首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heavy metals enrichment in groundwater poses great ecological risks to human beings. In the present research work, a total of 59 groundwater samples from 12 sampling points in Dingji coal mine, Huainan coalfield, were collected and measured for Cu, Pb, Zn, Cd, Ni, Mn, Cr, and Fe by inductively coupled plasma mass spectrometry (ICP-MS). The human health risk caused by heavy metals through the pathway of drinking water was evaluated and analyzed using the US Environment Protection Agency (USEPA) evaluation model. It has been found that the carcinogenic risk values were between 1.05 × 10?5 and 3.5 × 10?4, all exceeding the maximum acceptable level recommended by the USEPA, and the carcinogenic risk of Cr accounted for 99.67% of the total carcinogenic risk. The non-carcinogenic health risk values were all lower than the negligible level given by the USEPA, and the contribution of non-carcinogenic health risk was in the order of Cr > Zn > Cu / Pb >Mn > Fe > Cd > Ni. Among them, Cr had the largest contribution, accounting for 36% of the total non-carcinogenic risk value. In this study, the carcinogenic risk constituted 99.99% of the total health risk, indicating that the total health risk essentially consisted of carcinogenic risk. The research results suggest that much more attention should be paid to the health risk caused by Cr in the groundwater.  相似文献   

2.
This study investigated heavy metals concentration in groundwater in six coastal communities in Gokana, Rivers State, namely, Gbe, K-Dere, B-Dere, Mogho, Kpor and Bodo City and the human health risk posed to the local populace via ingestion and dermal contact using non-carcinogenic and carcinogenic health risk assessment. The mean values of the heavy metals ranged between 0.02–0.86, 0.16–0.19, 0.03–0.10, 0.02–0.03 and 0.01–0.17 for Mn, Ni, Pb, Cd and Cr, respectively. The heavy metals were above the drinking water quality recommended limits in all the study sites. Estimations of average daily dose (ADD) and dermal absorbed dose (DAD) health risk indicates that Mn, Ni and Pb posed human health risk via ingestion contact pathway. However, hazard index (HI) values of Cd and Cr for ingestion pathway were >1.0 and the estimated Lifetime of Carcinogenic Risks (LTCR) for Ni, Cd and Cr exceeded the predicted lifetime risk for carcinogens of 10?6 from ingestion pathway. Furthermore, there were more appreciable risk from Ni and Cr in the study sites as LTCR value in most sites were >10?4. This study indicates possible non-carcinogenic and carcinogenic human health hazard from groundwater consumption in Gokana via oral ingestion.  相似文献   

3.
The aims of this article were to investigate heavy metals concentrations in urban street dust of Tianjin, to examine spatial variations of heavy metals pollution, and to assess their health risk to local populations. Urban street dust samples were collected from 144 typical crossroads in an urban area of Tianjin. Levels of heavy metals were determined by atomic absorption spectrophotometer analyzer. Given comprehensive consideration of the complexity and uncertainty of health risk assessment, trapezoidal fuzzy number was introduced to assess the health risk of heavy metals in the urban street dust of Tianjin. The results showed that the pollution of heavy metals in the urban street dust of Tianjin was serious. The relatively serious metal pollution tended to be located in the center, north, northeast, and southeast of the study area. The research indicated that heavy metals in street dust had caused non-cancer hazard to children but had not caused non-cancer or cancer hazard to adults. The direct ingestion of dust via hand-mouth contact behaviors was the major exposure pathway for health risk.  相似文献   

4.
This study was aimed to examine the risk of chronic arsenic (As) exposure for the residents living in Nui Phao, Thai Nguyen in the northern Vietnam. Groundwater, vegetables, human hair, and nail samples were collected from volunteers living in Nui Phao. The results revealed that 75% of the groundwater samples had As exceeding the World Health Organization (WHO) drinking water guideline of 10 µg L?1. The result of As concentration for most of the vegetable samples was greater than the WHO/FAO safe (0.1?mg kg?1). The result of hair and nail samples in this study showed that 3.5 and 20% of the samples had As concentration exceeding the level of As toxicity in hair and nails, respectively. The result of health risks indicated that the potential health risk of As contamination is greater for groundwater than vegetables. The total hazard quotient (HQ) value through vegetables ingestion and drinking water exceeded 1.0 suggesting potential health risk for local residents. The calculation of potential carcinogenic risk through both consumption of vegetables and drinking water was low cancer risk in adults. Other food sources and the exposure pathways are needed to exactly assess health risks in this area.  相似文献   

