首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peroxynitrite is usually considered as a neurotoxic nitric oxide-derivative. However, an increasing body of evidence suggests that, at low concentrations, peroxynitrite affords transient cytoprotection, both in vitro and in vivo. Here, we addressed the signaling mechanism responsible for this effect, and found that rat cortical neurons in primary culture acutely exposed to peroxynitrite (0.1 mmol/L) rapidly elicited Akt-Ser(473) phosphorylation. Inhibition of phosphoinositide-3-kinase (PI3K)/Akt pathway with wortmannin or Akt small hairpin RNA (shRNA) abolished the ability of peroxynitrite to prevent etoposide-induced apoptotic death. Endogenous peroxynitrite formation by short-term incubation of neurons with glutamate stimulated Akt-Ser(473) phosphorylation, whereas Akt shRNA enhanced the vulnerability of neurons against glutamate. We further show that Akt-Ser(473) phosphorylation was consequence of the oxidizing, but not the nitrating properties of peroxynitrite. Peroxynitrite failed to nitrate or phosphorylate neurotrophin tyrosine kinase receptors (Trks), and it did not modify the ability of brain-derived neurotrophic factor (BDNF), to phosphorylate its cognate receptor, TrkB; however, peroxynitrite enhanced BDNF-mediated Akt-Ser(473) phosphorylation. Finally, we found that peroxynitrite-stimulated Akt-Ser(473) phosphorylation was associated with an increased proportion of oxidized phosphoinositide phosphatase, PTEN, in neurons. Moreover, peroxynitrite prevented the increase of apoptotic neuronal death caused by over-expression of PTEN. Thus, peroxynitrite exerts neuroprotection by inhibiting PTEN, hence activating the anti-apoptotic PI3K/Akt pathway in primary neurons.  相似文献   

2.
Gelebart P  Zak Z  Anand M  Belch A  Lai R 《PloS one》2012,7(4):e33738
Fatty acid synthase (FASN), a key player in the de novo synthetic pathway of long-chain fatty acids, has been shown to contribute to the tumorigenesis in various types of solid tumors. We here report that FASN is highly and consistently expressed in mantle cell lymphoma (MCL), an aggressive form of B-cell lymphoid malignancy. Specifically, the expression of FASN was detectable in all four MCL cell lines and 15 tumors examined. In contrast, benign lymphoid tissues and peripheral blood mononuclear cells from normal donors were negative. Treatment of MCL cell lines with orlistat, a FASN inhibitor, resulted in significant apoptosis. Knockdown of FASN expression using siRNA, which also significantly decreased the growth of MCL cells, led to a dramatic decrease in the cyclin D1 level. β-catenin, which has been previously reported to be upregulated in a subset of MCL tumors, contributed to the high level of FASN in MCL cells, Interesting, siRNA knock-down of FASN in turn down-regulated β-catenin. In conclusion, our data supports the concept that FASN contributes to the pathogenesis of MCL, by collaborating with β-catenin. In view of its high and consistent expression in MCL, FASN inhibitors may hold promises for treating MCL.  相似文献   

3.
Abstract

Lysophosphatidic acid (LPA) is a bioactive phospholipid that is involved in signal transduction between cells. Plasma and ascites levels of LPA are increased in ovarian cancer patients even in the early stages and thus LPA is considered as a potential diagnostic marker for this disease. This review presents the current knowledge regarding LPA signaling in epithelial ovarian cancer. LPA stimulates proliferation, migration and invasion of ovarian cancer cells through regulation of vascular endothelial growth factor, matrix metalloproteinases, urokinase plasminogen activator, interleukin-6, interleukin-8, CXC motif chemokine ligand 12/CXC receptor 4, COX2, cyclin D1, Hippo-Yap and growth-regulated oncogene α concentrations. In this article, all of these targets and signal pathways involved in LPA influence are described.  相似文献   

4.
The activities of the enzymes glycerol-3-phosphate dehydrogenase and fatty acid synthase are inhibited by palmitoyl-coenzyme A and oleate. The two isoforms of fatty acid binding proteins (PI 6.9 and PI 5.4) enhance the activities of glycerol-3-phosphate dehydrogenase and fatty acid synthase in the absence of palmitoyl-coenzyme A or oleate and also protect them against palmitoyl-coenzyme A or oleate inhibition. Levels of fatty acid binding proteins, the activities of the enzymes fatty acid synthase and glycerol-3-phosphate dehydrogenase increase with gestation showing a peak at term. However, the activity of fatty acid synthase showed the same trend up to the 30th week of gestation and then declined slightly at term. With the advancement of pregnancy when more lipids are required for the developing placenta, fatty acid binding proteins supply more fatty acids and glycerol-3-phosphate for the synthesis of lipids. Thus a correlation exists between glycerol-3-phosphate dehydrogenase, fatty acid synthase and fatty acid binding proteins in developing human placenta.  相似文献   

