首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A promising approach to adoptive transfer therapy of tumors is to reprogram autologous T lymphocytes by TCR gene transfer of defined Ag specificity. An obstacle, however, is the undesired pairing of introduced TCRalpha- and TCRbeta-chains with the endogenous TCR chains. These events vary depending on the individual endogenous TCR and they not only may reduce the levels of cell surface-introduced TCR but also may generate hybrid TCR with unknown Ag specificities. We show that such hybrid heterodimers can be generated even by the pairing of human and mouse TCRalpha- and TCRbeta-chains. To overcome this hurdle, we have identified a pair of amino acid residues in the crystal structure of a TCR that lie at the interface of associated TCR Calpha and Cbeta domains and are related to each other by both a complementary steric interaction analogous to a "knob-into-hole" configuration and the electrostatic environment. We mutated the two residues so as to invert the sense of this interaction analogous to a charged "hole-into-knob" configuration. We show that this inversion in the CalphaCbeta interface promotes selective assembly of the introduced TCR while preserving its specificity and avidity for Ag ligand. Noteworthily, this TCR modification was equally efficient on both a Mu and a Hu TCR. Our data suggest that this approach is generally applicable to TCR independently of their Ag specificity and affinity, subset distribution, and species of origin. Thus, this strategy may optimize TCR gene transfer to efficiently and safely reprogram random T cells into tumor-reactive T cells.  相似文献   

2.
Transformation of peripheral blood lymphocytes by co-incubation with EBV produces B lymphoblastoid cell lines, but rearrangement of TCR beta-chain genes was observed in three different cell lines derived from two individuals. Because rearrangement of TCR genes in B lymphocytes is considered a rare event, these B lymphoblastoid cell lines with rearranged TCR beta-genes were examined in detail to determine whether there were any additional characteristics to distinguish them from B lymphoblastoid cell lines with germ-line TCR beta-genes. All B lymphoblastoid cell lines contained rearranged Ig H and kappa L chain genes, secreted Ig, and expressed B and not T cell surface markers. Cell lines with rearranged TCR beta-genes had rearranged both IgH genes and had rearranged and subsequently deleted both kappa C region genes. Furthermore all three B lymphoblastoid cell lines with rearranged TCR beta-genes produced small amounts of Ig with lambda-L chains. Although the cellular mechanisms maintaining lineage-specific rearrangement events remain unknown, extensive Ig gene rearrangement and inefficient Ig production by B cells may be indicators of a cellular status where normally stringent lineage-specific control elements fail to function efficiently.  相似文献   

3.
Consistent with an ordered immunoglobulin (Ig) gene assembly process during precursor (pre-) B cell differentiation, we find that most Abelson murine leukemia virus (A-MuLV)-transformed pre-B cells derived from scid (severe combined immune deficient) mice actively form aberrant rearrangements of their Ig heavy chain locus but do not rearrange endogenous kappa light chain variable region gene segments. However, we have identified several scid A-MuLV transformants that transcribe the germline Ig kappa light chain constant region and actively rearrange the kappa variable region gene locus. In one case progression to the stage of kappa light chain gene rearrangement did not require expression of Ig mu heavy chains; furthermore, this progression could not be efficiently induced following expression of mu heavy chains from an introduced vector. As observed in pre-B cell lines from normal mice, attempted V kappa-to-J kappa rearrangements in scid transformants occur by inversion at least as frequently as by deletion. The inverted rearrangements result in retention of both products of the recombination event in the chromosome, thus allowing their examination. scid kappa coding sequence joins are aberrant and analogous in structure to previously described scid heavy chain coding joins. In contrast, the recognition signals that flank involved coding segments frequently are joined precisely back-to-back in normal fashion. The scid VDJ recombinase defect therefore does not significantly impair recognition of, site-specific cutting at, or juxtaposition and appropriate ligation of signal sequences. Our finding that the scid defect prevents formation of correct coding but not signal joins distinguishes these events mechanistically.  相似文献   

4.
5.
6.
To determine whether T cell receptor genes follow the same principle of allelic exclusion as B lymphocytes, we have analyzed the rearrangements and expression of TCR alpha and beta genes in the progeny of the CD3+, CD4-/CD8- M14T line. Here, we show that this line can undergo secondary rearrangements that replace the pre-existing V alpha-J alpha rearrangements by joining an upstream V alpha gene to a downstream J alpha segment. Both the productively and nonproductively rearranged alleles in the M14T line can undergo secondary rearrangements while its TCR beta genes are stable. These secondary recombinations are usually productive, and new forms of TCR alpha polypeptides are expressed in these cells in association with the original C beta chain. Developmental control of this V alpha-J alpha replacement phenomenon could play a pivotal role in the thymic selection of the T cell repertoire.  相似文献   

