首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The P1 protein of viruses of the family Potyviridae is a serine proteinase, which is highly variable in length and sequence, and its role in the virus infection cycle is not clear. One of the proposed activities of P1 is to assist HCPro, the product that viruses of the genus Potyvirus use to counteract antiviral defense mediated by RNA silencing. Indeed, an HCPro-coding region is present in all the genomes of members of the genera Potyvirus, Rymovirus, and Tritimovirus that have been sequenced. However, it was recently reported that a sequence coding for HCPro is lacking in the genome of Cucumber vein yellowing virus (CVYV), a member of the genus Ipomovirus, the fourth monopartite genus of the family. In this study, we provide further evidence that P1 enhances the activity of HCPro in members of the genus Potyvirus and show that it is duplicated in the ipomovirus CVYV. The two CVYV P1 copies are arranged in tandem, and the second copy (P1b) has RNA silencing suppression activity. CVYV P1b suppressed RNA silencing induced either by sense green fluorescent protein (GFP) mRNA or by a GFP inverted repeat RNA, indicating that CVYV P1b acts downstream of the formation of double-stranded RNA. CVYV P1b also suppressed local silencing in agroinfiltrated patches of transgenic Nicotiana benthamiana line 16c and delayed its propagation to the neighboring cells. However, neither the short-distance nor long-distance systemic spread of silencing of the GFP transgene was completely blocked by CVYV P1b. CVYV P1b and P1-HCPro from the potyvirus Plum pox virus showed very similar behaviors in all the assays carried out, suggesting that evolution has found a way to counteract RNA silencing by similar mechanisms using very different proteins in viruses of the same family.  相似文献   

2.
RNA silencing mediated by siRNAs plays an important role as an anti-viral defense mechanism in plants and other eukaryotic organisms, which is usually counteracted by viral RNA silencing suppressors (RSSs). The ipomovirus Cucumber vein yellowing virus (CVYV) lacks the typical RSS of members of the family Potyviridae, HCPro, which is replaced by an unrelated RSS, P1b. CVYV P1b resembles potyviral HCPro in forming complexes with synthetic siRNAs in vitro. Electrophoretic mobility shift assays showed that P1b, like potyviral HCPro, interacts with double-stranded siRNAs, but is not able to bind single-stranded small RNAs or small DNAs. These assays also showed a preference of CVYV P1b for binding to 21-nt siRNAs, a feature also reported for HCPro. However, these two potyvirid RSSs differ in their requirements of 2-nucleotide (nt) 3' overhangs and 5' terminal phosphoryl groups for siRNA binding. Copurification assays confirmed in vivo P1b-siRNA interactions. We have demonstrated by deep sequencing of small RNA populations interacting in vivo with CVYV P1b that the size preference of P1b for small RNAs of 21 nt also takes place in the plant, and that expression of this RSS causes drastic changes in the endogenous small RNA populations. In addition, a site-directed mutagenesis analysis strongly supported the assumption that P1b-siRNA binding is decisive for the anti-silencing activity of P1b and localized a basic domain involved in the siRNA-binding activity of this protein.  相似文献   

3.
Plants use RNA silencing as a strong defensive barrier against virus challenges, and viruses counteract this defence by using RNA silencing suppressors (RSSs). With the objective of identifying host factors helping either the plant or the virus in this interaction, we have performed a yeast two‐hybrid screen using P1b, the RSS protein of the ipomovirus Cucumber vein yellowing virus (CVYV, family Potyviridae), as a bait. The C‐8 sterol isomerase HYDRA1 (HYD1), an enzyme involved in isoprenoid biosynthesis and cell membrane biology, and required for RNA silencing, was isolated in this screen. The interaction between CVYV P1b and HYD1 was confirmed in planta by Bimolecular Fluorescence Complementation assays. We demonstrated that HYD1 negatively impacts the accumulation of CVYV P1b in an agroinfiltration assay. Moreover, expression of HYD1 inhibited the infection of the potyvirus Plum pox virus, especially when antiviral RNA silencing was boosted by high temperature or by coexpression of homologous sequences. Our results reinforce previous evidence highlighting the relevance of particular composition and structure of cellular membranes for RNA silencing and viral infection. We report a new interaction of an RSS protein from the Potyviridae family with a member of the isoprenoid biosynthetic pathway.  相似文献   