5.
Large-scale irrigation practices may disturb local hydrologic cycles and distribute trace metals throughout the environment. Reported here is the spatial pattern of trace metals and associated health risks in an agricultural area of China, which has a long history of irrigation with water from the Yellow River. Multivariate statistical analyses and a risk-assessment model were employed to interpret the environmental data. It indicated that Zn, Se, B, Ba, Fe, Mn, Mo, Ni, V, Al, Li, Sr, Be, Cd, Cr, Cu, and Pb were all detected in the surface waters. Compared to drinking water guidelines, the primary trace metal pollution components (Al, Fe, Se, B, Mn, and Zn) exceeded drinking water standards by 40.7%, 14.8%, 29.6%, 25.9%, 11.1%, and 14.8%, respectively. Except for one site that exhibited anomalous metal concentrations, landscape features of trace metals identified a uniform distribution of trace metals for all sample sites. The calculated mean value of Hazard Quotients (HQs) exceeded the USEPA's recommendations by a factor of 2.9 times the threshold value. Primary sources of trace metals were associated with natural deposition, industrial and agrochemical processes, and a mixed source of both geogenic and anthropogenic origins.  相似文献   

6.
Sukinda is one of the most polluted regions of the globe due to chromium pollution. The study sheds light into the heavy metal pollution around the mining area and its effect on the health of the resident populace. The Cr(VI) was in the range of 0.027–2.48 mg/L in surface water and BDL–1.35 mg/L in the groundwater. Multivariate analysis revealed that mining activity was the main source of TCr, Cr(VI), and Zn in the surface water that warrants attention. Heavy metal evaluation index showed high levels of Fe, Mn, and Cr in groundwater that can pose serious threat to the exposed population. Cancer and non-cancer risk of Cr(VI) was higher than other metals in groundwater. The results revealed that the total cancer risk was 1.21E-03 and 1.05E-03 in adults and children, respectively, which exceeded the USEPA acceptable cancer health risk. High health risk was observed through oral intake of water, while both cancer and non-cancer risks were negligible through dermal contact. This study strongly advocates proper periodic assessment of drinking as well as surface water in the area and regulation to restrict the use of contaminated water for daily use.  相似文献   

7.
为了解华南地区典型燃煤电厂周边表层土壤重金属空间分布特征,对韶关市燃煤电厂周边20处农田表层土壤中7种重金属(镍(Ni)、铜(Cu)、锌(Zn)、镉(Cd)、铅(Pb)、铬(Cr)及砷(As))的总量进行检测,并分析了其相应的空间分布规律,同时评估了周边土壤重金属的生态风险并分析其来源。结果表明:该燃煤电厂周边土壤中重金属Ni、Cu、Zn、Cd、Pb、Cr及As的平均含量分别是17.79、19.59、159.08、3.14、111.01、96.61 mg/kg和21.48 mg/kg,Cd、Pb污染情况突出,重金属Zn、Cd、Pb、Cr的分布与盛行风向密切相关。综合污染指数法表明,Cd、Pb及Zn处于重污染状态;潜在生态风险指数法表明,Cd处于严重潜在生态风险状态;地累积指数法表明,Ni、Cu整体处于无污染状态,Cd整体处于高污染状态。多种统计方法表明,Zn、Cd、Pb及Cr受燃煤电厂影响明显,Cu、As的来源不仅受燃煤电厂等工业的影响,还与该地区农业灌溉用水密切相关,Ni的分布最为均匀,受自然因素影响明显。  相似文献   

8.
To manage public health and make better use of groundwater resources, the concentration characteristics and a health risk assessment of eight heavy metals in shallow groundwater were studied. Besides this, this paper introduced triangular fuzzy numbers into the USEPA health risk assessment model to assess the health risk posed to local children and adults through different exposure pathways. The results showed that Mn levels exceeded the WHO’s guideline values of 100?µg/L with the proportion of 27.98% and Sr were over the health reference level (HRL) of 1500?µg/L with the proportion of 56.25%, while other heavy metals were below the corresponding standard. The results of the HRA showed that the non-carcinogenic risks from Sr and Mn in the district were relatively higher, while those from the remaining six heavy metals were relatively lower. All hazard index (HI) values did not exceed the safety level of 1 for either age group. The average carcinogenic risk from Cr was slightly higher than the acceptable level of 1?×?10?6 for adults. Sensitivity analyses conducted using Monte Carlo simulation indicated that Sr and Cr concentrations were the most influential variables contributing to the non-carcinogenic and carcinogenic risk values, respectively, while body weight had a minor contribution.  相似文献   