5.
6.
RNASET2 (Ribonuclease T2) functions as a tumor suppressor in preventing ovarian tumorigenesis. However, the mechanisms underlying the regulation of RNASET2 protein are completely unknown. Here we identified the F-box protein FBXO6, a substrate recognition subunit of an SCF (Skp1-Cul1-F-box protein) complex, as the ubiquitin E3 ligase for RNASET2. We found that the interaction between FBXO6 and RNASET2 induced RNASET2 instability through the ubiquitin-mediated proteasome degradation pathway. FBXO6 promoted K48-dependent ubiquitination of RNASET2 via its FBA domain. Through analysis of the TCGA dataset, we found that FBXO6 was significantly increased in ovarian cancer tissues and the high expression of FBXO6 was related to the poor overall survival (OS) of ovarian cancer patients at advanced stages. An inverse correlation between the protein levels of FBXO6 and RNASET2 was observed in clinic ovarian cancer samples. Depletion of FBXO6 promoted ovarian cancer cells proliferation, migration, and invasion, which could be partially reversed by RNASET2 silencing. Thus, our data revealed a novel FBXO6-RNASET2 axis, which might contribute to the development of ovarian cancer. We propose that inhibition of FBXO6 might represent an effective therapeutic strategy for ovarian cancer treatment.Subject terms: Oncogenes, Ubiquitin ligases  相似文献   

7.
Heterogeneous nuclear ribonucleoprotein L (hnRNPL) is a type of RNA binding protein that highly expressed in a variety of tumors and plays a vital role in tumor progression. However, its post-translational regulation through ubiquitin-mediated proteolysis and the cellular mechanism responsible for its proteasomal degradation remains unclear. F-box proteins (FBPs) function as the substrate recognition subunits of SCF ubiquitin ligase complexes and directly bind to substrates. The aberrant expression or mutation of FBPs will lead to the accumulation of its substrate proteins that often involved in tumorigenesis. Here we discover FBXO16, an E3 ubiquitin ligase, to be a tumor suppressor in ovarian cancer, and patients with the relatively high expression level of FBXO16 have a better prognosis. Silencing or depleting FBXO16 significantly enhanced ovarian cancer cell proliferation, clonogenic survival, and cell invasion by activating multiple oncogenic pathways. This function requires the F-box domain of FBXO16, through which FBXO16 assembles a canonical SCF ubiquitin ligase complex that constitutively targets hnRNPL for degradation. Depletion of hnRNPL is sufficient to inactive multiple oncogenic signaling regulated by FBXO16 and prevent the malignant behavior of ovarian cancer cells caused by FBXO16 deficiency. FBXO16 interacted with the RRM3 domain of hnRNPL via its C-terminal region to trigger the proteasomal degradation of hnRNPL. Failure to degrade hnRNPL promoted ovarian cancer cell proliferation in vitro and tumor growth vivo, phenocopying the deficiency of FBXO16 in ovarian cancer.Subject terms: Ovarian cancer, Oncogenes  相似文献   

8.
《Cancer epidemiology》2014,38(6):765-772
In breast cancer cells, overexpression of human epidermal growth factor receptor 2 (HER2) increases the translation of fatty acid synthase (FASN) by altering the activity of PI3K/Akt signaling pathways. Cancer chemotherapy causes major side effects and is not effective enough in slowing down the progression of the disease. Earlier studies showed a role for resveratrol in the inhibition of FASN, but the molecular mechanisms of resveratrol-induced inhibition are not known. In the present study, we examined the novel mechanism of resveratrol on Her2-overexpressed breast cancer cells.The effect of resveratrol on the growth of breast cancer cells was assessed as percent cell viability by cytotoxicity-based MTT assay and the induction of apoptosis was determined by cell-death detection ELISA and flow cytometric analysis of Annexin-V–PI binding. Western immunobloting was used to detect signaling events in human breast cancer (SKBR-3) cells.Data showed that resveratrol-mediated down-regulation of FASN and HER2 genes synergistically induced apoptotic death in SKBR-3 cells. This concurrently caused a prominent up-regulation of PEA3, leads to down-regulation of HER2 genes. Resveratrol also alleviated the PI3K/Akt/mTOR signaling by down-regulation of Akt phosphorylation and up-regulation of PTEN expression.These findings suggest that resveratrol alters the cell cycle progression and induce cell death via FASN inhibition in HER2 positive breast cancer.  相似文献   