4.
The RNA silencing pathway mediated by small interfering RNAs (siRNAs) plays an important antiviral role in eukaryotes. To counteract this defense barrier, a large number of plant viruses express proteins with RNA silencing suppression activity. Recently, it was reported that the ipomovirus Cucumber vein yellowing virus (CVYV), which lacks the typical silencing suppressor of members of the family Potyviridae, i.e., HCPro, has a duplicated P1 coding sequence and that the downstream P1 copy, named P1b, has silencing suppression activity. In this study, we provide experimental evidence that P1b is a serine protease that self-cleaves at its C terminus but that its proteolytic activity is not essential for silencing suppression. In contrast, a putative zinc finger and a conserved basic motif in the N-terminal region of the protein are required for efficient silencing suppression. In vitro gel filtration-fast protein liquid chromatography and in vivo bimolecular fluorescence complementation assays showed that P1b binds itself to form oligomeric structures and that the zinc finger-like motif is essential for the self interaction. Moreover, we observed that CVYV P1b forms complexes with synthetic siRNAs, and this ability correlated with both silencing suppression activity and enhancement of Potato virus X pathogenicity in a mutational analysis. Together, these results suggest that CVYV P1b resembles potyviral HCPro and other viral proteins in interfering RNA silencing by preventing siRNA loading into the RNA-induced silencing complex.  相似文献   

5.
Since the discovery of microRNA (miRNA)-guided processing, a new type of RNA silencing, the possibility that such a mechanism could play a role in virus defense has been proposed. In this work, we have analyzed whether Plum pox virus (PPV) chimeras bearing miRNA target sequences (miR171, miR167, and miR159), which have been reported to be functional in Arabidopsis, were affected by miRNA function in three different host plants. Some of these PPV chimeras had clearly impaired infectivity compared with those carrying nonfunctional miRNA target sequences. The behaviors of PPV chimeras were similar but not identical in all the plants tested, and the deleterious effect on virus infectivity depended on the miRNA sequence cloned and on the site of insertion in the viral genome. The effect of the miRNA target sequence was drastically alleviated in transgenic plants expressing the silencing suppressor P1/HCPro. Furthermore, we show that virus chimeras readily escape RNA silencing interference through mutations within the miRNA target sequence, which mainly affected nucleotides matching the 5'-terminal region of the miRNA.  相似文献   

6.
Plum pox virus (PPV) is a member of the genus Potyvirus that is able to infect a large variety of plant species, including trees of the genus Prunus, its natural host. When some PPV isolates are propagated for an extended time in herbaceous plants, their ability to infect trees is reduced. The molecular basis of this change in host infectivity is poorly understood. We report the construction of hybrid viruses from cDNA clones of two D-strain isolates of PPV, PPV-D and PPV-R, which differ in their host range. PPV-D can infect GF305 peach seedlings efficiently, however, it is unable to infect Nicotiana clevelandii plants. Conversely, PPV-R infects N. clevelandii, but not GF305 peach seedlings. The analyses of the hybrid viruses showed that, although determinants of PPV pathogenicity are extensively spread throughout the PPV genome, the 3' terminal region of the PPV-R genome, including the 3' noncoding region and the coding regions for the coat protein (CP), NIb, and part of NIa protein, is sufficient to confer infectivity of N. clevelandii in a PPV-D background. Our data demonstrate a high concentration of amino acid substitutions in the CP and a host-specific effect of a deletion at the N terminus of this protein in PPV pathogenicity in peach and N. clevelandii infectivity experiments. These results suggest that relevant host specificity determinants are located in the N-terminal region of the CP. The analyses of the PPV-R and PPV-D chimeras also showed that key host-specific pathogenicity determinants lie in the 5' terminal third of the PPV genome, a region that spans proteins P1, HCPro, and P3. The selection of mutations in only a few specific residues in proteins P1, P3, and 6K1 after partial adaptation of a chimeric virus (BD-GFP) to N. clevelandii further suggests a relevant role for these proteins in host adaptation.  相似文献   

