首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies that assess reproduction dynamics and ichthyoplankton distributions are scarce for the upper Uruguay River, especially in environments such as tributary mouths. Therefore, this study aimed to evaluate: (i) ichthyoplankton composition; (ii) spatial and temporal variation in ichthyoplankton abundance; and (iii) relationships between environmental variables and the abundance of ichthyoplankton during one annual cycle in this region. Monthly samples were collected from September 2001 to August 2002 in 48 h cycles at 6 h intervals between each sampling. Samples of eggs and larvae were collected from three of the main tributaries of the region (Ligeiro, Palomas and Chapecó rivers) and from three stretches of the Uruguay River near the confluence of these tributaries. Surface samples were collected with a 0.5 mm mesh cylindro-conical net. In general, reproductive seasonality was well-defined between October and February. It was most intense from November to January, when the photoperiod reached its highest values, flow was decreased, and the water temperature was increased. Based on egg and larval distributions, we found that spawning occurred mainly in the Ligeiro and Chapecó tributaries and in the Uruguay/Chapecó section. In contrast, fish spawning in the sites downstream of dams was more restricted. Finally, a difference was observed between the egg and larval distributions of the main river and its tributaries: the greatest reproductive activity in the tributaries occurred during periods of high flow and increased water temperature, while in the main river, more eggs and larvae were observed when the flow decreased and the water temperature increased.  相似文献   

2.
海河流域典型河口生态环境需水量   总被引:14,自引:3,他引:11  
孙涛  杨志峰  刘静玲 《生态学报》2004,24(12):2707-2715
在分析河口生态环境需水量类型及特征的基础上 ,采用水文学、生物学及水力学方法计算了海河流域中海河口、滦河口及漳卫新河口生态系统水循环、生物循环消耗水量及生物栖息地需水量。考虑不同生态功能需水量间的兼容性 ,得到各河口生态环境需水年度总量 ,以保持河口径流时间分布自然性为基础 ,确定了生态环境需水量年内时间分配。结果表明 ,即使不考虑污染物的排放 ,近年来海河口、漳卫新河口实际径流量已无法满足最低等级生态环境需水量 5 .97和 4 .96亿 m3的要求。相应河口生态系统已发生了不可自然恢复的退化。滦河口径流年度总量基本满足生态环境要求 ,其生态保护重点在于保持生态环境需水量年内时间变化的自然状况。通过比较不同河口间生态环境需水量结果 ,认为河口生态环境需水量空间差异性主要源于河口间气候和径流量的不同 ,时间差异性则受到河口地区年内季节间气候变化幅度的影响。保证污染物达标排放基础上 ,保持河口生态系统蒸发消耗、水体盐度需水量及相应年内时间变化的自然性应成为海河流域河口生态环境保护及恢复工作中的基础  相似文献   

3.
Understanding the spatial and temporal variation of nutrient concentrations, loads, and their distribution from upstream tributaries is important for the management of large lakes and reservoirs. The Three Gorges Dam was built on the Yangtze River in China, the world’s third longest river, and impounded the famous Three Gorges Reservoir (TGR). In this study, we analyzed total nitrogen (TN) concentrations and inflow data from 2003 till 2010 for the main upstream tributaries of the TGR that contribute about 82% of the TGR’s total inflow. We used time series analysis for seasonal decomposition of TN concentrations and used non-parametric statistical tests (Kruskal-Walli H, Mann-Whitney U) as well as base flow segmentation to analyze significant spatial and temporal patterns of TN pollution input into the TGR. Our results show that TN concentrations had significant spatial heterogeneity across the study area (Tuo River> Yangtze River> Wu River> Min River> Jialing River>Jinsha River). Furthermore, we derived apparent seasonal changes in three out of five upstream tributaries of the TGR rivers (Kruskal-Walli H ρ = 0.009, 0.030 and 0.029 for Tuo River, Jinsha River and Min River in sequence). TN pollution from non-point sources in the upstream tributaries accounted for 68.9% of the total TN input into the TGR. Non-point source pollution of TN revealed increasing trends for 4 out of five upstream tributaries of the TGR. Land use/cover and soil type were identified as the dominant driving factors for the spatial distribution of TN. Intensifying agriculture and increasing urbanization in the upstream catchments of the TGR were the main driving factors for non-point source pollution of TN increase from 2003 till 2010. Land use and land cover management as well as chemical fertilizer use restriction were needed to overcome the threats of increasing TN pollution.  相似文献   