9.
10.
Ubiquitination-mediated proteolysis is a hallmark of skeletal muscle wasting manifested in response to negative growth factors, including myostatin. Thus, the characterization of signaling mechanisms that induce the ubiquitination of intracellular and sarcomeric proteins during skeletal muscle wasting is of great importance. We have recently characterized myostatin as a potent negative regulator of myogenesis and further demonstrated that elevated levels of myostatin in circulation results in the up-regulation of the muscle-specific E3 ligases, Atrogin-1 and muscle ring finger protein 1 (MuRF1). However, the exact signaling mechanisms by which myostatin regulates the expression of Atrogin-1 and MuRF1, as well as the proteins targeted for degradation in response to excess myostatin, remain to be elucidated. In this report, we have demonstrated that myostatin signals through Smad3 (mothers against decapentaplegic homolog 3) to activate forkhead box O1 and Atrogin-1 expression, which further promotes the ubiquitination and subsequent proteasome-mediated degradation of critical sarcomeric proteins. Smad3 signaling was dispensable for myostatin-dependent overexpression of MuRF1. Although down-regulation of Atrogin-1 expression rescued approximately 80% of sarcomeric protein loss induced by myostatin, only about 20% rescue was seen when MuRF1 was silenced, implicating that Atrogin-1 is the predominant E3 ligase through which myostatin manifests skeletal muscle wasting. Furthermore, we have highlighted that Atrogin-1 not only associates with myosin heavy and light chain, but it also ubiquitinates these sarcomeric proteins. Based on presented data we propose a model whereby myostatin induces skeletal muscle wasting through targeting sarcomeric proteins via Smad3-mediated up-regulation of Atrogin-1 and forkhead box O1.  相似文献   

11.
Pleiotrophin (PTN) is a developmentally regulated protein that has been shown to be involved in tumor growth and metastasis presumably by activating tumor angiogenesis. To clarify the potential angiogenic activity of PTN and to analyze the signaling pathways involved in this process, we used an in vitro model of Human Umbilical Vein Endothelial Cells (HUVEC). We show that PTN was mitogenic toward a variety of endothelial cells including HUVEC, stimulated HUVEC migration across a reconstituted basement membrane and induced the formation of capillary-like structures by HUVEC grown as 3D-cultures in Matrigel or collagen. The signaling pathways triggered following endothelial cell stimulation by PTN were studied by using pharmacological inhibitors of the Phosphoinositide-3 kinase (PI3K) and endothelial Nitric Oxide Synthase (eNOS), two enzymes that have been shown to be crucial in the angiogenic response to Vascular Endothelial Growth Factor (VEGF). Whereas wortmannin (a PI3K inhibitor) and L-NAME (an eNOS inhibitor) dramatically reduced HUVEC growth induced by VEGF, only the former inhibitor reduced the growth induced by PTN and to a lesser extent that stimulated by basic Fibroblast Growth Factor. Thus, our results indicate that PTN induces angiogenesis and utilizes PI3K- but not eNOS-dependent pathways for its angiogenic activity.  相似文献   

12.
13.
Motoneuron dependence on target-derived trophic factors during development is well established, with loss of trophic support leading to the death of these cells. A complete understanding of the intracellular signal transduction machinery associated with extracellular survival signals requires the examination of individual pathways in various cellular and environmental contexts. In cells deprived of trophic support, and hence compromised for survival, phosphoinositide-3-kinase (PI3K) is decreased when compared with healthy cells supplied with trophic support. Extracellular signal-regulated kinase 1/2 (ERK1/2) signaling is dramatically decreased in deprived cells. We have examined the role of these two pathways to understand how changes in their activity regulate motoneuron survival and death. Pharmacological inhibition of PI3K attenuated motoneuron survival and was important in the regulation of Bcl-2 serine phosphorylation, limited release of cytochrome c into the cytoplasm and caspase activation. Bax translocation from cytoplasm to mitochondria was not altered when PI3K was inhibited. High levels of ERK1/2 inhibition robustly attenuated motoneuron survival in cells supplied with trophic support, whereas moderate inhibition of ERK1/2 activation had little effect. ERK1/2 inhibition in these cells decreased Bcl-2 phosphorylation and resulted in release of cytochrome c from the mitochondria. Bax translocation and caspase activation were not affected by ERK1/2 inhibition. These data reveal that changes in PI3K and ERK1/2 signaling lead to individual and overlapping effects on the cell-death machinery. Characterizing the role of these pathways is critical for a fundamental understanding of the development and degeneration of specific neuronal populations.  相似文献   