7.
Plum pox virus (PPV) is a member of the Potyvirus genus that, in nature, infects trees of the Prunus genus. Although PPV infects systemically several species of the Nicotiana genus, such as N. clevelandii and N. benthamiana, and replicates in the inoculated leaves of N. tabacum, it is unable to infect systemically the last host. The long-distance movement defect of PPV was corrected in transgenic tobacco plants expressing the 5"-terminal region of the genome of tobacco etch virus (TEV), a potyvirus that infects systemically tobacco. The fact that PPV was unable to move to upper noninoculated leaves in tobacco plants transformed with the same TEV transgene, but with a mutation in the HC protein (HC-Pro)-coding sequences, identifies the multifunctional HC-Pro as the complementing factor, and strongly suggests that a defect in an HC-Pro activity is responsible for the long-distance movement defect of PPV in tobacco. Whereas PPV HC-Pro strongly intensifies the symptoms caused by potato virus X (PVX) in the PPV systemic hosts N. clevelandii and N. benthamiana, it has no apparent effect on PVX pathogenicity in tobacco, supporting the hypothesis that long-distance movement and pathogenicity enhancement are related activities of the potyviral HC proteins. The movement defect of PPV in tobacco could also be complemented by cucumber mosaic virus in a mixed infection, demonstrating that at least some components of the long-distance machinery of the potyviruses are not strictly virus specific. A general conclusion of this work is that the HC-Pro might be a relevant factor for controlling the host range of the potyviruses.  相似文献   

8.
Infection caused by the synergistic interaction of two plant viruses is typically manifested by severe symptoms and increased accumulation of either virus. In potex–potyviral synergism, the potyviral RNA silencing suppressor helper component proteinase (HCPro) is known to enhance the pathogenicity of the potexvirus counterpart. In line with this, Potato virus X (PVX; genus Potexvirus) genomic RNA (gRNA) accumulation and gene expression from subgenomic RNA (sgRNA) are increased in Nicotiana benthamiana by Potato virus A (PVA; genus Potyvirus) HCPro expression. Recently, we have demonstrated that PVA HCPro interferes with the host cell methionine cycle by interacting with its key enzymes S‐adenosyl‐l ‐methionine synthetase (SAMS) and S‐adenosyl‐l ‐homocysteine hydrolase (SAHH). To study the involvement of methionine cycle enzymes in PVX infection, we knocked down SAMS and SAHH. Increased PVX sgRNA expression between 3 and 9 days post‐infiltration (dpi) and upregulation of (–)‐strand gRNA accumulation at 9 dpi were observed in the SAHH‐silenced background. We found that SAMS and SAHH silencing also caused a significant reduction in glutathione (GSH) concentration, specifically in PVX‐infected plants between 2 and 9 dpi. Interestingly, HCPro expression in PVX‐infected plants caused an even stronger reduction in GSH levels than did SAMS + SAHH silencing and a similar level of reduction was also achieved by knocking down GSH synthetase. PVX sgRNA expression was increased in the GSH synthetase‐silenced background. GSH is a major antioxidant of plant cells and therefore GSH shortage may explain the strong oxidative stress and severe symptoms observed during potex–potyvirus mixed infection.  相似文献   

