首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Males are the heterogametic sex in salmonid fishes. In brown trout (Salmo trutta) the sex-determining locus, SEX, has been mapped to the end of linkage group BT-28, which corresponds to linkage group AS-8 and chromosome SSA15 in Atlantic salmon (Salmo salar). We set out to identify the sex chromosomes in brown trout. We isolated Atlantic salmon BAC clones containing microsatellite markers that are on BT-28 and also on AS-8, and used these BACs as probes for fluorescent in situ hybridization (FISH) analysis. SEX is located on the short arm of a small subtelocentric/acrocentric chromosome in brown trout, which is consistent with linkage analysis. The acrocentric chromosome SSA15 in Atlantic salmon appears to have arisen by a centric fusion of 2 small acrocentric chromosomes in the common ancestor of Salmo sp. We speculate that the fusion process that produced Atlantic salmon chromosome SSA15 disrupted the ancestral sex-determining locus in the Atlantic salmon lineage, providing the impetus either for the relocation of SEX or selection pressure for a novel sex-determining gene to arise in this species. Thus, the sex-determining genes may differ in Atlantic salmon and brown trout.  相似文献   

2.
We have integrated data from linkage mapping, physical mapping and karyotyping to gain a better understanding of the sex-determining locus, SEX, in Atlantic salmon (Salmo salar). SEX has been mapped to Atlantic salmon linkage group 1 (ASL1) and is associated with several microsatellite markers. We have used probes designed from the flanking regions of these sex-linked microsatellite markers to screen a bacterial artificial chromosome (BAC) library, representing an 11.7x coverage of the Atlantic salmon genome, which has been HindIII fingerprinted and assembled into contigs. BACs containing sex-linked microsatellites and their related contigs have been identified and representative BACs have been placed on the Atlantic salmon chromosomes by fluorescent in situ hybridization (FISH). This identified chromosome 2, a large metacentric, as the sex chromosome. By positioning several BACs on this chromosome by FISH, it was possible to orient ASL1 with respect to chromosome 2. The region containing SEX appears to lie on the long arm between marker Ssa202DU and a region of heterochromatin identified by DAPI staining. BAC end-sequencing of clones within sex-linked contigs revealed five hitherto unmapped genes along the sex chromosome. We are using an in silico approach coupled with physical probing of the BAC library to extend the BAC contigs to provide a physical map of ASL1, with a view to sequencing chromosome 2 and, in the process, identifying the sex-determining gene.  相似文献   

3.
Whole-genome duplication in the ancient ray-finned fish and subsequent tetraploidization in the ancestor to the salmonids have complicated genomic and candidate gene studies in these organisms as many genes with multiple copies are present throughout their genomes. In an attempt to identify genes with a potential influence on growth and development, we investigated the genomic positions of insulin-like growth factors 1 and 2 (IGF1, IGF2), myogenic factors 5 and 6 (MYF5, MYF6) and growth hormone-releasing factor/pituitary adenylate cyclase-activating polypeptide (GRF/PACAP) in three salmonid species: rainbow trout (Oncorhynchus mykiss), Atlantic salmon (Salmo salar) and Arctic charr (Salvelinus alpinus). Our results suggest a tight association between the IGF1, MYF5 and MYF6 genes in all three species. We further localized the duplicated copies of IGF1 to the homeologous linkage groups RT-7/15 in rainbow trout and AC-3/24 in Arctic charr, and the two copies of MYF6 to homeologous linkage groups AS-22/24 in Atlantic salmon. Localization of GRF/PACAP to RT-7, AS-31 and AC-27 and IGF2 to RT-27, AS-2 and AC-4 in rainbow trout, Atlantic salmon and Arctic charr respectively is consistent with previously reported homologies among these chromosomal segments identified using other genetic markers. However, localization of the second copy of GRF/PACAP to RT-19 and AC-14 and the duplicated copy of IGF2 to AC-19 suggest a possible new homology/homeology between these chromosomes. These results might also be an indication of a more ancient polyploidization event that occurred deep in the ray-finned fish lineage.  相似文献   

