首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Drosophila embryonic CNS arises from the neuroectoderm, which is divided along the dorsal‐ventral axis into two halves by specialized mesectodermal cells at the ventral midline. The neuroectoderm is in turn divided into three longitudinal stripes—ventral, intermediate, and lateral. The ventral nervous system defective, or vnd, homeobox gene is expressed from cellularization throughout early neural development in ventral neuroectodermal cells, neuroblasts, and ganglion mother cells, and later in an unrelated pattern in neurons. Here, in the context of the dorsal‐ventral location of precursor cells, we reassess the vnd loss‐ and gain‐of‐function CNS phenotypes using cell specific markers. We find that over expression of vnd causes significantly more profound effects on CNS cell specification than vnd loss. The CNS defects seen in vnd mutants are partly caused by loss of progeny of ventral neuroblasts—the commissures are fused and the longitudinal connectives are aberrantly positioned close to the ventral midline. The commissural vnd phenotype is associated with defects in cells that arise from the mesectoderm, where the VUM neurons have pathfinding defects, the MP1 neurons are mis‐specified, and the midline glia are reduced in number. vnd over expression results in the mis‐specification of progeny arising from all regions of the neuroectoderm, including the ventral neuroblasts that normally express the gene. The CNS of embryos that over express vnd is highly disrupted, with weak longitudinal connectives that are placed too far from the ventral midline and severely reduced commissural formation. The commissural defects seen in vnd gain‐of‐function mutants correlate with midline glial defects, whereas the mislocalization of interneurons coincides with longitudinal glial mis‐specification. Thus, Drosophila neural and glial specification requires that vnd expression by tightly regulated. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 118–136, 2002; DOI 10.1002/neu.10022  相似文献   

2.
3.
In Drosophila, the body axes are specified during oogenesis through interactions between the germline and the overlying somatic follicle cells [1-5]. A Gurken/TGF-alpha signal from the oocyte to the adjacent follicle cells assigns them a posterior identity [6, 7]. These posterior cells then signal back to the oocyte, thereby inducing the repolarization of the microtubule cytoskeleton, the migration of the oocyte nucleus, and the localization of the axis specifying mRNAs [8-10]. However, little is known about the signaling pathways within or from the follicle cells responsible for these patterning events. We show that the Salvador Warts Hippo (SWH) tumor-suppressor pathway is required in the follicle cells in order to induce their Gurken- and Notch-dependent differentiation and to limit their proliferation. The SWH pathway is also required in the follicle cells to induce axis specification in the oocyte, by inducing the migration of the oocyte nucleus, the reorganization of the cytoskeleton, and the localization of the mRNAs that specify the anterior-posterior and dorsal-ventral axes of the embryo. This work highlights a novel connection between cell proliferation, cell growth, and axis specification in egg chambers.  相似文献   

4.
5.
BACKGROUND: The Drosophila eye is composed of about 800 ommatidia, each of which becomes dorsoventrally polarised in a process requiring signalling through the Notch, JAK/STAT and Wingless pathways. These three pathways are thought to act by setting up a gradient of a signalling molecule (or molecules) often referred to as the 'second signal'. Thus far, no candidate for a second signal has been identified. RESULTS: The four-jointed locus encodes a type II transmembrane protein that is expressed in a dorsoventral gradient in the developing eye disc. We have analysed the function and regulation of four-jointed during eye patterning. Loss-of-function clones or ectopic expression of four-jointed resulted in strong non-autonomous defects in ommatidial polarity on the dorsoventral axis. Ectopic expression experiments indicated that localised four-jointed expression was required at the time during development when ommatidial polarity was being determined. In contrast, complete removal of four-jointed function resulted in only a mild ommatidial polarity defect. Finally, we found that four-jointed expression was regulated by the Notch, JAK/STAT and Wingless pathways, consistent with it mediating their effects on ommatidial polarity. CONCLUSIONS: The clonal phenotypes, time of requirement and regulation of four-jointed are consistent with it acting in ommatidial polarity determination as a second signal downstream of Notch, JAK/STAT and Wingless. Interestingly, it appears to act redundantly with unknown factors in this process, providing an explanation for the previous failure to identify a second signal.  相似文献   

6.
glial cells missing (gcm) is the primary regulator of glial cell fate in Drosophila. In addition, gcm has a role in the differentiation of the plasmatocyte/macrophage lineage of hemocytes. Since mutation of gcm causes only a decrease in plasmatocyte numbers without changing their ability to convert into macrophages, gcm cannot be the sole determinant of plasmatocyte/macrophage differentiation. We have characterized a gcm homolog, gcm2. gcm2 is expressed at low levels in glial cells and hemocyte precursors. We show that gcm2 has redundant functions with gcm and has a minor role promoting glial cell differentiation. More significant, like gcm, mutation of gcm2 leads to reduced plasmatocyte numbers. A deletion removing both genes has allowed us to clarify the role of these redundant genes in plasmatocyte development. Animals deficient for both gcm and gcm2 fail to express the macrophage receptor Croquemort. Plasmatocytes are reduced in number, but still express the early marker Peroxidasin. These Peroxidasin-expressing hemocytes fail to migrate to their normal locations and do not complete their conversion into macrophages. Our results suggest that both gcm and gcm2 are required together for the proliferation of plasmatocyte precursors, the expression of Croquemort protein, and the ability of plasmatocytes to convert into macrophages.  相似文献   