7.
This study reports early B and T cell signaling events during cognate interactions between a human B cell line pulsed with peptide and an Ag-specific T cell clone. As has been previously reported, peptide in the context of the appropriate class II molecule stimulated a rise in intracellular calcium [Ca2+]i in the Ag-specific T cell clone. The activation of the T cell clone was associated with a reciprocal rise in [Ca2+]i in the B cells. Engagement of receptors on the B cell surface by the T cell also was associated with inositol phospholipid turnover comparable to that elicited by stimulation through sIg. Early signaling events in B cells can therefore be stimulated in cognate interactions with Ag-specific T cells, without the direct engagement of Ig receptors. A class II deficient B lymphoblastoid mutant, 6.1.6, which was incapable of presenting peptide to the T cell clone, could be stimulated to produce a rise in [Ca2+]i if the T cell clone was activated by monoclonal antibodies to CD3. Therefore, the interaction of class II molecules on the B cell with the TCR and/or the CD4 accessory molecule was not essential for T-dependent B cell activation. However, T-dependent signalling of B cells was profoundly inhibited by mAb to CD18 (beta-chain of LFA-1) on the T cell or CD54 (ICAM-1) on the B cell, demonstrating the importance of this pair of adhesion molecules in early T-B cell interactions.  相似文献   

8.
9.
The ability of activated T cells to present foreign antigens through the MHC class II pathway has been shown in the case of human, rat and mouse T cells. In the present study, the ability of activated T cells to present their endogenous TCR in association with MHC class II molecules to CD4+ T cells was shown. Upon activation mouse T cells downregulate their surface TCR, which are degraded into peptides in endosomal/lysosomal compartments. The idiopeptides (peptides derived from the variable region of the TCR) are presented to cognate anti-idiotypic CD4+ T cells, resulting in activation and proliferation of these cells. Interaction of idiotypic and anti-idiotypic T cells brought about by presentation of TCR idiopeptide may have important implications for T-cell vaccination and perpetuation of T-cell memory not requiring persisting antigen or long-lived memory cells.  相似文献   

10.
Analysis of T cell receptor transcripts using the polymerase chain reaction   总被引:2,自引:0,他引:2  
The immune system is composed of two major types of lymphocytes, called B and T cells, that recognize foreign antigens. Recognition of antigens is accomplished through the generation of a large repertoire of different cell surface receptors, called immunoglobulins (Igs) on B cells and T cell receptors (TCRs) on T cells. The elucidation of Ig structure and molecular genetics preceded that of the TCR because of the greater abundance of Ig protein and mRNA. Although studies of TCRs have recently shed light on many of the issues of T cell recognition, the process of examining TCR gene structure has been tedious. Such analyses are also difficult because of the time required for the production, maintenance, and culturing of T cell clones. This report describes several strategies that use the polymerase chain reaction (PCR) to analyze very rapidly the structure of TCRs. Specific manipulations of the amplified material are discussed, as are the advantages of using the PCR to study TCR diversity.  相似文献   

11.
Linked recognition of Ag by B and T lymphocytes is ensured in part by a state of tolerance acquired by CD4 T cells to germline-encoded sequences within the B cell Ag receptor (BCR). We sought to determine how such tolerance is attained when a peptide from the BCR variable (V) region is expressed by small numbers of B cells as it is in the physiological state. Mixed bone marrow (BM) chimeras were generated using donor BM from mice with B cells that expressed a transgene (Tg)-encoded κ L chain and BM from TCR Tg mice in which the CD4 T cells (CA30) were specific for a Vκ peptide encoded by the κTg. In chimeras where few B cells express the κTg, many CA30 cells were deleted in the thymus. However, a substantial fraction survived to the CD4 single-positive stage. Among single-positive CA30 thymocytes, few reached maturity and migrated to the periphery. Maturation was strongly associated with, and likely promoted by, expression of an endogenous TCR α-chain. CD4(+) CA30 cells that reached peripheral lymphoid tissues were Ag-experienced and anergic, and some developed into regulatory cells. These findings reveal several checkpoints and mechanisms that enforce a state of self-tolerance in developing T cells specific for BCR V region sequences, thus ensuring that T cell help to B cells occurs through linked recognition of foreign Ag.  相似文献   