4.
The high commercial value from the aquaculture of salmonid fishes has prompted many studies into the genetic architecture of complex traits and the need to identify genomic regions that have repeatable associations with trait variation both within and among species. We searched for quantitative trait loci (QTL) for body weight (BW), condition factor (CF) and age of sexual maturation (MAT) in families of Arctic charr (Salvelinus alpinus) from an Icelandic breeding program. QTL with genome-wide significance were detected for each trait on multiple Arctic charr (AC) linkage groups (BW: AC-4, AC-20; CF: AC-7, AC-20, AC-23, AC-36; MAT: AC-13/34, AC-39). In addition to the genome-wide significant QTL for both BW and CF on AC-20, linkage groups AC-4, AC-7, AC-8, and AC-16 contain QTL for both BW and CF with chromosome-wide significance. These regions had effects (albeit weaker) on MAT with the exception of the region on AC-8. Comparisons with a North American cultured strain of Arctic charr, as well as North American populations of Atlantic salmon (Salmo salar), and rainbow trout (Oncorhynchus mykiss), reveal some conservation in QTL location and structure, particularly with respect to the joint associations of QTL influencing BW and CF. The detection of some differences in genetic architecture between the two aquaculture strains of Arctic charr may be reflective of the differential evolutionary histories experienced by these fishes, and illustrates the importance of including different strains to investigate genetic variation in a species where the intent is to use that variation in selective breeding programs.  相似文献   

5.
The association of genetic markers linked to the sex-determining locus (SEX) was investigated in five Arctic charr Salvelinus alpinus full sib families, all originating from the Fraser River strain, Labrador, Canada. Two distinct sex-linkage classes were identified: type I (two families), with previously reported markers on linkage group 4 (AC-4) linked with SEX; and type II (three families), with two unlinked segments of the AC-4 linkage group, but with markers in only one cluster associated with SEX. Large differences in recombination rates, pseudolinkage assembly or various chromosomal rearrangements may explain these findings.  相似文献   

6.
In salmonid fishes, life-history changes may often be coupled to early individual growth trajectories. We identified quantitative trait loci (QTL) for body weight (BW), condition factor (K) and age at sexual maturation (MT) in two full-sib families of Arctic charr (Salvelinus alpinus) to ascertain if QTL for MT were confounded with BW QTL intervals. Three significant QTL for BW, three QTL for MT and one significant QTL for K were identified. A BW QTL with major effect was localized to linkage group 8 (AC-8) and explained more than 34% of the phenotypic variation. Markers on AC-8 have previously been identified as being associated with variation in fork length and BW in this species. Similarly, a major QTL (PEV = 23%) with an influence on the female MT was localized to AC-23. Some of these regions are homologous to those in the genomes of rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar), where similar QTL effects have been detected. Our results also suggest the conservation of MT QTL on the homeologous linkage group pair AC-3/24 in Arctic charr. We further identified chromosomal regions that harbor QTL for multiple traits. In particular, markers on AC-4, -20 and -36 had detectable QTL for all traits studied. Significant MT QTL detected on AC-23, -24, and -27 were autonomous of any BW QTL regions, suggesting that the regulation of MT may be more independent of BW control within this species than in other species of salmonids.  相似文献   

