首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A new approach to the functional classification of protein 3D structures is described with application to some examples from structural genomics. This approach is based on functional site prediction with THEMATICS and POOL. THEMATICS employs calculated electrostatic potentials of the query structure. POOL is a machine learning method that utilizes THEMATICS features and has been shown to predict accurate, precise, highly localized interaction sites. Extension to the functional classification of structural genomics proteins is now described. Predicted functionally important residues are structurally aligned with those of proteins with previously characterized biochemical functions. A 3D structure match at the predicted local functional site then serves as a more reliable predictor of biochemical function than an overall structure match. Annotation is confirmed for a structural genomics protein with the ribulose phosphate binding barrel (RPBB) fold. A putative glucoamylase from Bacteroides fragilis (PDB ID 3eu8) is shown to be in fact probably not a glucoamylase. Finally a structural genomics protein from Streptomyces coelicolor annotated as an enoyl-CoA hydratase (PDB ID 3g64) is shown to be misannotated. Its predicted active site does not match the well-characterized enoyl-CoA hydratases of similar structure but rather bears closer resemblance to those of a dehalogenase with similar fold.  相似文献   

2.
THEMATICS (Theoretical Microscopic Titration Curves) is a simple, reliable computational predictor of the active sites of enzymes from structure. Our method, based on well-established Finite Difference Poisson-Boltzmann techniques, identifies the ionisable residues with anomalous predicted titration behavior. A cluster of two or more such perturbed residues is a very reliable predictor of the active site. The protein does not have to bear any resemblance in sequence or structure to any previously characterized protein, but the method does require the three-dimensional structure. We now present evidence that THEMATICS can also locate the active site in structures built by comparative modeling from similar structures. Results are given for a total of 21 sets of proteins, including 21 templates and 83 comparative model structures. Detailed results are presented for three sets of orthologous proteins (Triosephosphate isomerase, 6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase, and Aspartate aminotransferase) and for one set of human homologues of Aldose reductase with different functions. THEMATICS correctly locates the active site in the model structures. This suggests that the method can be applicable to a much larger set of proteins for which an experimentally determined structure is unavailable. With a few exceptions, the predicted active sites in the comparative model structures are similar to that of the corresponding template structure.  相似文献   

3.
4.
Classical molecular dynamics simulations were utilized to investigate the structural and dynamical properties of water in the active site of ketosteroid isomerase (KSI) to provide insight into the role of these water molecules in the enzyme-catalyzed reaction. This reaction is thought to proceed via a dienolate intermediate that is stabilized by hydrogen bonding with residues Tyr16 and Asp103. A comparative study was performed for the wild-type (WT) KSI and the Y16F, Y16S, and Y16F/Y32F/Y57F (FFF) mutants. These systems were studied with three different bound ligands: equilenin, which is an intermediate analog, and the intermediate states of two steroid substrates. Several distinct water occupation sites were identified in the active site of KSI for the WT and mutant systems. Three additional sites were identified in the Y16S mutant that were not occupied in WT KSI or the other mutants studied. The number of water molecules directly hydrogen bonded to the ligand oxygen was approximately two in the Y16S mutant and one in the Y16F and FFF mutants, with intermittent hydrogen bonding of one water molecule in WT KSI. The molecular dynamics trajectories of the Y16F and FFF mutants reproduced the small conformational changes of residue 16 observed in the crystal structures of these two mutants. Quantum mechanical/molecular mechanical calculations of (1)H NMR chemical shifts of the protons in the active site hydrogen-bonding network suggest that the presence of water in the active site does not prevent the formation of short hydrogen bonds with far-downfield chemical shifts. The molecular dynamics simulations indicate that the active site water molecules exchange much more frequently for WT KSI and the FFF mutant than for the Y16F and Y16S mutants. This difference is most likely due to the hydrogen-bonding interaction between Tyr57 and an active site water molecule that is persistent in the Y16F and Y16S mutants but absent in the FFF mutant and significantly less probable in WT KSI.  相似文献   