4.
人类活动输入影响河流水体化学组成,增加经河流体系向海洋输出物质的通量,影响全球物质循环过程.有效识别人为输入的影响途径和范围对于量化人类活动对全球物质循环的影响具有重要作用.沙颍河是淮河上游最大支流,流域水体受人为输入影响严重,通过研究沙颍河流域强人为输入对河水水化学组成的影响过程,有利于弄清楚强烈人为活动干扰下河流输...  相似文献   

5.
随着人类对于河流的开发利用日益增强,显著改变了河流的天然径流过程,生态供水不足成为流域生态系统健康的重要制约因素。以山西省汾河流域为研究区,基于天然和实测径流数据,利用SWAT模型分别模拟了流域近30年天然径流和近10年跨流域调水情况下现状径流过程,并在此基础上对流域各河道生态流量及现状径流量进行时空量化,探讨了不同生态流量标准下生态缺水量在时间和空间上的变化情况。研究结果表明:(1)汾河流域各河道生态流量时空差异明显,汛期(0.50—18.80m~3/s)河道生态流量需求显著高于非汛期(0.05—1.81m~3/s),总体分布特征为中下游干流远高于上游支流;(2)在Tennant法的不同生态流量标准下,汾河流域非汛期生态流量保障情况整体优于汛期,高频缺水区主要分布在支流,呈上下游分散分布;(3)在中等级生态流量标准下,流域约84%的区域能保障基本生态流量需求,关键缺水区为岚河、潇河、浮山县及浍河地区;(4)建议流域生态补水在时间上侧重汛期补水,空间上侧重高频缺水地区,基于流域生态缺水量时空分布特征分配跨流域调水资源,提高水资源利用效率。研究从时空上量化了跨流域调水工程实施后流域生态流...  相似文献   

6.
Water samples were collected from three sites located in the middle reach of the Njoro River, Kenya, and analysed for total phosphorus (TP), orthophosphate, ammonia‐nitrogen, and nitrate‐nitrogen to evaluate stressor sources (e.g. factories and wastewater ponds) and the general stream water quality. The stream surface water was also analysed for biochemical oxygen demand (BOD5) to provide an overview of organic matter loading. Mugo, Egerton Bridge and the canning factory sites of the Njoro River had low water quality which is likely to be due to poor farming, partially treated effluents and poor provision of sanitation facilities to the riparian communities. The concentrations of the selected nutrients did not differ significantly among the three sites, presumably due to pollution of the whole stream reach by the catchment nutrient sources. High phosphate concentrations (i.e. ~0.76 mgPO4 l?1 and ~0.87 mgTP l?1) at Canning Factory were recorded during the low flow dry season. Nitrate‐nitrogen concentrations varied significantly with water discharge which explained between 63 and 87% of the nutrient variability in the three sites. BOD5 differed significantly among the three sites, with historical effects of wastewater and factory effluent discharge being reflected in the results of Egerton Bridge and Canning Factory. The concentrations of ammonia‐nitrogen, TP and orthophosphate were higher in the wastewater than in the river water whereas nitrate‐nitrogen was lower. This study indicates that the Njoro River is stressed by nutrients from the activities within its catchment. With the increasing population, the nutrient load to the river will continue to increase and the water quality will continue to deteriorate. Reductions of nutrient loads into the river as well as provision of sanitation facilities to the riparian communities are needed to control further water degradation.  相似文献   