9.
10.
11.
Potyviral helper component proteinase (HCPro) is a well‐characterized suppressor of antiviral RNA silencing, but its mechanism of action is not yet fully understood. In this study, we used affinity purification coupled with mass spectrometry to identify binding partners of HCPro in potyvirus‐infected plant cells. This approach led to identification of various HCPro interactors, including two key enzymes of the methionine cycle, S–adenosyl‐l –methionine synthase and S–adenosyl‐l –homocysteine hydrolase. This finding, together with the results of enzymatic activity and gene knockdown experiments, suggests a mechanism in which HCPro complexes containing viral and host proteins act to suppress antiviral RNA silencing through local disruption of the methionine cycle. Another group of HCPro interactors identified in this study comprised ribosomal proteins. Immunoaffinity purification of ribosomes demonstrated that HCPro is associated with ribosomes in virus‐infected cells. Furthermore, we show that HCPro and ARGONAUTE1 (AGO1), the core component of the RNA‐induced silencing complex (RISC), interact with each other and are both associated with ribosomes in planta. These results, together with the fact that AGO1 association with ribosomes is a hallmark of RISC‐mediated translational repression, suggest a second mechanism of HCPro action, whereby ribosome‐associated multiprotein complexes containing HCPro relieve viral RNA translational repression through interaction with AGO1.  相似文献   

12.
Cao X  Zhou P  Zhang X  Zhu S  Zhong X  Xiao Q  Ding B  Li Y 《Journal of virology》2005,79(20):13018-13027
RNA silencing is a mechanism which higher plants and animals have evolved to defend against viral infection in addition to regulation of gene expression for growth and development. As a counterdefense, many plant and some animal viruses studied to date encode RNA silencing suppressors (RSS) that interfere with various steps of the silencing pathway. In this study, we report the first identification of an RSS from a plant double-stranded RNA (dsRNA) virus. Pns10, encoded by S10 of Rice dwarf phytoreovirus (RDV), exhibited RSS activity in coinfiltration assays with the reporter green fluorescent protein (GFP) in transgenic Nicotiana benthamiana line 16c carrying GFP. The other gene segments of the RDV genome did not have such a function. Pns10 suppressed local and systemic silencing induced by sense RNA but did not interfere with local and systemic silencing induced by dsRNA. Expression of Pns10 also increased the expression of beta-glucuronidase in transient assays and enhanced Potato virus X pathogenicity in N. benthamiana. Collectively, our results establish Pns10 as an RSS encoded by a plant dsRNA virus and further suggest that Pns10 targets an upstream step of dsRNA formation in the RNA silencing pathway.  相似文献   

13.
RNA silencing is a natural defense mechanism against genetic stress factors, including viruses. A mutant hordeivirus (Barley stripe mosaic virus [BSMV]) lacking the gammab gene was confined to inoculated leaves in Nicotiana benthamiana, but systemic infection was observed in transgenic N. benthamiana expressing the potyviral silencing suppressor protein HCpro, suggesting that the gammab protein may be a long-distance movement factor and have antisilencing activity. This was shown for gammab proteins of both BSMV and Poa semilatent virus (PSLV), a related hordeivirus. Besides the functions in RNA silencing suppression, gammab and HCpro had analogous effects on symptoms induced by the hordeiviruses. Severe BSMV-induced symptoms were correlated with high HCpro concentrations in the HCpro-transgenic plants, and substitution of the gammab cistron of BSMV with that of PSLV led to greatly increased symptom severity and an altered pattern of viral gene expression. The efficient systemic infection with the chimera was followed by the development of dark green islands (localized recovery from infection) in leaves and exemption of new developing leaves from infection. Recovery and the accumulation of short RNAs diagnostic of RNA silencing in the recovered tissues in wild-type N. benthamiana were suppressed in HCpro-transgenic plants. These results provide evidence that potyviral HCpro and hordeivirus gammab proteins contribute to systemic viral infection, symptom severity, and RNA silencing suppression. HCpro's ability to suppress the recovery of plants from viral infection emphasizes recovery as a manifestation of RNA silencing.  相似文献   