9.
Health risk assessments of As, Cr, Pb, and Zn in air in China were carried out from a national perspective. Concentrations of the four metals in air were gathered from published literature. Health risk assessment models recommended by the U.S. Environmental Protection Agency (USEPA) were applied to quantitatively characterize risk values of the metals by considering different age groups. Results showed that the atmospheric metal concentrations in most regions of China were lower than their inhalation reference concentrations provided by the USEPA, or limited values provided by China. Non-carcinogenic hazard values of the four metals in different regions of China were all lower than 1, indicating no or low non-carcinogenic hazard. However, the probabilities of carcinogenic risk values for As and Cr exceeding the acceptable value (1.0E-05) were 9% and 10% on a national scale, respectively. Some regions, such as Shanxi, Chongqing, Liaoning, and Shanghai, should be studied in more detail. Despite uncertainties, the results of this study provide information on the health risk of As, Cr, Pb, and Zn in air in China.  相似文献   

10.
Food, drinking water, soil, and air are the main routes of exposure to trace metals, thus the assessment of the risks posed to humans by these elements is important. Wheat, potatoes, and maize are very important parts of the Iranian diet. The objectives of this study were to estimate the non-carcinogenic and carcinogenic health risks of Hg, Pb, Cd, Cr, Se, As, and Ni to adults and children via soil, water, and major food crops consumed in Hamedan Province, northwest Iran, using the total non-cancer hazard quotient (THQ) and cancer risk assessment estimates. Total non-cancer hazard of Ni and Hg, were greater than 1, and total cancer risk of As and Pb was greater than 1 × 10?6. Food consumption was identified as the major route of human exposure to metals, and consuming foodstuff threatens the health of the studied population. In Hamedan Province, consumption of wheat is the main source of intake of metals from foodstuff for adults, and in children, the soil ingestion route is also important.  相似文献   

11.
The objective of this study is the evaluation of health risk of heavy metals in soils of urban community gardens of Baghdad City in Iraq. The soil samples were collected from 14 community gardens and analyzed for Cd, Cr, Cu, Ni, Pb and Zn. The non-carcinogenic hazard index (HI) and carcinogenic risk index (RI) were utilized to evaluate human health risk of heavy metals. The health hazard evaluation showed that there is no non-carcinogenic hazard in light of the fact that the HI values were beneath the threshold value (HI < 1). The HI for children and adults has a descending order of Cd < Cr < Cu < Ni < Pb < Zn. The carcinogenic RI values for Cd, Cr and Ni were over the unacceptable threshold value (RI < 1 × 10?4), demonstrating that there is a serious carcinogenic risk for children and adults in the study area. The carcinogenic RI for children and adults has a descending order of Cr < Cd < Ni. These findings give environment administrators and leaders data on whether therapeutic activities are required to decrease exposure.  相似文献   

12.
The purpose of this study was to determine the contamination level, distribution, health risk and potential sources of Cr, Cd, Pb, Zn, Cu, Ni and As in 66 topsoil samples from industrial areas in Bandar Abbas County. The geoaccumulation index, pollution index and pollution load index were calculated to assess the pollution level in the industrial soils. The hazard index and carcinogenic risk were used to assess human health risk of heavy metals. Results showed that the contamination levels of heavy metals were in the descending order of Cu> Cd> Pb> Zn> As> Ni> Cr. Moreover, based on principal component analysis, Cd, Zn, Cu, and Pb originated mainly from anthropogenic sources, including power plants, oil and gas refinery, steel and zinc production factories and municipal waste landfills. For non-carcinogenic effects, hazard index of studied metals decreased in the order of Cr> As> Cd> Pb> Ni > Cu> Zn. Arsenic, chromium and cadmium were regarded as the priority pollutants. Carcinogenic risks due to Cd and As in suburban soils were within tolerable risk to human health; however, children faced more health risk in their daily life than adults via their unconscious ingestion and dermal contact pathway.  相似文献   

13.
This study innovates an assessment technique to evaluate heavy metal toxic load (HMTL). Assessment of surface water in Durgapur industrial area, West Bengal India illustrates that heavy metals in majority of sampling locations exceed the drinking water quality standards. Therefore, pollution status and health impact were predicted by heavy metal pollution index (HPI) and hazard index (HI). More than 50% of sampling locations were marked as polluted. Moreover, 5% and 90% of sampling locations near the industries have health risk to adult and child on ingestion. The study of specific exposure-time and exposure-duration affirms the suitability of water for fishing and regular activities. However, HPI or HI does not quantify heavy metal concentrations that pose threat to human health. Therefore, the proposed assessment technique, HMTL, determines the concentration of heavy metals responsible for health hazard. HMTL identifies Mn, Pb, and Co as toxic metals and estimates 85%, 63%, and 70% removal of these metals from surface water to limit pollution. Origins of metals were also investigated through statistical techniques, which revealed that Fe has geogenic and anthropogenic source, while other metals originate by anthropogenic activities solely. This study demonstrates that HMTL will help the planning authority to document effective water quality management plan.  相似文献   