12.
To study the role of T cells in T-B cell interactions resulting in isotype production, autologous purified human splenic B and T cells were cocultured in the presence of IL-2 and Con A. Under these conditions high amounts of IgM, IgG, and IgA were secreted. B cell help was provided by autologous CD4+ T cells whereas autologous CD8+ T cells were ineffective. Moreover, CD8+ T cells suppressed Ig production when added to B cells cocultured with CD4+ T cells. Autologous CD4+ T cells could be replaced by allogeneic activated TCR gamma delta,CD4+ or TCR alpha beta,CD4+ T cell clones with nonrelevant specificities, indicating that the TCR is not involved in these T-B cell interactions. In contrast, resting CD4+ T cell clones, activated CD8+, or TCR gamma delta,CD4-,CD8- T cell clones failed to induce IL-2-dependent Ig synthesis. CD4+ T-B cell interaction required cell-cell contact. Separation of the CD4+ T and B cells by semiporous membranes or replacement of the CD4+ T cells by their culture supernatants did not result in Ig synthesis. However, intact activated TCR alpha beta or TCR gamma delta,CD4+ T cell clones could be replaced by plasma membrane preparations of these cells. Ig synthesis was blocked by mAb against class II MHC and CD4. These data indicate that in addition to CD4 and class II MHC Ag a membrane-associated determinant expressed on both TCR alpha beta or TCR gamma delta,CD4+ T cells after activation is required for productive T-B cell interactions resulting in Ig synthesis. Ig production was also blocked by mAb against IL-2 and the IL-2R molecules Tac and p75 but not by anti-IL-4 or anti-IL-5 mAb. The CD4+ T cell clones and IL-2 stimulated surface IgM-IgG+ and IgM-IgA+, but not IgM+IgG- or IgM+IgA- B cells to secrete IgG and IgA, respectively, indicating that they induced a selective expansion of IgG- and IgA-committed B cells rather than isotype switching in Ig noncommitted B cells. Induction of Ig production by CD4+ T cell clones and IL-2 was modulated by other cytokines. IL-5 and transforming growth factor-beta enhanced, or blocked, respectively, the production of all isotypes in a dose-dependent fashion. Interestingly, IL-4 specifically blocked IgA production in this culture system, indicating that IL-4 inhibits only antibody production by IgA-committed B cells.  相似文献   

13.
The immune response in individuals co‐infected with Mycobacterium tuberculosis (MTB) and the human immunodeficiency virus (MTB/HIV) gradually deteriorates, particularly in the cellular compartment. Adoptive transfer of functional effector T cells can confer protective immunity to immunodeficient MTB/HIV co‐infected recipients. However, few such effector T cells exist in vivo, and their isolation and amplification to sufficient numbers is difficult. Therefore, enhancing immune responses against both pathogens is critical for treating MTB/HIV co‐infected patients. One approach is adoptive transfer of T cell receptor (TCR) gene‐modified T cells for the treatment of MTB/HIV co‐infections because lymphocyte numbers and their functional avidity is significantly increased by TCR gene transfer. To generate bispecific CD8+ T cells, MTB Ag85B199–207 peptide‐specific TCRs (MTB/TCR) and HIV‐1 Env120–128 peptide‐specific TCRs (HIV/TCR) were isolated and introduced into CD8+ T cells simultaneously using a retroviral vector. To avoid mispairing among exogenous and endogenous TCRs, and to improve the function and stability of the introduced TCRs, several strategies were employed, including introducing mutations in the MTB/TCR constant (C) regions, substituting part of the HIV/TCR C regions with CD3ζ, and linking gene segments with three different 2A peptides. Results presented in this report suggest that the engineered T cells possessed peptide‐specific specificity resulting in cytokine production and cytotoxic activity. This is the first report describing the generation of engineered T cells specific for two different pathogens and provides new insights into TCR gene therapy for the treatment of immunocompromised MTB/HIV co‐infected patients.  相似文献   

14.
15.
A B cell line, B6-1710, that expresses the defective virus known to induce murine AIDS stimulates a large fraction of nonprimed splenic T cells. Analysis of the T cell population responding to the B6-1710 for TCR V beta-chain usage revealed that, in addition to the previously reported V beta 5-chain-positive T cells, T cells bearing V beta 11 and V beta 12 are also specifically enriched. We have established V beta 5+ T cell lines, clones, and hybridomas expressing identical TCR with different CD4/CD8 phenotypes and demonstrated that T cell reactivity to B6-1710 is, although not absolute, dependent on the presence of CD4 molecules. Further analysis of T cell hybridomas with known J beta-chain usage revealed that D beta- and J beta-chain usage do not play crucial roles in T cell reactivity to B6-1710 B cells. However, T cell hybridomas derived from TCR-V beta gene transgenic mice were found to be heterogeneous for their reactivity to B6-1710, suggesting that the V alpha-chains associating with the transgenic V beta-chain determine T cell responsiveness to B6-1710. These data clearly demonstrate that T cell reactivity to a murine AIDS virus expressing B cell line resembles that previously reported for Mls-like superantigens.  相似文献   