5.
A scoring method for the prediction of catalytically important residues in enzyme structures is presented and used to examine the participation of distal residues in enzyme catalysis. Scores are based on the Partial Order Optimum Likelihood (POOL) machine learning method, using computed electrostatic properties, surface geometric features, and information obtained from the phylogenetic tree as input features. Predictions of distal residue participation in catalysis are compared with experimental kinetics data from the literature on variants of the featured enzymes; some additional kinetics measurements are reported for variants of Pseudomonas putida nitrile hydratase (ppNH) and for Escherichia coli alkaline phosphatase (AP). The multilayer active sites of P. putida nitrile hydratase and of human phosphoglucose isomerase are predicted by the POOL log ZP scores, as is the single-layer active site of P. putida ketosteroid isomerase. The log ZP score cutoff utilized here results in over-prediction of distal residue involvement in E. coli alkaline phosphatase. While fewer experimental data points are available for P. putida mandelate racemase and for human carbonic anhydrase II, the POOL log ZP scores properly predict the previously reported participation of distal residues.  相似文献   

6.
Oh KS  Cha SS  Kim DH  Cho HS  Ha NC  Choi G  Lee JY  Tarakeshwar P  Son HS  Choi KY  Oh BH  Kim KS 《Biochemistry》2000,39(45):13891-13896
Ketosteroid isomerase (KSI) is one of the most proficient enzymes catalyzing an allylic isomerization reaction at a diffusion-controlled rate. In this study of KSI, we have detailed the structures of its active site, the role of various catalytic residues, and have explained the origin of the its fast reactivity by carrying out a detailed investigation of the enzymatic reaction mechanism. This investigation included the X-ray determination of 15 crystal structures of two homologous enzymes in free and complexed states (with inhibitors) and extensive ab initio calculations of the interactions between the active sites and the reaction intermediates. The catalytic residues, through short strong hydrogen bonds, play the role of charge buffer to stabilize the negative charge built up on the intermediates in the course of the reaction. The hydrogen bond distances in the intermediate analogues are found to be about 0.2 A shorter in the product analogues both experimentally and theoretically.  相似文献   

7.
The second enzyme in the glycolytic pathway, phosphoglucose isomerase (PGI), catalyses an intracellular aldose-ketose isomerization. Here we describe the human recombinant PGI structure (hPGI) solved in the absence of active site ligands. Crystals isomorphous to those previously reported were used to collect a 94% complete data set to a limiting resolution of 2.1 A. From the comparison between the free active site hPGI structure and the available human and rabbit PGI (rPGI) structures, a mechanism for protein initial catalytic steps is proposed. Binding of the phosphate moiety of the substrate to two distinct elements of the active site is responsible for driving a series of structural changes resulting in the polarisation of the active site histidine, priming it for the initial ring-opening step of catalysis.  相似文献   

8.
In the Euryarchaeota species Pyrococcus furiosus and Thermococcus litoralis, phosphoglucose isomerase (PGI) activity is catalyzed by an enzyme unrelated to the well known family of PGI enzymes found in prokaryotes, eukaryotes, and some archaea. We have determined the crystal structure of PGI from Pyrococcus furiosus in native form and in complex with two active site ligands, 5-phosphoarabinonate and gluconate 6-phosphate. In these structures, the metal ion, which in vivo is presumed to be Fe2+, is located in the core of the cupin fold and is immediately adjacent to the C1-C2 region of the ligands, suggesting that Fe2+ is involved in catalysis rather than serving a structural role. The active site contains a glutamate residue that contacts the substrate, but, because it is also coordinated to the metal ion, it is highly unlikely to mediate proton transfer in a cis-enediol mechanism. Consequently, we propose a hydride shift mechanism of catalysis. In this mechanism, Fe2+ is responsible for proton transfer between O1 and O2, and the hydride shift between C1 and C2 is favored by a markedly hydrophobic environment in the active site. The absence of any obvious enzymatic machinery for catalyzing ring opening of the sugar substrates suggests that pyrococcal PGI has a preference for straight chain substrates and that metabolism in extreme thermophiles may use sugars in both ring and straight chain forms.  相似文献   