7.
ABSTRACT: BACKGROUND: Quantitative trait locus (QTL) studies show that variation in salinity tolerance in Arctic charr and rainbow trout has a genetic basis, even though both these species have low to moderate salinity tolerance capacities. QTL were observed to localize to homologous linkage group segments within putative chromosomal regions possessing multiple candidate genes. We compared salinity tolerance QTL in rainbow trout and Arctic charr to those detected in a higher salinity tolerant species, Atlantic salmon. The highly derived karyotype of Atlantic salmon allows for the assessment of whether disparity in salinity tolerance in salmonids is associated with differences in genetic architecture. To facilitate these comparisons, we examined the genomic synteny patterns of key candidate genes in the other model teleost fishes that have experienced three whole-genome duplication (3R) events which preceded a fourth (4R) whole genome duplication event common to all salmonid species. RESULTS: Nine linkage groups contained chromosome-wide significant QTL (AS-2, -4p, -4q, -5, -9, -12p, -12q, -14q -17q, -22, and [MINUS SIGN]23), while a single genome-wide significant QTL was located on AS-4q. Salmonid genomes shared the greatest marker homology with the genome of three-spined stickleback. All linkage group arms in Atlantic salmon were syntenic with at least one stickleback chromosome, while 18 arms had multiple affinities. Arm fusions in Atlantic salmon were often between multiple regions bearing salinity tolerance QTL. Nine linkage groups in Arctic charr and six linkage group arms in rainbow trout currently have no synteny alignments with stickleback chromosomes, while eight rainbow trout linkage group arms were syntenic with multiple stickleback chromosomes. Rearrangements in the stickleback lineage involving fusions of ancestral arm segments could account for the 21 chromosome pairs observed in the stickleback karyotype. CONCLUSIONS: Salinity tolerance in salmonids from three genera is to some extent controlled by the same loci. Synteny between QTL in salmonids and candidate genes in stickleback suggests genetic variation at candidate gene loci could affect salinity tolerance in all three salmonids investigated. Candidate genes often occur in pairs on chromosomes, and synteny patterns indicate these pairs are generally conserved in 2R, 3R, and 4R genomes. Synteny maps also suggest that the Atlantic salmon genome contains three larger syntenic combinations of candidate genes that are not evident in any of the other 2R, 3R, or 4R genomes examined. These larger synteny tracts appear to have resulted from ancestral arm fusions that occurred in the Atlantic salmon ancestor. We hypothesize that the superior hypo-osmoregulatory efficiency that is characteristic of Atlantic salmon may be related to these clusters.  相似文献   

8.
We updated the genetic map of rainbow trout (Oncorhynchus mykiss) for 2 outcrossed mapping panels, and used this map to assess the putative chromosome structure and recombination rate differences among linkage groups. We then used the rainbow trout sex-specific maps to make comparisons with 2 other ancestrally polyploid species of salmonid fishes, Arctic charr (Salvelinus alpinus) and Atlantic salmon (Salmo salar) to identify homeologous chromosome affinities within each species and ascertain homologous chromosome relationships among the species. Salmonid fishes exhibit a wide range of sex-specific differences in recombination rate, with some species having the largest differences for any vertebrate species studied to date. Our current estimate of female:male recombination rates in rainbow trout is 4.31:1. Chromosome structure and (or) size is associated with recombination rate differences between the sexes in rainbow trout. Linkage groups derived from presumptive acrocentric type chromosomes were observed to have much lower sex-specific differences in recombination rate than metacentric type linkage groups. Arctic charr is karyotypically the least derived species (i.e., possessing a high number of acrocentric chromosomes) and Atlantic salmon is the most derived (i.e., possessing a number of whole-arm fusions). Atlantic salmon have the largest female:male recombination ratio difference (i.e., 16.81:1) compared with rainbow trout, and Arctic charr (1.69:1). Comparisons of recombination rates between homologous segments of linkage groups among species indicated that when significant experiment-wise differences were detected (7/24 tests), recombination rates were generally higher in the species with a less-derived chromosome structure (6/7 significant comparisons). Greater similarity in linkage group syntenies were observed between Atlantic salmon and rainbow trout, suggesting their closer phylogenetic affinities, and most interspecific linkage group comparisons support a model that suggests whole chromosome arm translocations have occurred in the evolution of this group. However, some possible exceptions were detected and these findings are discussed in relation to their influence on segregation distortion patterns. We also report unusual meiotic segregation patterns in a female parent involving the duplicated (homeologous) linkage group pair 12/16 and discuss several models that may account for these patterns.  相似文献   

