首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 570 毫秒
1.
A total of 195 farmland soil samples were collected in Yanqi Basin, Xinjiang, northwest China, and the concentrations of As, Cd, Cr, Cu, Ni, Pb, and Zn were analyzed for their concentrations and pollution levels using the Nemerow comprehensive index. The health risk assessment model introduced by USEPA was utilized to evaluate the human health risks of heavy metals. Results indicated that the average concentrations of these seven metals were lower than the allowed soil environmental quality standards of China, while the average concentrations of Cd, Cr, Ni, Pb and Zn exceeded the background values of irrigation soils in Xinjiang. The average contamination factor (CF) for Pb indicated the heavy pollution, whereas the CF for Cd, Zn, Ni, Cu and Cr indicated the moderate pollution. The average PLI of heavy metals indicated the low pollution. The non-carcinogenic hazard index were below the threshold values, and the total carcinogenic risks due to As and Cr were within the acceptable range for both children and adults. As and Pb were the main non-carcinogenic factors, while As was the main carcinogenic factor in the study area. Special attentions should be paid to these priority control metals in order to target the lowest threats to human health.  相似文献   

2.
This study evaluated cancer risk and non-cancer human health hazard from exposure to the toxicants such as As, Cu, Pb, Zn, Mn, and CN in water from a southwestern river system in Ghana that drains through gold mining areas, using 108 water samples collected with random sampling techniques and analyzed in accordance with standard methods of chemical analysis outlined by the U.S. Environmental Protection Agency (USEPA). The concentrations of Cu and Zn were within World Health Organization and USEPA guideline values; Mn, free cyanide, As, and Pb values in most cases either exceeded USEPA and WHO values or both. The concentrations of the toxicants were used as input parameters in the cancer and non-cancer study that was conducted in line with USEPA risk assessment guidelines. The results of As cancer health risk revealed higher risk cases in two locations (Potroase and Dominase); non-cancer health risk for As was higher in 10 of the 14 locations, with other metals being of health concern at few locations in the study area. In conclusion, the findings of this study hold several policy implications as residents of mining communities still depend on these water bodies as their source of drinking water.  相似文献   

3.
Abstract

The water quality of the Czarna Przemsza River source in Zawiercie was investigated in four sampling campaigns in years 2016 and 2017. Values of 62 indicators (physico-chemical, inorganic, organic, and biological) were compared with permissible limits for drinking water according to Polish legal acts and EU, WHO, USEPA, and Canadian guidelines. The water quality was determined as below good because of EC values and As, Ca, Cd, Cr, Cu, Se, and Zn concentrations. Water was also determined as non-potable due to exceeded concentrations of Al, As, Cd, Cr, Fe, K, Ni, Pb, Sb, and Se. The Human Health Risk Assessment for Zawiercie’s inhabitants was carried out, while water from the source is consumed regardless of its quality. The mean estimated daily intake (EDI) values exceeded Minimal Risk Level values forCr, Cd, As, Se, and Cu. The hazard index (HI) values pointed very high total non-carcinogenic risk in residential exposure scenario generated mainly by As, Cr(VI), Tl, Pb, MCPA, Se, and Cd. Water intake scenario based on questionnaire surveys pointed that risk for inhabitants existed (HI >1). The total carcinogenic risk (Rt) values were at the unacceptable level and decreased in the following order: Cr(VI) > As?>?Pb.  相似文献   

4.
Concentrations of trace metals (Cu, Pb, Zn, Cd, Cr, Hg, and As) were determined for the first time in seawater, sediment, and Manila clam from Deer Island, Liaoning Province, China. The seawater, sediment, and clam samples were collected seasonally at three clam farming sites around Deer Island during 2010–2011. The average concentrations of Cu, Pb, Zn, Cd, Cr, Hg, and As in the seawater samples were 4.16, 0.72, 5.88, 0.45, 2.51, 0.03, and 1.02 μg/l, respectively. The seasonal variations of trace metals in seawater showed a significant difference in the concentrations of Cu, Pb, Zn, Hg, and As among seasons. The average concentrations of Cu, Pb, Zn, Cd, Cr, Hg, and As in the sediment samples were 6.43, 13.80, 53.08, 1.10, 36.40, 0.05, and 4.78 mg/kg dry weight, respectively. Trace metal concentrations in sediment seasonally varied significantly except for Cd and Hg. The average concentrations of Cu, Pb, Zn, Cd, Cr, Hg, and As in the clam samples were 11.28, 0.61, 92.50, 0.58, 3.98, 0.03, and 1.98 mg/kg dry weight, respectively. Concentrations of Cu, Zn, Cd, Cr, and As in Manila clam showed marked seasonal fluctuations with significant difference. Cu and Zn were the metals with the highest mean biosediment accumulation factor values in Manila clam. Besides, significant correlations for the concentrations of Cu and Zn relative to their concentrations in sediment were also found. Such differences in regression analyzes may be explained by differential bioaccumulation of essential and xenobiotic metals. Concentrations of trace metals in Manila clam did not exceed the maximum established regulatory concentrations for human consumption. Moreover, the calculations revealed that the estimated daily intake values for the examined clam samples were below the internationally accepted dietary guidelines and the calculated hazard quotient values were well less than 1, thus strongly indicating that health risk associated with the intake studied metals through the consumption of Manila clam from Deer Island was absent.  相似文献   