9.
Using a new expression construct, rhamnose isomerase from Escherichia coli was purified and crystallized. The crystal structure was solved by multiple isomorphous replacement and refined to a crystallographic residual of 17.4 % at 1.6 A resolution. Rhamnose isomerase is a tight tetramer of four (beta/alpha)(8)-barrels. A comparison with other known structures reveals that rhamnose isomerase is most similar to xylose isomerase. Alignment of the sequences of the two enzymes based on their structures reveals a hitherto undetected sequence identity of 13 %, suggesting that the two enzymes evolved from a common precursor. The structure and arrangement of the (beta/alpha)(8)-barrels of rhamnose isomerase are very similar to xylose isomerase. Each enzyme does, however, have additional alpha-helical domains, which are involved in tetramer association, and largely differ in structure. The structures of complexes of rhamnose isomerase with the inhibitor l-rhamnitol and the natural substrate l-rhamnose were determined and suggest that an extended loop, which is disordered in the native enzyme, becomes ordered on substrate binding, and may exclude bulk solvent during catalysis. Unlike xylose isomerase, this loop does not extend across a subunit interface but contributes to the active site of its own subunit. It illustrates how an interconversion between inter and intra-subunit complementation can occur during evolution. In the crystal structure (although not necessarily in vivo) rhamnose isomerase appears to bind Zn(2+) at a "structural" site. In the presence of substrate the enzyme also binds Mn(2+) at a nearby "catalytic" site. An array of hydrophobic residues, not present in xylose isomerase, is likely to be responsible for the recognition of l-rhamnose as a substrate. The available structural data suggest that a metal-mediated hydride-shift mechanism, which is generally favored for xylose isomerase, is also feasible for rhamnose isomerase.  相似文献   

10.
J H Lee  K Z Chang  V Patel  C J Jeffery 《Biochemistry》2001,40(26):7799-7805
Phosphoglucose isomerase (PGI, EC 5.3.1.9) catalyzes the interconversion of D-glucose 6-phosphate (G6P) and D-fructose 6-phosphate (F6P) and plays important roles in glycolysis and gluconeogenesis. Biochemical characterization of the enzyme has led to a proposed multistep catalytic mechanism. First, the enzyme catalyzes ring opening to yield the open chain form of the substrate. Then isomerization proceeds via proton transfer between C2 and C1 of a cis-enediol(ate) intermediate to yield the open chain form of the product. Catalysis proceeds in both the G6P to F6P and F6P to G6P directions, so both G6P and F6P are substrates. X-ray crystal structure analysis of rabbit and bacterial PGI has previously identified the location of the enzyme active site, and a recent crystal structure of rabbit PGI identified Glu357 as a candidate functional group for transferring the proton. However, it was not clear which active site amino acid residues catalyze the ring opening step. In this paper, we report the X-ray crystal structure of rabbit PGI complexed with the cyclic form of its substrate, D-fructose 6-phosphate, at 2.1 A resolution. The location of the substrate relative to the side chains of His388 suggest that His388 promotes ring opening by protonating the ring oxygen. Glu216 helps to position His388, and a water molecule that is held in position by Lys518 and Thr214 accepts a proton from the hydroxyl group at C2. Comparison to a structure of rabbit PGI with 5PAA bound indicates that ring opening is followed by loss of the protonated water molecule and conformational changes in the substrate and the protein so that a helix containing amino acids 513-520 moves in toward the substrate to form additional hydrogen bonds with the substrate.  相似文献   

11.
Active sites may be regarded as layers of residues, whereby the residues that interact directly with substrate also interact with residues in a second shell and these in turn interact with residues in a third shell. These residues in the second and third layers may have distinct roles in maintaining the essential chemical properties of the first-shell catalytic residues, particularly their spatial arrangement relative to the substrate binding pocket, and their electrostatic and dynamic properties. The extent to which these remote residues participate in catalysis and precisely how they affect first-shell residues remains unexplored. To improve our understanding of the roles of second- and third-shell residues in catalysis, we used THEMATICS to identify residues in the second and third shells of the Co-type nitrile hydratase from Pseudomonas putida (ppNHase) that may be important for catalysis. Five of these predicted residues, and three additional, conserved residues that were not predicted, have been conservatively mutated, and their effects have been studied both kinetically and structurally. The eight residues have no direct contact with the active site metal ion or bound substrate. These results demonstrate that three of the predicted second-shell residues (α-Asp164, β-Glu56, and β-His147) and one predicted third-shell residue (β-His71) have significant effects on the catalytic efficiency of the enzyme. One of the predicted residues (α-Glu168) and the three residues not predicted (α-Arg170, α-Tyr171, and β-Tyr215) do not have any significant effects on the catalytic efficiency of the enzyme.  相似文献   