7.
The River Yamuna emerges from Saptarishi Kund, Yamunotri and merge with River Ganges at Allahabad, India. Anthropogenic stress has affected the water quality of the river Yamuna drastically in the stretch traversing Delhi and its satellite towns (National Capital Region, NCR). In the present study, effect of water quality on the microbial life in the River Yamuna was analyzed using ciliate communities (Protista, Ciliophora) as bio-indicators. Water samples were collected from six sampling sites chosen according to the levels of pollution along the river and water quality was analysed using standard physicochemical factors. As the river traverses Delhi NCR, water quality deteriorates considerably as indicated by the Water Quality Index at the selected sampling sites. Seventy-four ciliate species representing nine classes were recorded. Based on the Shannon diversity index, maximum species diversity was found at the point where the river enters Delhi. The saprobity index showed the river water was beta-mesosaprobic when the river enters Delhi and alpha-mesosaprobic at downstream sites after the first major drain outfall. Significant relationship between the spatial variation in ciliate communities and abiotic parameters indicate that ciliates can be used as effective bioindicators of pollution in the River Yamuna.  相似文献   

8.
海河流域水体沉积物碳、氮、磷分布与污染评价   总被引:1,自引:1,他引:0  
从全流域尺度上研究海河流域水体沉积物碳、氮、磷元素含量与分布特征,对研究海河流域水环境污染现状具有重要意义.本研究采集海河流域河流与水库163个表层沉积物(0~10 cm)样品,测定沉积物有机碳(TOC)、总氮(TN)、总磷(TP)的含量,运用有机指数与有机氮方法评价沉积物污染状况.结果表明: 海河流域沉积物TOC、TN、TP含量具有较大的空间异质性,下游平原区明显高于山区,北四河下游平原、黑龙港及运东平原含量较高,永定河山区、北三河山区、滦河流域含量相对较低,河流沉积物TOC含量显著高于水库沉积物,而TN、TP含量与水库沉积物没有显著差异.TN与TOC、TP含量呈显著正相关(r=0.704,P<0.01;r=0.250,P<0.01).全流域有机指数总体属于“较清洁”水平,北四河下游平原总体已接近有机污染水平.全流域有机氮总体处在“尚清洁”水平,北四河下游平原、黑龙港及运东平原流域存在有机氮污染.海河流域河流、水库沉积物具有相似的污染强度.沉积物C/N平均值为12.71,表明TOC多来源于藻类等浮游动植物,其次是高等植物,水库C/N值比河流高,陆源物质输入对水库沉积物TOC的贡献比对河流大.  相似文献   

9.
The present work aims to analyze the spatio-temporal variability in benthic macroinvertebrate assemblages and biotic indices in an undisturbed and unpolluted Pyrenean river. Samples were collected seasonally over 2 year-cycles (2001–2002) at fifteen sampling sites along the Erro River (Ebro River Basin, Spain) during a exhaustive biomonitoring program following the IBMWP–IASPT scoring system protocol routinely applied in Iberia. Despite absolute values of the biotic indices showed high spatio-temporal variation, the IBMWP–IASPT scoring system proved useful because water quality classes were consistent throughout seasons and years as well as along-river. The original macroinvertebrate families’ presence/absence data matrix was reduced in a number of ways to conduct different statistical procedures in order to detect and separate the underlying near-natural spatial and temporal gradients of the assemblage composition in the Erro River. Along-river, spatial variation of the macroinvertebrate community composition was well assessed by similarity analysis, which clearly detected physical features on the river (drought-affected reach, gorge, towns and flow gauging weirs). Categorical principal component analysis (CATPCA) synthesized and jointly ordered macroinvertebrate samples in a spatio-temporal gradient in the factorial map defined by the first two principal components providing a parsimonious way to assess the assemblages’ variation. These two variation gradients throughout the macroinvertebrate families’ occurrence data were subsequently confirmed separately by several correspondence analyses and revealed additional information, as the representative families for each sampling site group and season could be identified. Furthermore, these spatio-temporal gradients were discussed and put in relation with changes in the aquatic habitat (water temperature, conductivity, total dissolved solids, water velocity, channel width, canopy cover, etc.). The near-natural functioning of the Erro River promoted us to emphasize that conservation efforts should aim to maintain the free-flowing as a permanent source of variability.  相似文献   