9.
We report on the construction of a linkage map for brown trout (Salmo trutta) and its comparison with those of other tetraploid-derivative fish in the family Salmonidae, including Atlantic salmon (Salmo salar), rainbow trout (Oncorhynchus mykiss), and Arctic char (Salvelinus alpinus). Overall, we identified 37 linkage groups (2n = 80) from the analysis of 288 microsatellite polymorphisms, 13 allozyme markers, and phenotypic sex in four backcross families. Additionally, we used gene-centromere analysis to approximate the position of the centromere for 20 linkage groups and thus relate linkage arrangements to the physical morphology of chromosomes. Sex-specific maps derived from multiple parents were estimated to cover 346.4 and 912.5 cM of the male and female genomes, respectively. As previously observed in other salmonids, recombination rates showed large sex differences (average female-to-male ratio was 6.4), with male crossovers generally localized toward the distal end of linkage groups. Putative homeologous regions inherited from the salmonid tetraploid ancestor were identified for 10 pairs of linkage groups, including five chromosomes showing evidence of residual tetrasomy (pseudolinkage). Map alignments with orthologous regions in Atlantic salmon, rainbow trout, and Arctic char also revealed extensive conservation of syntenic blocks across species, which was generally consistent with chromosome divergence through Robertsonian translocations.  相似文献   

10.
Genomic sequences of gonadotropin-releasing hormone genes were amplified and examined for sequence divergence among members of three different genera of the subfamily Salmoninae: rainbow trout (Oncorhynchus mykiss), Atlantic salmon (Salmo salar), and Arctic charr (Salvelinus alpinus). Sequences of GNRH3A and GNRH3B (formerly known as sGnRH1 and sGnRH2) were 97-99% similar in coding regions and 94-98% similar in non-coding regions among genera, but comparisons within species between GNRH3A and GNRH3B were only 90-92% similar in coding regions and 83-89% similar in non-coding regions. Polymorphisms in the parents of mapping families for each species allowed for linkage mapping of the GNRH3B gene in all three species and the GNRH3A gene in rainbow trout. GNRH3B maps to linkage group 6 in rainbow trout, linkage group 16 in Atlantic salmon and linkage group 25 in Arctic charr. GNRH3A mapped to linkage group 30 in rainbow trout.  相似文献   

11.
Two Norwegian isolates of the monogenean Gyrodactylus salaris Malmberg, 1957 with identical cytochrome c oxidase subunit I barcodes from different hosts, show highly divergent biological and behavioural characteristics. The Lierelva parasite strain, typically infecting Atlantic salmon, Salmo salar L., grew exponentially on Atlantic salmon, but the Pålsbufjorden parasite strain, commonly infecting Arctic charr, Salvelinus alpinus L., grew slowly on both hosts and was non-pathogenic to Atlantic salmon. Both parasite strains reproduced successfully on Arctic charr, but the Atlantic salmon-infecting Lierelva strain grew faster on both hosts. Experiments with isolated worms revealed differences in reproductive rates which may account for the observed population differences. Atlantic salmon parasites consistently gave birth at an earlier age than the Arctic charr parasites, with the differential increasing from 1 day for the first birth up to 2–4 days for the third birth. Arctic charr-infecting parasites were more active on Atlantic salmon than salmon parasites on Arctic charr, a behavioural strategy leading to enhanced G. salaris mortality. Sequencing of 10 kb of nuclear genomic markers revealed only four single nucleotide polymorphisms, confirming that isolates of G. salaris with differences in fitness traits influencing establishment, fecundity and behaviour may be remarkably similar at a molecular level. The framework for reporting and control of G. salaris requires re-appraisal in light of the discovery of variants with such divergent biology.  相似文献   

12.
Fluorescence in situ hybridization (FISH) using a probe to the male-specific GH-Y (growth hormone pseudogene) was used to identify the Y chromosome in coho salmon (Oncorhynchus kisutch). The sex chromosome pair is morphologically similar to chinook salmon (Oncorhynchus tshawytscha) with the GH-Y localized to the small short arm of the largest subtelocentric chromosome pair. FISH experiments with probes containing sex-linked genes in rainbow trout (Oncorhynchus mykiss) (SCAR163) and chinook salmon (Omy7INRA) showed that the coho sex linkage group is different from chinook and rainbow trout and this was confirmed by segregation analysis for the Omy7INRA locus. The telomeric location of the SEX locus, the presence of shared male-specific markers in coho and chinook salmon, and the lack of conservation of sex-linkage groups suggest that transposition of a small male-specific region may have occurred repeatedly in salmonid fishes of the genus Oncorhynchus.  相似文献   