16.
M Capone  F Watrin  C Fernex  B Horvat  B Krippl  L Wu  R Scollay    P Ferrier 《The EMBO journal》1993,12(11):4335-4346
We describe transgenic mice carrying germline variable gene segments associated with either the T cell receptor (TCR) beta or alpha gene enhancers (E beta or E alpha). Transgenic constructs underwent high rates of site-specific rearrangements predominantly in T cells from independent mice. Rearrangements of the E beta-containing transgenes began at different stages of T cell differentiation in embryonic and adult thymus than did the E alpha-containing ones, with a pattern superimposable upon the patterns of TCR beta or TCR alpha gene expression, respectively. We demonstrate that sequences within the TCR beta and TCR alpha gene enhancers confer tissue- and stage-specificity upon the V(D)J recombination events affecting adjacent gene segments. The patterns of transgene expression also gave information on developmental events and lineage relationships (gamma delta versus alpha beta) during T cell development.  相似文献   

17.
18.
Normal T cell repertoire contains regulatory T cells that control autoimmune responses in the periphery. One recent study demonstrated that CD4(+)CD25(+) T cells were generated from autoreactive T cells without negative selection. However, it is unclear whether, in general, positive selection and negative selection of autoreactive T cells are mutually exclusive processes in the thymus. To investigate the ontogeny of CD4(+)CD25(+) regulatory T cells, neo-autoantigen-bearing transgenic mice expressing chicken egg OVA systemically in the nuclei (Ld-nOVA) were crossed with transgenic mice expressing an OVA-specific TCR (DO11.10). Ld-nOVA x DO11.10 mice had increased numbers of CD4(+)CD25(+) regulatory T cells in the thymus and the periphery despite clonal deletion. In Ld-nOVA x DO11.10 mice, T cells expressing endogenous TCR alpha beta chains were CD4(+)CD25(-) T cells, whereas T cells expressing autoreactive TCR were selected as CD4(+)CD25(+) T cells, which were exclusively dominant in recombination-activating gene 2-deficient Ld-nOVA x DO11.10 mice. In contrast, in DO11.10 mice, CD4(+)CD25(+) T cells expressed endogenous TCR alpha beta chains, which disappeared in recombination-activating gene 2-deficient DO11.10 mice. These results indicate that part of autoreactive T cells that have a high affinity TCR enough to cause clonal deletion could be positively selected as CD4(+)CD25(+) T cells in the thymus. Furthermore, it is suggested that endogenous TCR gene rearrangement might critically contribute to the generation of CD4(+)CD25(+) T cells from nonautoreactive T cell repertoire, at least under the limited conditions such as TCR-transgenic models, as well as the generation of CD4(+)CD25(-) T cells from autoreactive T cell repertoire.  相似文献   

19.
20.
G Gross  Z Eshhar 《FASEB journal》1992,6(15):3370-3378
T cells recognize antigen in the form of a peptide associated with a cell surface molecule encoded by the major histocompatibility gene complex (MHC). The elaborate requirements for the T cell receptor (TCR)-antigen interaction stand in contrast to the simple and defined nature of the antigenic determinants recognized by antibodies. The similarity in the molecular structure and gene organization between antibodies and the TCR has prompted attempts to interchange the antigen-binding, variable regions of these molecules. To this end, chimeric TCR (cTCR) genes, composed of the variable domains of antibodies linked to TCR constant regions, have been used to confer antibody-type specificity on T cells. cTCR-expressing T cells respond to stimulator cells as well as to immobilized antigen in an MHC unrestricted and independent manner. The antibody-like specificity of the resulting T cells has been exploited, using defined ligands, to elucidate the physicochemical parameters that govern TCR-mediated signaling, and to provide a useful experimental system to study the role of MHC and cell-adhesion/accessory molecules in T cell activation. The successful expression of such cTCR in transgenic mice opens new avenues to explore the role of the MHC in T cell development and maturation. Eventually, chimeric receptors specific to tumor or viral antigens might be used for in vivo targeting of T cells in the framework of immuno- and gene therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号