10.
刘灿均  门宝辉  申耀铎  庞金凤 《生态学报》2023,43(14):5740-5752
滦河流域是京津冀地区重要的生态屏障和水源涵养区,但流域内仍存在水土流失、河流水质不达标等问题。基于实测资料及loadest模型等工具率定InVEST模型参数,定量评估了滦河流域各生态区2005、2010和2015年土壤保持和水质净化服务及其时空变化特征,采用相关分析和基于网格的Moran′I指数分析了两项服务的作用机理和权衡与协同关系的时空分异,并探讨了气候和土地利用变化对二者的影响。结果表明:2005年、2010年、2015年滦河流域年均土壤保持强度为136.45 t/hm2,时间上呈现出先强增后微减的特点,空间格局表现为由西北向东南增加;流域总氮(TN)、总磷(TP)年均输出量分别为1526.73 t/a和82.89 t/a,输出量逐年增加且集中在流域中下游,流域整体水质净化能力有所减弱。流域内水体中TN、TP浓度与泥沙入河量具有显著相关性,土壤保持和水质净化服务关系整体上由协同向权衡转变,空间上的差异性表现为林地、草地集中区域(生态区A)多以协同关系为主,而农牧带交错地区(生态区B)多以权衡关系为主。建议未来滦河流域开展生态建设和管理工作时应统筹考虑土壤保持...  相似文献   

11.
基于氮磷比解析太湖苕溪水体营养现状及应对策略   总被引:12,自引:0,他引:12  
生态化学计量学是评价水体营养状态的重要手段,利用其氮磷比指标探讨了我国太湖主要入湖河流苕溪的营养状态。野外监测结果显示,苕溪水体氮素超标严重,磷素污染轻度,硝酸盐、颗粒态磷为氮磷的主要赋存形态,且氮磷浓度呈现相似的季节变化规律,表明苕溪主要受农业面源污染影响。氮磷比分析表明,苕溪水体春、秋季处于磷素限制状态,夏季适合藻类生长,冬季低温条件下不利于藻类的大量繁殖;苕溪生物量增长受磷素限制,线性拟合亦显示其氮磷比主要受磷素波动的调控;苕溪干流大面积暴发蓝藻水华的风险较部分支流及死水区低,苕溪水入湖后,特别是夏季其暴发风险将显著提高。针对苕溪水体的富营养化现状,提出若干条水质改善应对策略。  相似文献   

12.
雅鲁藏布江流域底栖动物多样性及生态评价   总被引:4,自引:0,他引:4  
雅鲁藏布江起源于喜马拉雅山,是世界上海拔最高的河流之一,是流经我国西藏境内重要的国际河流,其河流生态系统具有特殊地貌及生态条件。研究该流域底栖动物多样性分布特征及其影响因子,是科学评价该区域河流生态系统健康状况,实现资源可持续开发利用的基础。2009年10月—2010年6月期间,以底栖动物作为指示物种,对雅江流域干支流及堰塞湖的14个采样断面进行河流生态评价。采用Alpha及Beta生物多样性指数分别指示局部采样河段及全区域的底栖动物多样性。对采样断面底栖动物组成分析发现:14个采样断面共采集到底栖动物110种,隶属57科102属。雅江干流底栖动物种类数最高为29,平均为19。支流年楚河种类数为17。支流拉萨河,尼洋河,帕龙藏布的最高种类数分别为25,33,36;平均种类数分别为21,21,22,生物多样性普遍高于干流。整个流域中底栖动物平均种类数相差不大,但种类组成和密度相差较大。调查区域的Beta多样性指数β高于低海拔地区的相似的山区河流,说明雅江流域内底栖动物群落差异性高于正常海拔地区。对14个采样断面的物种组成进行除趋势对应分析表明:影响雅江流域底栖动物多样性的主要因素为河型,河床阻力结构,堤岸结构,水流流速。保持稳定的阶梯-深潭结构和自然堤岸结构,以及适宜的流速有利于保护雅江河流生态。  相似文献   