13.
Among different teleost fish species, diverse sex-determining mechanisms exist, including environmental and genetic sex determination, yet chromosomal sex determination with male heterogamety (XY) prevails. Different pairs of autosomes have evolved as sex chromosomes among species in the same genus without evidence for a master sex-determining locus being identical. Models for evolution of Y chromosomes predict that male-advantageous genes become linked to a sex-determining locus and suppressed recombination ensures their co-inheritance. In the guppy, Poecilia reticulata, a set of genes responsible for adult male ornaments are linked to the sex-determining locus on the incipient Y chromosome. We have identified >60 sex-linked molecular markers to generate a detailed map for the sex linkage group of the guppy and compared it with the syntenic autosome 12 of medaka. We mapped the sex-determining locus to the distal end of the sex chromosome. We report a sex-biased distribution of recombination events in female and male meiosis on sex chromosomes. In one mapping cross, we observed sex ratio and male phenotype deviations and propose an atypical mode of genetic sex inheritance as its basis.  相似文献   

14.
We report the first detailed genetic linkage map of rainbow trout (Oncorhynchus mykiss). The segregation analysis was performed using 76 doubled haploid rainbow trout produced by androgenesis from a hybrid between the "OSU" and "Arlee" androgenetically derived homozygous lines. Four hundred and seventy-six markers segregated into 31 major linkage groups and 11 small groups (< 5 markers/group). The minimum genome size is estimated to be 2627.5 cM in length. The sex-determining locus segregated to a distal position on one of the linkage groups. We analyzed the chromosomal distribution of three classes of markers: (1) amplified fragment length polymorphisms, (2) variable number of tandem repeats, and (3) markers obtained using probes homologous to the 5'' or 3'' end of salmonid-specific small interspersed nuclear elements. Many of the first class of markers were clustered in regions that appear to correspond to centromeres. The second class of markers were more telomeric in distribution, and the third class were intermediate. Tetrasomic inheritance, apparently related to the tetraploid ancestry of salmonid fishes, was detected at one simple sequence repeat locus and suggested by the presence of one extremely large linkage group that appeared to consist of two smaller groups linked at their tips. The double haploid rainbow trout lines and linkage map present a foundation for further genomic studies.  相似文献   

15.
A sex-determining gene, DMY, which is comparable to the SRY gene in mammals, has been identified in the medaka, Oryzias latipes. Although Oryzias curvinotus, a closely related species to O. latipes also has DMY, this gene has not been found in other Oryzias fishes. It has recently been demonstrated that the sex chromosomes of Oryzias dancena and Oryzias hubbsi differ from those of O. latipes and these species have XX/XY and ZZ/ZW systems, respectively. This may suggest that Oryzias species have evolved different sex-determining genes on different sex chromosomes. In the present study, we investigated the sex determination mechanism in Oryzias minutillus, which is closely related to O. dancena and O. hubbsi. Linkage analysis using 14 isolated sex-linked DNA markers showed that this species has an XX/XY sex determination system. These sex-linked markers were located on linkage group 8 of O. latipes, suggesting that the sex chromosomes of O. minutillus are homologous to the autosomes of other Oryzias species. Furthermore, fluorescence in situ hybridization using a tightly sex-linked marker demonstrated that the XY sex chromosomes of O. minutillus and O. dancena were not homologous. These findings provide additional evidence for independent origins of sex chromosomes and sex-determining genes in these closely related species.  相似文献   