12.
Jeffery CJ  Hardré R  Salmon L 《Biochemistry》2001,40(6):1560-1566
Phosphoglucose isomerase (PGI; E.C. 5.3.1.9) catalyzes the second step in glycolysis, the interconversion of D-glucose-6-phosphate and D-fructose-6-phosphate. We determined the X-ray crystal structure of rabbit PGI complexed with a competitive inhibitor of isomerase activity, 5-phospho-D-arabinonate (5PAA), at 1.9 A resolution. 5PAA is a better mimic of the proposed cis-enediol(ate) intermediate than 6-phospho-D-gluconate, which was used in a previously reported crystal structure of rabbit PGI. The orientation of 5PAA bound in the enzyme active site predicts that active site residue Glu357 is the residue that transfers a proton between C2 and C1 of the proposed cis-enediol(ate) intermediate. Amino acid residues Arg272 and Lys210 are predicted to be involved in stabilizing the negative charge of the intermediate.  相似文献   

13.
Yonkunas MJ  Xu Y  Tang P 《Biophysical journal》2005,89(4):2350-2356
The nature and the sites of interactions between anesthetic halothane and homodimeric Delta5-3-ketosteroid isomerase (KSI) are characterized by flexible ligand docking and confirmed by 1H-15N NMR. The dynamics consequence of halothane interaction and the implication of the dynamic changes to KSI function are studied by multiple 5-ns molecular dynamics simulations in the presence and absence of halothane. Both docking and MD simulations show that halothane prefer the amphiphilic dimeric interface to the hydrophobic active site of KSI. Halothane occupancy at the dimer interface disrupted the intersubunit hydrogen bonding formed either directly through side chains of polar residues or indirectly through the mediation of the interfacial water molecules. Moreover, in the presence of halothane, the exchange rate of the bound waters with bulk water was increased. Halothane perturbation to the dimer interface affected the overall flexibility of the active site. This action is likely to contribute to the halothane-induced reduction of the KSI activity. The allosteric halothane modulation of the dynamics-function relationship of KSI without direct competition at the enzymatic active sites may be generalized to offer a unifying explanation of anesthetic action on a diverse range of multidomain neuronal proteins that are potentially relevant to clinical general anesthesia.  相似文献   

14.
S W Kim  S Joo  G Choi  H S Cho  B H Oh    K Y Choi 《Journal of bacteriology》1997,179(24):7742-7747
In order to clarify the roles of three cysteines in ketosteroid isomerase (KSI) from Pseudomonas putida biotype B, each of the cysteine residues has been changed to a serine residue (C69S, C81S, and C97S) by site-directed mutagenesis. All cysteine mutations caused only a slight decrease in the k(cat) value, with no significant change of Km for the substrate. Even modification of the sulfhydryl group with 5,5'-dithiobis(2-nitrobenzoic acid) has almost no effect on enzyme activity. These results demonstrate that none of the cysteines in the KSI from P. putida is critical for catalytic activity, contrary to the previous identification of a cysteine in an active-site-directed photoinactivation study of KSI. Based on the three-dimensional structures of KSIs with and without dienolate intermediate analog equilenin, as determined by X-ray crystallography at high resolution, Asp-103 was found to be located within the range of the hydrogen bond to the equilenin. To assess the role of Asp-103 in catalysis, Asp-103 has been replaced with either asparagine (D103N) or alanine (D103A) by site-directed mutagenesis. For D103A mutant KSI there was a significant decrease in the k(cat) value: the k(cat) of the mutant was 85-fold lower than that of the wild-type enzyme; however, for the D103N mutant, which retained some hydrogen bonding capability, there was a minor decrease in the k(cat) value. These findings support the idea that aspartic acid 103 in the active site is an essential catalytic residue involved in catalysis by hydrogen bonding to the dienolate intermediate.  相似文献   