14.
15.
MARCH2 (membrane-associated RING-CH protein 2), an E3 ubiquitin ligase, is mainly associated with the vesicle trafficking. In the present study, for the first time, we demonstrated that MARCH2 negatively regulates autophagy. Our data indicated that overexpression of MARCH2 impaired autophagy, as evidenced by attenuated levels of LC3B-II and impaired degradation of endogenous and exogenous autophagic substrates. By contrast, loss of MARCH2 expression had the opposite effects. In vivo experiments demonstrate that MARCH2 knockout mediated autophagy results in an inhibition of tumorigenicity. Further investigation revealed that the induction of autophagy by MARCH2 deficiency was mediated through the PIK3CA-AKT-MTOR signaling pathway. Additionally, we found that MARCH2 interacts with CFTR (cystic fibrosis transmembrane conductance regulator), promotes the ubiquitination and degradation of CFTR, and inhibits CFTR-mediated autophagy in tumor cells. The functional PDZ domain of MARCH2 is required for the association with CFTR. Thus, our study identified a novel negative regulator of autophagy and suggested that the physical and functional connection between the MARCH2 and CFTR in different conditions will be elucidated in the further experiments.  相似文献   

16.
17.
Placebo-controlled clinical studies suggest that intake of n-3 polyunsaturated fatty acids improves neurological disorders such as Alzheimer's disease, Huntington's disease and schizophrenia. To evaluate the impact of eicosapentaenoic acid (EPA), we orally administered highly purified ethyl EPA (EPA-E) to rats at a dose of 1.0 mg/g per day and measured long-term potentiation of the CA1 hippocampal region, a physiological correlate of synaptic plasticity that is thought to underlie learning and memory. The mean field excitatory postsynaptic potential slope of the EPA-E group was significantly greater than that of the control group in the CA1 region. Gene expression of hippocampal p85α, one of the regulatory subunits of phosphatidylinositol 3-kinase (PI3-kinase), was increased with EPA-E administration. Investigation of fatty acid profiles of neuronal and glia-enriched fractions demonstrated that a single administration of EPA-E significantly increased neuronal and glial EPA content and glial docosahexaenoic acid content, clearly suggesting that EPA was indeed taken up by both neurons and glial cells. In addition, we investigated the direct effects of EPA on the PI3-kinase/Akt pathway in differentiated PC12 cells. Phosphorylated-Akt expression was significantly increased in EPA-treated cells, and nerve growth factor withdrawal-induced increases in cell death and caspase-3 activity were suppressed by EPA treatment. These findings suggest that EPA protects against neurodegeneration by modulating synaptic plasticity and activating the PI3-kinase/Akt pathway, possibly by its own functional effects in neurons and glial cells and by its capacity to increase brain docosahexaenoic acid.  相似文献   

18.
Exosomes are carriers of intercellular information that regulate the tumor microenvironment, and they have an essential role in drug resistance through various mechanisms such as transporting RNA molecules and proteins. Nevertheless, their effects on gemcitabine resistance in triple-negative breast cancer (TNBC) are unclear. In the present study, we examined the effects of exosomes on TNBC cell viability, colony formation, apoptosis, and annexin A6 (ANXA6)/EGFR expression. We addressed their roles in gemcitabine resistance and the underlying mechanism. Our results revealed that exosomes derived from resistant cancer cells improved cell viability and colony formation and inhibited apoptosis in sensitive cancer cells. The underlying mechanism included the transfer of exosomal ANXA6 from resistant cancer cells to sensitive cancer cells. Isobaric peptide labeling–liquid chromatography–tandem mass spectrometry and western blotting revealed that ANXA6 was upregulated in resistant cancer cells and their derived exosomes. Sensitive cancer cells exhibited resistance with increased viability and colony formation and decreased apoptosis when ANXA6 was stably overexpressed. On the contrary, knockdown ANXA6 restored the sensitivity of cells to gemcitabine. Co-immunoprecipitation expression and GST pulldown assay demonstrated that exosomal ANXA6 and EGFR could interact with each other and exosomal ANXA6 was associated with the suppression of EGFR ubiquitination and downregulation. While adding lapatinib reversed gemcitabine resistance induced by exosomal ANXA6. Moreover, ANXA6 and EGFR protein expression was correlated in TNBC tissues, and exosomal ANXA6 levels at baseline were lower in patients with highly sensitive TNBC than those with resistant TNBC when treated with first-line gemcitabine-based chemotherapy. In conclusion, resistant cancer cell-derived exosomes induced gemcitabine resistance via exosomal ANXA6, which was associated with the inhibition of EGFR ubiquitination and degradation. Exosomal ANXA6 levels in the serum of patients with TNBC might be predictive of the response to gemcitabine-based chemotherapy.Subject terms: Breast cancer, Predictive markers  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号