16.
Phenotypic sex in salmonids is determined primarily by a genetic male heterogametic system; yet, sex reversal can be accomplished via hormonal treatment. In Tasmanian Atlantic salmon aquaculture, to overcome problems associated with early sexual maturation in males, sex-reversed females are crossed with normal females to produce all female stock. However, phenotypic distinction of sex-reversed females (neo-males) from true males is problematic. We set out to identify genetic markers that could make this distinction. Microsatellite markers from chromosome 2 (Ssa02), to which the sex-determining locus (SEX) has been mapped in two Scottish Atlantic salmon families, did not predict sex in a pilot study of seven families. A TaqMan 64 SNP genome-wide scan suggested SEX was on Ssa06 in these families, and this was confirmed by microsatellite markers. A survey of 58 families in total representing 38 male lineages in the SALTAS breeding program found that 34 of the families had SEX on Ssa02, in 22 of the families SEX was on Ssa06, and two of the families had a third SEX locus, on Ssa03. A PCR test using primers designed from the recently published sdY gene is consistent with Tasmanian Atlantic salmon having a single sex-determining gene that may be located on at least three linkage groups.  相似文献   

17.
Boulding EG  Culling M  Glebe B  Berg PR  Lien S  Moen T 《Heredity》2008,101(4):381-391
European Atlantic salmon (Salmo salar) differ in skin pigmentation and shape from the North American lineage of Atlantic salmon but the genetic basis of these differences are poorly understood. We created four large (N=300) backcross families by crossing F1 hybrid male siblings to two females from the European and two from the North American aquacultural strains. We recorded 15 morphological landmarks and two skin pigmentation, three growth and three condition traits on parr. The backcross families were genotyped for at least 129 SNPs (single nucleotide polymorphisms) within expressed sequence tags (ESTs) spaced throughout the Atlantic salmon linkage map. The high polymorphism and low rates of crossover in our hybrid sires provided enough statistical power to detect 79 significant associations between SNP markers and quantitative traits after experiment-wide permutation analysis for all families within traits. Linkage group AS22 contained a quantitative trait loci (QTL) for parr mark number; its homolog AS24 contained a large QTL, which explained 26% of the phenotypic variance in parr mark contrast. We found 25 highly significant QTLs for body shape and fin position on seven different linkage groups, and 16 for growth and condition on six different linkage groups. QTL(s) for pectoral fin position, caudal peduncle position, late parr growth and condition index were associated with an SNP on linkage group AS1, which was linked to the sex-determining locus. Our work adds to the evidence that much of the variation in growth rate, shape and skin pigmentation observed among Atlantic salmon parr from different natal streams is genetic.  相似文献   

18.
A small-insert library was constructed after microdissection of the short arm of the Y chromosome of lake charr, Salvelinus namaycush. Clones from this library were sequenced and two dinucleotide CA-repeat microsatellite sequences were recovered. Oligonucleotide primers for one locus were designed and optimized for amplification by PCR. This locus (designated Yp136) was tested for sex linkage in twelve lake charr families and found to be a distance of 37 centimorgans (cM) from the sex-determining locus. This microsatellite locus was also examined in three informative, gynogenetic/diploid, lake charr crosses for linkage to the centromere on the X chromosome. Results from these families show that this locus is 19cM from the centromere. The combination of linkage data and microdissection information places the sex-determining locus near the telomere of the Y chromosome in lake charr. This is consistent with studies of several other fish species including some salmonids that place the sex locus near the telomere.  相似文献   

19.
The brook charr (Salvelinus fontinalis; Osteichthyes: Salmonidae) is a phenotypically diverse fish species inhabiting much of North America. But relatively few genetic diagnostic resources are available for this fish species. We isolated 41 microsatellites from S. fontinalis polymorphic in one or more species of salmonid fish. Thirty‐seven were polymorphic in brook charr, 15 in the congener Arctic charr (Salvelinus alpinus) and 14 in the lake charr (Salvelinus namaycush). Polymorphism was also relatively high in Oncorhynchus, where 21 loci were polymorphic in rainbow trout (Oncorhynchus mykiss) and 16 in cutthroat trout (Oncorhynchus clarkii) but only seven and four microsatellite loci were polymorphic in the more distantly related lake whitefish (Coregonus clupeaformis) and Atlantic salmon (Salmo salar), respectively. One duplicated locus (Sfo228Lav) was polymorphic at both duplicates in S. fontinalis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号