14.
RNA granules are cellular structures, which play an important role in mRNA translation, storage, and degradation. Animal (+)RNA viruses often co-opt RNA granule proteins for viral reproduction. However, the role of RNA granules in plant viral infections is poorly understood. Here we use Potato virus A (PVA) as a model potyvirus and demonstrate that the helper component-proteinase (HCpro), the potyviral suppressor of RNA silencing, induces the formation of RNA granules. We used confocal microscopy to demonstrate the presence of host RNA binding proteins including acidic ribosomal protein P0, argonaute 1 (AGO1), oligouridylate-binding protein 1 (UBP1), varicose (VCS) and eukaryotic initiation factor iso4E (eIF(iso)4E) in these potyvirus-induced RNA granules. We show that the number of potyviral RNA granules is down-regulated by the genome-linked viral protein (VPg). We demonstrated previously that VPg is a virus-specific translational regulator that co-operates with potyviral RNA granule components P0 and eIF(iso)4E in PVA translation. In this study we show that HCpro and varicose, components of potyviral RNA granules, stimulate VPg-promoted translation of the PVA, whereas UBP1 inhibits this process. Hence, we propose that PVA translation operates via a pathway that is interrelated with potyviral RNA granules in PVA infection. The importance of these granules is evident from the strong reduction in viral RNA and coat protein amounts that follows knock down of potyviral RNA granule components. HCpro suppresses antiviral RNA silencing during infection, and our results allow us to propose that this is also the functional context of the potyviral RNA granules we describe in this study.  相似文献   

15.
Subisolates segregated from an M-type Plum pox virus (PPV) isolate, PPV-PS, differ widely in pathogenicity despite their high degree of sequence similarity. A single amino acid substitution, K109E, in the helper component proteinase (HCPro) protein of PPV caused a significant enhancement of symptom severity in herbaceous hosts, and notably modified virus infectivity in peach seedlings. The presence of this substitution in certain subisolates that induced mild symptoms in herbaceous hosts and did not infect peach seedlings suggested the existence of uncharacterized attenuating factors in these subisolates. In this study, we show that two amino acid changes in the P1 protein are specifically associated with the mild pathogenicity exhibited by some PS subisolates. Site-directed mutagenesis studies demonstrated that both substitutions, W29R and V139E, but especially W29R, resulted in lower levels of virus accumulation and symptom severity in a woody host, Prunus persica. Furthermore, when W29R and V139E mutations were expressed concomitantly, PPV infectivity was completely abolished in this host. In contrast, the V139E substitution, but not W29R, was found to be responsible for symptom attenuation in herbaceous hosts. Deep sequencing analysis demonstrated that the W29R and V139E heterogeneities already existed in the original PPV-PS isolate before its segregation in different subisolates by local lesion cloning. These results highlight the potential complexity of potyviral populations and the relevance of the P1 protein of potyviruses in pathogenesis and viral adaptation to the host.  相似文献   

16.
17.
Mixed infection of Cucumber mosaic virus (CMV) and Turnip mosaic virus (TuMV) induced more severe symptoms on Nicotiana benthamiana than single infection. To dissect the relationships between spatial infection patterns and the 2b protein (2b) of CMV in single or mixed infections, the CMV vectors expressing enhanced green fluorescent or Discosoma sp. red fluorescent proteins (EGFP [EG] or DsRed2 [Ds], respectively were constructed from the same wild-type CMV-Y and used for inoculation onto N. benthamiana. CMV2-A1 vector (C2-A1 [A1]) has a functional 2b while CMV-H1 vector (C2-H1 [H1]) is 2b deficient. As we expected from the 2b function as an RNA silencing suppressor (RSS), in a single infection, A1Ds retained a high level of accumulation at initial infection sites and showed extensive fluorescence in upper, noninoculated leaves, whereas H1Ds disappeared rapidly at initial infection sites and could not spread efficiently in upper, noninoculated leaf tissues. In various mixed infections, we found two phenomena providing novel insights into the relationships among RSS, viral synergism, and interference. First, H1Ds could not spread efficiently from vasculature into nonvascular tissues with or without TuMV, suggesting that RNA silencing was not involved in CMV unloading from vasculature. These results indicated that 2b could promote CMV to unload from vasculature into nonvascular tissues, and that this 2b function might be independent of its RSS activity. Second, we detected spatial interference (local interference) between A1Ds and A1EG in mixed infection with TuMV, between A1Ds (or H1Ds) and TuMV, and between H1Ds and H1EG. This observation suggested that local interference between two viruses was established even in the synergism between CMV and TuMV and, again, RNA silencing did not seem to contribute greatly to this phenomenon.  相似文献   