7.
8.
Morphogenesis of the Drosophila tracheal system relies on different signalling pathways that have distinct roles in specifying both the migration of the tracheal cells and the particular morphological features of the primary branches. The current view is that the tracheal cells are initially specified as an equivalent group of cells whose diversification depends on signals from the surrounding cells. In this work, we show that the tracheal primordia are already specified as distinct dorsal and ventral cell populations. This subdivision depends on the activity of the spalt (sal) gene and occurs prior to the activity of the signalling pathways that dictate the development of the primary branches. Finally, we show that the specification of these two distinct cell populations, which are not defined by cell lineage, are critical for proper tracheal patterning. These results indicate that tracheal patterning depends not only on signalling from surrounding cells but also in the different response of the tracheal cells depending on their allocation to the dorsal or ventral domains.  相似文献   

9.
10.
During cellularization, the Drosophila embryo undergoes a large-scale cytokinetic event that packages thousands of syncytial nuclei into individual cells, resulting in the de novo formation of an epithelial monolayer in the cortex of the embryo. The formation of adherens junctions is one of the many aspects of epithelial polarity that is established during cellularization: at the onset of cellularization, the Drosophila beta-catenin homologue Armadillo (Arm) accumulates at the leading edge of the cleavage furrow, and later to the apicolateral region where the zonula adherens precursors are formed. In this paper, we show that the basal accumulation of Arm colocalizes with DE-cadherin and Dalpha-catenin, and corresponds to a region of tight membrane association, which we refer to as the basal junction. Although the two junctions are similar in components and function, they differ in their response to the novel cellularization protein Nullo. Nullo is present in the basal junction and is required for its formation at the onset of cellularization. In contrast, Nullo is degraded before apical junction formation, and prolonged expression of Nullo blocks the apical clustering of junctional components, leading to morphological defects in the developing embryo. These observations reveal differences in the formation of the apical and basal junctions, and offer insight into the role of Nullo in basal junction formation.  相似文献   

11.
12.
Drosophila Myc is required for normal DREF gene expression   总被引:1,自引:0,他引:1  
  相似文献   

13.
14.
We have studied the in vivo function and tissue specificity of Dcas, the Drosophila ortholog of CAS, the importin beta-like export receptor for importin alpha. While dcas mRNA is specifically expressed in the embryonic central nervous system, Dcas protein is maternally supplied to all embryonic cells and its nuclear/cytoplasmic distribution varies in different tissues and times in development. Unexpectedly, hypomorphic alleles of dcas show specific transformations in mechano-sensory organ cell identity, characteristic of mutations that increase Notch signaling. Dcas is essential for efficient importin-alpha3 nuclear export in mechano-sensory cells and the surrounding epidermal cells and is indirectly required for the import of one component of the Notch pathway, but not others tested. We interpret the specificity of the dcas phenotype as indicating that one or more Notch signaling components are particularly sensitive to a disruption in nuclear protein import. We propose that mutations in house keeping genes often cause specific developmental phenotypes, such as those observed in many human genetic disorders.  相似文献   

15.
16.
Netrin1 (NTN1) deficiency in mouse brain causes defects in axon guidance and cell migration during embryonic development. Here we show that NTN1 is required for olfactory bulb (OB) development at late embryogenesis and at early postnatal stages to facilitate the accumulation of proper numbers of granular and glomerular neuron subtypes and oligodendrocytes into the OB. In addition to the analysis of Ntn1−/− mice we made tissue and neurosphere cultures to clarify the role of NTN1 in the anterior forebrain. We propose that a subset of neural progenitors/precursors requires NTN1 to efficiently enter the rostral migratory stream to migrate into the OB. The analysis of postnatal Ntn1−/− OBs revealed a reduction of specific types of interneurons which have been shown to originate from particular subregions of the lateral ventricle walls. Based on Ntn1 expression in ventral parts of the ventricle walls, we observed a decrease in the mainly ventrally derived type II interneurons that express calcium-binding proteins calretinin and calbindin. Instead, no change in the numbers of dorsally derived tyrosine hydroxylase expressing interneurons was detected. In addition to the specific reduction of type II interneurons, our results indicate that NTN1 is required for oligodendroglial migration into the OB. Furthermore, we characterised the Ntn1 expressing subpopulation of neurosphere-forming cells from embryonic and adult brain as multipotent and self-renewing. However, NTN1 is dispensable for the proliferation of neurosphere forming progenitor cells and for their differentiation.  相似文献   

17.
BACKGROUND: Axon pruning is involved in establishment and maintenance of functional neural circuits. During metamorphosis of Drosophila, selective pruning of larval axons is developmentally regulated by ecdysone and caused by local axon degeneration. Previous studies have revealed intrinsic molecular and cellular mechanisms that trigger this pruning process, but how pruning is accomplished remains essentially unknown. RESULTS: Detailed analysis of morphological changes in the axon branches of Drosophila mushroom body (MB) neurons revealed that during early pupal stages, clusters of neighboring varicosities, each of which belongs to different axons, disappear simultaneously shortly before the onset of local axon degeneration. At this stage, bundles of axon branches are infiltrated by the processes of surrounding glia. These processes engulf clusters of varicosities and accumulate intracellular degradative compartments. Selective inhibition of cellular functions, including endocytosis, in glial cells via the temperature-sensitive allele of shibire both suppresses glial infiltration and varicosity elimination and induces a severe delay in axon pruning. Selective inhibition of ecdysone receptors in the MB neurons severely suppressed not only axon pruning but also the infiltration and engulfing action of the surrounding glia. CONCLUSIONS: These findings strongly suggest that glial cells are extrinsically activated by ecdysone-stimulated MB neurons. These glial cells infiltrate the mass of axon branches to eliminate varicosities and break down axon branches actively rather than just scavenging already-degraded debris. We therefore propose that neuron-glia interaction is essential for the precisely coordinated axon-pruning process during Drosophila metamorphosis.  相似文献   

18.
19.
Cycling vrille expression is required for a functional Drosophila clock   总被引:6,自引:0,他引:6  
Blau J  Young MW 《Cell》1999,99(6):661-671
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号