文献   

14.
15.
Structural and kinetic data show that Arg-599 of β-galactosidase plays an important role in anchoring the "open" conformations of both Phe-601 and an active-site loop (residues 794-803). When alanine was substituted for Arg-599, the conformations of Phe-601 and the loop shifted towards the "closed" positions because interactions with the guanidinium side chain were lost. Also, Phe-601, the loop, and Na+, which is ligated by the backbone carbonyl of Phe-601, lost structural order, as indicated by large B-factors. IPTG, a substrate analog, restored the conformations of Phe-601 and the loop of R599A-β-galactosidase to the open state found with IPTG-complexed native enzyme and partially reinstated order. ?-Galactonolactone, a transition state analog, restored the closed conformations of R599A-β-galactosidase to those found with ?-galactonolactone-complexed native enzyme and completely re-established the order. Substrates and substrate analogs bound R599A-β-galactosidase with less affinity because the closed conformation does not allow substrate binding and extra energy is required for Phe-601 and the loop to open. In contrast, transition state analog binding, which occurs best when the loop is closed, was several-fold better. The higher energy level of the enzyme?substrate complex and the lower energy level of the first transition state means that less activation energy is needed to form the first transition state and thus the rate of the first catalytic step (k2) increased substantially. The rate of the second catalytic step (k3) decreased, likely because the covalent form is more stabilized than the second transition state when Phe-601 and the loop are closed. The importance of the guanidinium group of Arg-599 was confirmed by restoration of conformation, order, and activity by guanidinium ions.  相似文献   

16.
An in frame gene fusion containing the coding region for mature β-lactamase and the 3′-end of hylA encoding the haemolysin secretion signal, was constructed under the control of a lac promoter. The resulting 53 kDa hybrid protein was specifically secreted to the external medium in the presence of the haemolysin translocator proteins, HlyB and HlyD. The specific activity of the β-lactamase portion of the secreted protein (measured by the hydrolysis of penicillin G), approximately 1 U/μg protein, was close to that of authentic, purified TEM-β-lactamase. This is an important example of a hybrid protein that is enzymatically active, and secreted via the haemolysin pathway. Previous studies have indicated that haemolysin is secreted directly into the medium, bypassing the periplasm, to which β-lactamase is normally targeted. This study indicated, therefore, that normal folding of an active β-lactamase, can occur, at least when fused to the HlyA C-terminus, without the necessity of entering the periplasm. Despite the secretion of approximately 5 μg/ml levels of the active β-lactamase fusion into the medium, there was maximally only a 50% detectable increase in the LD50 for resistance to ampicillin at the individual cell level. This result suggests that, normally, resistance to ampicillin requires a high concentration of the enzyme close to killing targets, i.e. in the periplasm, in order to achieve significant levels of protection.  相似文献   

17.
18.
1. The specific role of the lac repressor (i-gene product) in transient catabolite repression evoked by the introduction of glucose into the medium has been investigated in Escherichia coli by using mutants of the i-gene. 2. A temperature-sensitive mutant (i(TL)) is normally inducible and demonstrates transient repression when grown at 32 degrees . At 42 degrees it is about 20% constitutive and transient catabolite repression is abolished. 3. A strain carrying an amber suppressor-sensitive mutation in the i-gene is phenotypically constitutive and also fails to show transient catabolite repression. 4. Insertion of Flaci(+) into this strain restores both inducibility and transient repression. 5. It is concluded that the i-gene product interacts with the catabolite co-repressor in such a way that its affinity for the operator is increased.  相似文献   

19.
[目的]β-甘露聚糖酶和木聚糖酶都属于半纤维素酶,它们已经同时运用于工农业生产的许多领域.构建β-甘露聚糖酶和木聚糖酶共表达菌株并进行相关评价.[方法]通过设计一个共同的酶切位点,将菌株Bacillus subtilis BE-91中的β-甘露聚糖酶和木聚糖酶基因串联到表达载体pET28a(+)上,转化大肠杆菌构建了一株能够共表达β-甘露聚糖酶和木聚糖酶的菌株B.pET28a-man-xyl.[结果]菌株诱导21h后,发酵液中β-甘露聚糖酶和木聚糖酶的酶活分别为713.34 U/mL和1455.83 U/mL,是胞内酶活的11.8倍和2.53倍.[结论]SDS-PAGE分析、水解圈活性检测和胞外酶与胞内酶酶活检测表明:两个酶均以功能蛋白独立分泌到胞外.此外,与β-甘露聚糖酶和木聚糖酶单独酶解半纤维素相比,复合酶的酶解效果更好.菌株的成功构建为复合酶制剂(半纤维素酶制剂)的研究和生产奠定基础.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号