18.
Host-specific effect of P1 exchange between two potyviruses   总被引:1,自引:0,他引:1  
The potyviruses Plum pox virus (PPV) and Tobacco vein mottling virus (TVMV) have distinct host ranges and induce different symptoms in their common herbaceous hosts. To test the relevance of the P1 protein in host compatibility and pathogenicity, hybrid viruses were constructed in which the P1 coding sequence of PPV was completely or partially replaced by the corresponding sequences from TVMV. Infections induced by these chimeric viruses revealed that the TVMV P1 and a PPV/TVMV hybrid P1 proteins are functionally equivalent in herbaceous plants to the P1 protein of a PPV isolate adapted to these hosts, in spite of having high sequence divergence. Moreover, the presence of TVMV P1 sequences enhanced the competence of a low-infectivity PPV-D-derived chimera in Nicotiana clevelandii . Conversely, all PPV/TVMV hybrids were unable to infect Prunus persicae , a specific host for PPV, suggesting that TVMV P1 is not functionally competent in this plant. Together, these data highlight the importance of the P1 protein in defining the virus host range.  相似文献   

19.
The multifunctional helper component proteinase (HCpro) of potyviruses (genus Potyvirus; Potyviridae) shows self-interaction and interacts with other potyviral and host plant proteins. Host proteins that are pivotal to potyvirus infection include the eukaryotic translation initiation factor eIF4E and the isoform eIF(iso)4E, which interact with viral genome-linked protein (VPg). Here we show that HCpro of Potato virus A (PVA) interacts with both eIF4E and eIF(iso)4E, with interactions with eIF(iso)4E being stronger, as judged by the data of a yeast two-hybrid system assay. A bimolecular fluorescence complementation assay on leaves of Nicotiana benthamiana showed that HCpro from three potyviruses (PVA, Potato virus Y, and Tobacco etch virus) interacted with the eIF(iso)4E and eIF4E of tobacco (Nicotiana tabacum); interactions with eIF(iso)4E and eIF4E of potato (Solanum tuberosum) were weaker. In PVA-infected cells, interactions between HCpro and tobacco eIF(iso)4E were confined to round structures that colocalized with 6K2-induced vesicles. Point mutations introduced to a 4E binding motif identified in the C-terminal region of HCpro debilitated interactions of HCpro with translation initiation factors and were detrimental to the virulence of PVA in plants. The 4E binding motif conserved in HCpro of potyviruses and HCpro-initiation factor interactions suggest new roles for HCpro and/or translation factors in the potyvirus infection cycle.  相似文献   

20.
An effective disease-control strategy should protect the host from the major economically important and geographically widespread variants of a pathogen. Plum pox virus (PPV) is the causal agent of sharka, the most devastating viral disease of Prunus species. We have shown previously that the hairpin RNA expression driven by h-UTR/P1, h-P1/HCPro, h-HCPro and h-HCPro/P3 constructs, derived from the PPV-M ISPaVe44 isolate, confers resistance to the homologous virus in Nicotiana benthamiana plants. Since the production of transgenic stone fruits and their evaluation for PPV resistance would take several years, the ISPaVe44-resistant plant lines were used to evaluate which construct would be the best candidate to be transferred to Prunus elite cultivars. To do that, nine PPV isolates of the D, M, Rec, EA and C strains originally collected from five Prunus species in different geographical areas, were typed by sequencing and used to challenge the transgenic N. benthamiana lines; 464 out of 464 virus-inoculated plants of lines h-UTR/P1, h-HCPro and h-HCPro/P3 showed complete and long-lasting resistance to the seven PPV isolates of D, M and Rec strains. Moreover, the h-UTR/P1 plants were also fully resistant to PPV-C and -EA isolates. Our data suggest that the h-UTR/P1 construct is of particular practical interest to obtain stone fruit plants resistant to the sharka disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号