13.
In this study, a total of 84 sites in the Luan River Basin of China and its tributaries were monitored in 2012 for seven heavy metals (Cu, Ni, Pb, Zn, Cd, Cr, Hg) in the surface sediments. Cluster analysis (CA), principal component analysis (PCA), correlation analysis, and pollution indices were applied to the interpretation of the monitoring results. The results show that: (1) sampling sites in the mainstream are classified into two groups, upstream and downstream, with downstream representing higher levels of heavy metals and degrees of pollution; (2) three clusters were identified for the 10 tributaries, the downstream having the highest levels of heavy metals’ pollution; (3) the PCA suggests there are significant correlations among Zn, Cu, and Pb between Cr in the basin. Sediment pollution assessment was carried out using Pollution Index (PI) and Geo-Accumulation Index (Igeo). Mercury was the metal with the highest contamination level, followed by Cd and Cr. The results provide an overview of the current status of sediment contamination with measured data and support future policy development for the protection of water quality in the Luan River Basin.  相似文献   

14.
永定河流域大型底栖动物群落分布格局及其影响因子   总被引:1,自引:0,他引:1  
人类干扰造成了全球河流生态系统的普遍退化。流域尺度的水生生物分布特征及其影响因素研究对于河流生态系统的保护与恢复具有重要意义。本研究以永定河流域大型底栖动物群落为研究对象,分别于2017年春季(3月)、夏季(7月)、秋季(11月)开展全流域尺度的大型底栖动物调查。研究表明: 永定河流域以摇蚊科为主,优势类群包括直突摇蚊属、摇蚊属、雕翅摇蚊属以及多足摇蚊属。聚类分析表明,大型底栖动物群落结构存在显著的空间差异性,按照群落相似性可分为2组: 组1主要包含桑干河和东洋河水系,以直突摇蚊为主要优势种;组2主要包含洋河、妫水河以及永定河干流部分河段,以雕翅摇蚊为主要优势种。单因素方差分析表明,组2生物量、Shannon指数、Margalef指数、Pielou均匀度指数以及物种丰富度均显著高于组1,指示了该区域内更好的生态状况。大型底栖动物的季节差异显著,夏季的密度、生物量和各多样性指数均显著低于春季和秋季。典范对应分析显示,影响永定河大型底栖动物空间分布的环境因子主要包括水温、铵氮、pH、溶解氧和总磷。从水文因子的角度,流量和流速与主要生物参数存在显著相关性。组2中流速和流量与大型底栖动物密度和EPT%存在显著的正相关关系,表明急流生境有利于EPT(蜉蝣目、襀翅目、毛翅目)敏感类群的生存;但流量和流速与多样性指数呈负相关关系,表明过高流量和流速的生境条件不利于大型底栖动物多样性的维持。总之,水环境因子、水文因子都显示出了对大型底栖动物群落结构和多样性特征的影响,表明永定河流域生态系统受到多类型人为活动的影响。减少水质污染、适度恢复部分河段的流量是永定河流域生态系统修复的重要环节。  相似文献   

15.
In natural systems, the chemistry of floodplain waters is a function of the source of the water, which is influenced by geomorphic features of riparian wetlands. However, anthropogenic disturbances may alter both geomorphic features and the natural balance of water mixing in the floodplain. The aim of this study was to classify riparian wetlands and characterize their water characteristics in one reach of the Middle Ebro River to assess the hydrochemical functioning of the system. In order to accomplish that goal, water samples were collected at 40 sampling sites during low-water conditions and two floods of different magnitude. Moreover, geomorphic characteristics of riparian wetlands were also analyzed to interpret the results at broader spatio-temporal scales. Three group of wetlands were identified using multivariate ordination: (1) major and secondary channels highly connected to the river by surface water, containing weakly ionized water with high nitrate levels during floods; (2) secondary channels and artificial ponds located in riparian forests near the river, most of which were affected by river seepage during the examined events. This type of sites had high major ions concentrations and elevated spatial variability with respect to nutrient concentrations during floods; (3) Siltated oxbow lakes, whose hydrogeochemical features seemed to be unaffected by factors related to river fluctuations. Total dissolved solids, major ion (sulfate, chloride, sodium, calcium, magnesium, and potassium) and nutrient (nitrate, ammonium and organic nitrogen, and phosphate) depended upon the relationships between surface and subsurface water flows. Seasonal changes and geomorphic characterization indicated that a strong functional dependence of floodplain wetlands close to the main river channel is established, whereas most of the floodplain area remains disconnected from river dynamics. Moreover, the effect of nitrate-enriched agricultural runoff seems to affect water quality and hydrochemical gradients of the system. Based on our results, we propose different types of actions for the management of the Ebro River flow to ensure a more natural ecological functioning of its floodplains. Handling editor: P. Viaroli  相似文献   