14.
The present study was conducted to estimate As concentration in groundwater and resulting human health risk in terms of chronic daily intake, hazard quotient (HQ), hazard index (HI), and carcinogenic risk (CR) both for oral and dermal exposure to As. Groundwater samples (n = 100) were collected from ten different towns of Lahore District (Pakistan). Arsenic concentration ranged from 2 to 111 µg L?1 in groundwater samples of the study area, which was significantly greater than the safe limit of As (10 µg L?1) in drinking water set by the World Health Organization. Health risk assessment of As showed that HQ (0.1–11) for oral exposure and HI (0.1–11) values also exceeded the typical toxic risk index value of 1. 9.75 × E-05–4.59 × E-03 and 5.89 × E-07–2.77 × E-05 for oral and dermal As exposure, respectively. Both CR and cancer index (CIs) values were higher than United States Environmental Protection Agency limit (10?6), suggesting that people are at high risk of As-induced carcinogenicity from oral and dermal exposure to As in drinking water. It was concluded that As contamination of groundwater causes carcinogenic and noncarcinogenic health effects to the people; therefore, urgent management and remedial actions are required to protect people from As poisoning.  相似文献   

15.
Sediments from 14 stations in the Foshan Waterway, a river crossing the industrial district of Guangdong Province, South China, were sampled and subsequently analyzed. The 14 stations were selected for the pollution discharging features of the river, such as the hydrology, the distribution of pollution sources, and the locations of wastewater outlets. The ecological risks were assessed, and the pollution sources were identified to provide valuable information for environmental impact assessment and pollution control. The spatial variability was high and the range were (in milligrams per kilogram dry weight): Pb, 46.0~382.8; Cu, 33.7~ 482.3; Zn, 62.2~1,568.7; Ni, 28.5~130.7; Cr, 34.7~1,656.1; Cd, 0.50~8.53; Hg, 0.02~8.27; and As, 5.77~66.09. The evaluation results of enrichment factor and potential ecological risk index indicate that the metal pollution in the surface and bottom sediments were severely polluted and could pose serious threat to the ecosystem in most stations. Although the hazard levels of the trace element differed among the stations, Hg was the most serious pollutant in all stations. The results of principal component analysis (PCA) show that the discharge of industrial wastewater is the most important polluting factor whereas domestic sewage, which contains a large amount of organic substances, accelerates metal deposition. And potential pollution sources were identified by the way of integrating the analysis results of PCA and data gained from the local government. Therefore, the conclusion is drawn that Foshan Waterway is seriously polluted with trace elements, both in the surface sediment (0 to 20 cm) and the bottom sediments (21 to 50 cm) are contaminated.  相似文献   

16.
Abstract

Increasing levels of heavy metals in soil have become a serious concern for human health because they can be easily transferred into the human body through contaminated food web. It is imperative to evaluate pollution levels, origin and ecological risks of heavy metals. The geoaccumaualtion (Igeo), contamination factor (CF), pollution load index (PLI) and human health risk were estimated to determine the soil pollution in Faisalabad, a heavily-populated and industrialized city of Pakistan. The maximum CF (1.58) and PLI (1.22) values were estimated for Cd and Pb, respectively, and maximum Igeo (?0.19) value was observed for Cd. Correlation analysis and principal component analysis suggested that common industrial sources for Cd and Pb were identified in the study sites. It clearly indicates that the significant levels of heavy metals pollution arise from local industries, busy commercial centers and heavy traffic load in the last few decades in heavily-populated and industrialized city. Further, soil heavy metals concentration were used to evaluate the human health risk such as chronic or non-carcinogenic including hazard indexes HIexP (ingestion, inhalation and dermal and carcinogenic) and cancer risk (CR). The HIexP values of Pb (10.30) and Cd (4.56) were found above the permissible limit (HI = 1) for children. The CR due to carcinogenic metals (Co, Cr and Cd) are within the safe limit (1E-06 to 1E-04). However, CR was comparatively higher in adults as compared to children. The results from the current investigation can help to develop a sustainable strategy in the study region to minimize the entry of heavy metals in food chain through source identification and pollution abatement techniques.  相似文献   