15.
Jez JM  Bowman ME  Noel JP 《Biochemistry》2002,41(16):5168-5176
In flavonoid, isoflavonoid, and anthocyanin biosynthesis, chalcone isomerase (CHI) catalyzes the intramolecular cyclization of chalcones into (S)-flavanones with a second-order rate constant that approaches the diffusion-controlled limit. The three-dimensional structures of alfalfa CHI complexed with different flavanones indicate that two sets of hydrogen bonds may possess critical roles in catalysis. The first set of interactions includes two conserved amino acids (Thr48 and Tyr106) that mediate a hydrogen bond network with two active site water molecules. The second set of hydrogen bonds occurs between the flavanone 7-hydroxyl group and two active site residues (Asn113 and Thr190). Comparison of the steady-state kinetic parameters of wild-type and mutant CHIs demonstrates that efficient cyclization of various chalcones into their respective flavanones requires both sets of contacts. For example, the T48A, T48S, Y106F, N113A, and T190A mutants exhibit 1550-, 3-, 30-, 7-, and 6-fold reductions in k(cat) and 2-3-fold changes in K(m) with 4,2',4'-trihydroxychalcone as a substrate. Kinetic comparisons of the pH-dependence of the reactions catalyzed by wild-type and mutant enzymes indicate that the active site hydrogen bonds contributed by these four residues do not significantly alter the pK(a) of the intramolecular cyclization reaction. Determinations of solvent kinetic isotope and solvent viscosity effects for wild-type and mutant enzymes reveal a change from a diffusion-controlled reaction to one limited by chemistry in the T48A and Y106F mutants. The X-ray crystal structures of the T48A and Y106F mutants support the assertion that the observed kinetic effects result from the loss of key hydrogen bonds at the CHI active site. Our results are consistent with a reaction mechanism for CHI in which Thr48 polarizes the ketone of the substrate and Tyr106 stabilizes a key catalytic water molecule. Hydrogen bonds contributed by Asn113 and Thr190 provide additional stabilization in the transition state. Conservation of these residues in CHIs from other plant species implies a common reaction mechanism for enzyme-catalyzed flavanone formation in all plants.  相似文献   

16.
The backbone dynamics of Y14F mutant of Delta(5)-3-ketosteroid isomerase (KSI) from Comamonas testosteroni has been studied in free enzyme and its complex with a steroid analogue, 19-nortestosterone hemisuccinate (19-NTHS), by (15)N NMR relaxation measurements. Model-free analysis of the relaxation data showed that the single-point mutation induced a substantial decrease in the order parameters (S(2)) in free Y14F KSI, indicating that the backbone structures of Y14F KSI became significantly mobile by mutation, while the chemical shift analysis indicated that the structural perturbations of Y14F KSI were more profound than those of wild-type (WT) KSI upon 19-NTHS binding. In the 19-NTHS complexed Y14F KSI, however, the key active site residues including Tyr14, Asp38 and Asp99 or the regions around them remained flexible with significantly reduced S(2) values, whereas the S(2) values for many of the residues in Y14F KSI became even greater than those of WT KSI upon 19-NTHS binding. The results thus suggest that the hydrogen bond network in the active site might be disrupted by the Y14F mutation, resulting in a loss of the direct interactions between the catalytic residues and 19-NTHS.  相似文献   