16.
Understanding spatial and temporal variations in river water quality and quantitatively evaluating the trend of changes are important in order to study and efficiently manage water resources. In this study, an analysis of Water Pollution Index (WPI), Daniel Trend Test, Cluster Analysis and Discriminant Analysis are applied as an integrated approach to quantitatively explore the spatial and temporal variations and the latent sources of water pollution in the Shanchong River basin, Northwest Basin of Lake Fuxian, China. We group all field surveys into 2 clusters (dry season and rainy season). Moreover, 14 sampling sites have been grouped into 3 clusters for the rainy season (highly polluted, moderately polluted and less polluted sites) and 2 clusters for the dry season (highly polluted and less polluted sites) based on their similarities and the level of pollution during the two seasons. The results show that the main trend of pollution was aggravated during the transition from the dry to the rainy season. The Water Pollution Index of Total Nitrogen is the highest of all pollution parameters, whereas the Chemical Oxygen Demand (Chromium) is the lowest. Our results also show that the main sources of pollution are farming activities alongside the Shanchong River, soil erosion and fish culture at Shanchong River reservoir area and domestic sewage from scattered rural residential area. Our results suggest that strategies to prevent water pollutionat the Shanchong River basin need to focus on non-point pollution control by employing appropriate fertilizer formulas in farming, and take the measures of soil and water conservation at Shanchong reservoir area, and purifying sewage from scattered villages.  相似文献   

17.
Lotic ecosystems such as rivers and streams are unique in that they represent a continuum of both space and time during the transition from headwaters to the river mouth. As microbes have very different controls over their ecology, distribution and dispersion compared with macrobiota, we wished to explore biogeographical patterns within a river catchment and uncover the major drivers structuring bacterioplankton communities. Water samples collected across the River Thames Basin, UK, covering the transition from headwater tributaries to the lower reaches of the main river channel were characterised using 16S rRNA gene pyrosequencing. This approach revealed an ecological succession in the bacterial community composition along the river continuum, moving from a community dominated by Bacteroidetes in the headwaters to Actinobacteria-dominated downstream. Location of the sampling point in the river network (measured as the cumulative water channel distance upstream) was found to be the most predictive spatial feature; inferring that ecological processes pertaining to temporal community succession are of prime importance in driving the assemblages of riverine bacterioplankton communities. A decrease in bacterial activity rates and an increase in the abundance of low nucleic acid bacteria relative to high nucleic acid bacteria were found to correspond with these downstream changes in community structure, suggesting corresponding functional changes. Our findings show that bacterial communities across the Thames basin exhibit an ecological succession along the river continuum, and that this is primarily driven by water residence time rather than the physico-chemical status of the river.  相似文献   