17.
Risk characterization of agricultural soils in the mining areas of Singhbhum copper belt was done by determining the total concentrations of metals using inductively coupled plasma-mass spectrometry and assessing the potential ecological and human health risks. The concentrations were above the average shale values for most of the metals. Principal component analysis showed anthropogenic contributions of Cu, Ni, Co, Mn, Pb, and Cr in the soils. Ecological risk assessment revealed that 50% of the soil samples were at moderate to very high ecological risk. Health risks for adults and children were calculated using hazard quotients (HQs), hazard index (HI), and Cancer risks for the oral, dermal, and inhalation pathways. The HQs for all the metals except As and Co were below 1, which suggested that non-carcinogenic risks due to metal exposure through soils were within the safe limit. However, considering all the metals and pathways, the HI for adults and children was 0.71 and 5.61, respectively, suggesting appreciable risk to local residents. The carcinogenic risks due to As and Cr in the soils were within the acceptable value of 1E–04. For both carcinogenic and non-carcinogenic risks, oral ingestion appeared to be the primary pathway followed by dermal and inhalation pathways.  相似文献   

18.
矿泉水是地下水从含水层中经长期与岩石相互作用形成、富含有益于人体的丰富矿物质和微量元素的一类顶级饮用地下水资源.在水资源污染严重而且生态环境不断恶化的今天,基于新的科技认知手段重新认识矿泉水的生态和健康效应,具有重要意义.黑龙江省五大连池风景区拥有着五大连池旅游疗养业赖以生存和发展的优质矿泉水资源,并且被应用于医疗和保健方面已有百余年历史,但是面临着资源量减少、环境污染等问题的威胁.本文主要针对五大连池矿泉水的形成过程、分布规律、水化学和微生物特征及其健康效应等进行综合评述,侧重其微生物特征的研究进展,提出了未来五大连池矿泉的研究展望.为了更好地保护和利用五大连池矿泉水,建议五大连池周边农场发展绿色生态农业,减少化肥的施用;在开发旅游和疗养资源的同时,要严格建立污染风险的评估和管控体系,减少“新型”环境污染物对地质生态环境的可能污染.  相似文献   

19.
Xijiang River is the main surface water source in Guangxi province, South China. This study was carried out to investigate the distribution and potential ecological risks of seven heavy metals (Cu, Pb, Zn, As, Cd, Ni, and Cr) in surface sediments in Xijiang River basin. The results illustrated that the average concentrations of Zn, Pb, Cd, Cu, As, Ni, and Cr were 483.9, 207.5, 13.35, 23.50, 312.1, 28.75, and 50.62 mg/kg, respectively. Among them, Zn, Pb, Cd, and As were the major heave metals with concentration exceeding Class 3 threshold value of Chinese national standard. The result also showed samples with high ecological risk were mainly located in the upstream of Xijiang River basin as Diaojiang River, Hongshui River, Jincheng River, and Dahuan River. Based on the pollution risk assessment, the area manifested composite pollution of heavy metals in the sediments, signifying As, Pb, and Cd as the dominant heavy metals, and there were high ecological risk in sediments for these metals. According to correlation matrix and factor analysis (FA), the seven heavy metals were divided into three types/classes, Cd, as and Zn attributed by anthropogenic sources, natural sources corresponds for Ni and Cr while both natural and anthropogenic sources were attributed to Cu.  相似文献   

20.
This study investigated the concentrations of selected metals (Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Pb, Sr, and Zn) in freshwater source lakes in Pakistan and assessed the preliminary health risks associated with them. Water samples were collected from Khanpur and Simly Lakes and analyzed for the metals using flame atomic absorption spectrophotometry. Major contributions were noted for Ca, K, Mg, and K; however, the measured levels of Cd, Co, Cr, and Pb were many times higher than the permissible national/international guideline values. The risk characterization revealed that hazard quotient (HQing) and hazard index (HIing) values exceeded the acceptable limit unity, indicating non-carcinogenic risk to the recipients via oral intake of contaminated water. The carcinogenic risk (CRing) via ingestion route for Cd, Cr, and Pb was found much greater than the acceptable limit (10–6). Overall, Cd, Co, Cr, and Pb were the major contributors to potential adverse health risk to the inhabitants. Multivariate analysis demonstrated anthropogenic intrusions of the metals in both lakes. The study clearly indicated that there was gross contamination of water in both lakes, so special attention should be paid to manage the pollution sources of metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号