17.
Phosphoglucose isomerase (PGI; EC 5.3.1.9) is the second enzyme in glycolysis, where it catalyzes the isomerization of D-glucose-6-phosphate to D-fructose-6-phosphate. It is the same protein as autocrine motility factor, differentiation and maturation mediator, and neuroleukin. Here, we report a new X-ray crystal structure of rabbit PGI (rPGI) without ligands bound in its active site. The structure was solved at 1.8A resolution by isomorphous phasing with a previously solved X-ray crystal structure of the rPGI dimer containing 6-phosphogluconate in its active site. Comparison of the new structure to previously reported structures enables identification of conformational changes that occur during binding of substrate or inhibitor molecules. Ligand binding causes an induced fit of regions containing amino acid residues 209-215, 245-259 and 385-389. This conformational change differs from the change previously reported to occur between the ring-opening and isomerization steps, in which the helix containing residues 513-521 moves toward the bound substrate. Differences between the liganded and unliganded structures are limited to the region within and close to the active-site pocket.  相似文献   

18.
Enzymes of glycolysis in Trypanosoma brucei have been identified as potential drug targets for African sleeping sickness because glycolysis is the only source of ATP for the bloodstream form of this parasite. Several inhibitors were previously reported to bind preferentially to trypanosomal phosphoglucose isomerase (PGI, the second enzyme in glycolysis) than to mammalian PGIs, which suggests that PGI might make a good target for species-specific drug design. Herein, we report recombinant expression, purification, crystallization and X-ray crystal structure determination of T. brucei PGI. One structure solved at 1.6 A resolution contains a substrate, D-glucose-6-phosphate, in an extended conformation in the active site. A second structure solved at 1.9 A resolution contains a citrate molecule in the active site. The structures are compared with the crystal structures of PGI from humans and from Leishmania mexicana. The availability of recombinant tPGI and its first high-resolution crystal structures are initial steps in considering this enzyme as a potential drug target.  相似文献   

19.
CYP73 enzymes are highly conserved cytochromes P450 in plant species that catalyse the regiospecific 4-hydroxylation of cinnamic acid to form precursors of lignin and many other phenolic compounds. A CYP73A1 homology model based on P450 experimentally solved structures was used to identify active site residues likely to govern substrate binding and regio-specific catalysis. The functional significance of these residues was assessed using site-directed mutagenesis. Active site modelling predicted that N302 and I371 form a hydrogen bond and hydrophobic contacts with the anionic site or aromatic ring of the substrate. Modification of these residues led to a drastic decrease in substrate binding and metabolism without major perturbation of protein structure. Changes to residue K484, which is located too far in the active site model to form a direct contact with cinnamic acid in the oxidized enzyme, did not influence initial substrate binding. However, the K484M substitution led to a 50% loss in catalytic activity. K484 may affect positioning of the substrate in the reduced enzyme during the catalytic cycle, or product release. Catalytic analysis of the mutants with structural analogues of cinnamic acid, in particular indole-2-carboxylic acid that can be hydroxylated with different regioselectivities, supports the involvement of N302, I371 and K484 in substrate docking and orientation.  相似文献   

20.
A new monotonicity-constrained maximum likelihood approach, called Partial Order Optimum Likelihood (POOL), is presented and applied to the problem of functional site prediction in protein 3D structures, an important current challenge in genomics. The input consists of electrostatic and geometric properties derived from the 3D structure of the query protein alone. Sequence-based conservation information, where available, may also be incorporated. Electrostatics features from THEMATICS are combined with multidimensional isotonic regression to form maximum likelihood estimates of probabilities that specific residues belong to an active site. This allows likelihood ranking of all ionizable residues in a given protein based on THEMATICS features. The corresponding ROC curves and statistical significance tests demonstrate that this method outperforms prior THEMATICS-based methods, which in turn have been shown previously to outperform other 3D-structure-based methods for identifying active site residues. Then it is shown that the addition of one simple geometric property, the size rank of the cleft in which a given residue is contained, yields improved performance. Extension of the method to include predictions of non-ionizable residues is achieved through the introduction of environment variables. This extension results in even better performance than THEMATICS alone and constitutes to date the best functional site predictor based on 3D structure only, achieving nearly the same level of performance as methods that use both 3D structure and sequence alignment data. Finally, the method also easily incorporates such sequence alignment data, and when this information is included, the resulting method is shown to outperform the best current methods using any combination of sequence alignments and 3D structures. Included is an analysis demonstrating that when THEMATICS features, cleft size rank, and alignment-based conservation scores are used individually or in combination THEMATICS features represent the single most important component of such classifiers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号