18.
Estuarine nutrient enrichment is thought to be controlled by land use patterns in coastal watersheds. Hence, the objective of this work was to conduct a watershed analysis in two adjacent river basins with different land use characteristics to determine their influence on estuarine ecosystem response in the Guadalupe Estuary, Texas, U.S.A. All data sources for this study were available electronically on the Internet; the data were mined, managed, analyzed and transformed to simulate the estuarine ecosystem response to watershed-derived nutrient loads. Between 1992 and 2001, developed land use/land cover increased the most while forest cover decreased the most in both basins. Two hydrologic units nearest the coast were responsible for the greatest change in land cover. Nutrient concentrations and loads were significantly higher in the San Antonio River Basin than in the Guadalupe River Basin. Both river basins exhibited the highest flows ever recorded in 1992, however the magnitude of difference in loads between the two coastal hydrologic units for a wet and dry year was much greater in the Guadalupe River Basin (GRB) than in the San Antonio River Basin (SARB); this difference supports the concept that the GRB is a nonpoint source dominated system and SARB is a point source dominated system. There was a strong correlation between developed land use and nutrient concentrations in river water; the GRB had less developed land use and lower nutrient concentrations while the SARB had more developed land use and higher nutrient concentrations. Estuarine ecosystem response differed in the timing, duration and magnitude of DIN, phytoplankton and zooplankton when nitrogen loads from the Lower Guadalupe River were used as opposed to the Lower San Antonio. The two basins studied differ in their fundamental characteristics, i.e. precipitation, flow, human population density, etc., resulting in different drivers of nitrogen loading, point sources in the San Antonio River Basin and nonpoint sources in the Guadalupe River Basin, therefore, differing estuarine ecosystem responses.  相似文献   

19.
为了解沙颍河流域浮游动物的群落结构及水质状况, 于2016年秋季对该流域设置了20个采样点, 进行浮游动物群落结构调查, 并利用生物多样性指数对水质进行评价。结果显示: 沙颍河流域共检测出浮游动物36属78种, 其中轮虫20属60种、枝角类10属12种、桡足类6属6种; 浮游动物优势种主要为长肢多肢轮虫(Polyarthra dolichoptera)、裂痕龟纹轮虫(Anuraeopsis fissa)、角突臂尾轮虫(Brachionus angularis)、萼花臂尾轮虫(B. calyciflorus)、曲腿龟甲轮虫(KeratelIa valga)和象鼻溞(Bosmina sp.); 浮游动物密度和生物量最大值出现在沙颍河流域上游, 且从上游至下游, 生物量和密度的空间变化趋势相一致, 大致呈现逐渐降低的趋势; 检测位点Shannon-Wiener 多样性指数的范围为1.03—3.51, Pielou均匀度指数的变化范围为0.26—0.70。综合分析各采样点的种群和多样性指数反映出沙颍河流域上游水体污染较为严重, 中下游水体为中度污染。水质总体呈现出中度-重度污染。  相似文献   

20.
新疆白杨河流域特征及生态植被需水分析   总被引:1,自引:0,他引:1  
新疆白杨河流域地跨上游乌鲁木齐市达坂城及下游吐鲁番市托克逊县两个行政区,上游达坂城区位于天山博格达峰山前冲击、洪积山间盆地干旱区,源于天山多支源流汇集于盆地南端峡口,基于峡口形成下游并由有多支流沿程补给白杨河干流,穿越极端干旱戈壁荒漠区的托克逊县直至末端吐鲁番市境内尾闾-艾丁湖,是我国典型少有的跨越干旱与极端干旱叠加型流域灌区,水资源有效利用及水生态环境保护具有重要作用。遵循流域各河流水系形成的自然生态环境属性及河道取水工程节点,采用Penman-Monteith法生态需水定额和卫星遥感面积识别及水文年内展布方法,分析评估流域内上下游绿洲生态环境植被需水量和河流生态基流及其调控断面。结果表明,上游达坂城区黑沟河年生态需水量、生态基流、年均径流占比和控制断面,分别为921万m3、0.29m3/s、18%和黑沟渠首;阿克苏河为1048万m3、0.33m3/s、12%和阿克苏渠首;高崖子河为862万m3、0.27m3/s、12%和高崖子渠首;下游托克逊境内由白杨河干流调节,艾丁湖等生态需水量分别为4256万m3、1.35m3/s、32%和小草湖渠首。白杨河流域年生态需水7880万m3,生态基流2.50m3/s,生态水占年均径流量17%,分析结果为流域生态环境管理保护提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号