5.
A total of 455 agricultural soil samples from four nonferrous mines/smelting sites in Shaoguan City, China, were investigated for concentrations of 10 heavy metals (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, and Zn). The mean concentrations of the metals were 72.4, 5.16, 13.3, 54.8, 84.5, 1.52, 425, 28.2, 529, and 722 mg kg?1, respectively. The values for As, Cd, Hg, Pb, and Zn were more than 8 and 1.5 times higher than their background values in this region and the limit values of Grade II soil quality standard in China, respectively. Estimated ecological risks based on contamination factors and potential ecological risk factors were also high or very high for As, Cd, Hg, and Pb. Multivariate analysis (Pearson's correlation analysis, hierarchical cluster analysis, and principal component analysis) strongly implied three distinct groups; i.e., As/Cu/Hg/Zn, Co/Cr/Mn/Ni, and Cd/Pb. Local anomalies for As, Cu, Hg, and Zn by a probably anthropogenic source (identified as mining activity), Co, Cr, Mn, and Ni by natural contribution, and a mixed source for Cd and Pb, were identified. This is one of the few studies with a focus on potential sources of heavy metals in agricultural topsoil around mining/smelting sites, providing evidence for establishing priorities in the reduction of ecological risks posed by heavy metals in Southern China and elsewhere.  相似文献   

6.
Abstract

In this study, the concentrations and health risks of heavy metals (Cu, Pb, Zn, Ni, Co, Cd, and Cr) in indoor dust are investigated in the vicinity of the Xinqiao mining area, Tongling, China. Results indicate that heavy metals except Co were clearly enriched in indoor dust. Especially Cd was extremely enriched, followed by Zn, Cu, and Pb. However, no significant regional differences (p?>?0.05) were found in other elemental contents aside from Cu. Statistical analysis revealed that metal elements except Co were presumed to originate primarily from mining activities. Health risk assessment indicated that the hazard quotients and hazard indices of all studied metal elements were less than 1 and thus posed no potential noncancer health risks to adults and children. Moreover, the cancer risks of Ni, Cr, Cd, and Co were within acceptable ranges, implying no cancer risk to local residents; however, the noncarcinogenic risk of Pb and the carcinogenic risk of Cr and Cd warrant close attention.  相似文献   

7.
The concentrations of 10 metals (As, Cd, Cr, Cu, Fe, Hg, Mn, Pb, Se, Zn) were determined in drinking water in Khingan, China, a forest zone after long-term excessive deforestation. These metals’ concentrations in water exceeded background values of metals in some other regions of the world, indicating that there were other metal sources contributing to such high levels of metals in Khingan. Arsenic was the only metal whose concentration exceeded the maximum levels allowed in drinking water. Principal component analysis showed that As, Cd, Cu, and Se originated from anthropogenic sources and exhibited significantly high concentrations in north Khingan, while Fe and Mn derived from natural formation and showed significantly high concentrations in central Khingan. Health risks from metals were evaluated by a model recommended by the U.S. Environmental Protection Agency. Ingestion was the predominant pathway of exposure to metals in water for local residents. Arsenic was also the only metal causing both noncarcinogenic hazard and carcinogenic risk in Khingan. The high risks occurred mainly in north Khingan and are associated with coal combustion. This study indicates that long-term excessive deforestation may increase As concentration considerably in drinking water and then pose health risks to local residents.  相似文献   

8.
Abstract

A total of 83 dust samples were collected from the streets of Urumqi city in NW China and analyzed for the concentrations of As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn elements. The spatial distribution, contamination levels, main sources, and potential health risks of these trace elements were determined based on geostatistical analysis, geo-accumulation index, multivariate analysis, and the health risk assessment model introduced by the USEPA, respectively. The obtained results indicate that the average concentrations of Cd, Cr, Cu, Hg, Ni, Pb, and Zn exceed the corresponding background values determined in Xinjiang soils by factors of 2.0, 1.35, 1.38, 8.24, 1.28, 2.09, and 3.26, respectively. The spatial distribution patterns of the nine trace elements in street dust were found to be substantially heterogeneous, and the contamination level decreased in the following order: Hg?>?Zn?>?Pb?>?Cd?>?Cr?>?Cu?>?As?>?Ni?>?Mn. Based on the identified concentrations, the collected dust samples were found to be moderately polluted by Hg, and not polluted by As, Cr, Cu, Mn, and Ni. The remaining elements, Cd, Pb, and Zn lie on the borderline between non-pollution and moderate pollution levels. Furthermore, it was shown that Mn and Zn in street dusts originate from both, natural and anthropogenic sources, while As, Cd, Cr, Cu, Hg, Ni, and Pb are mainly produced by anthropogenic sources. Overall, the carcinogenic and non-carcinogenic health risks of the analyzed elements, instigated primarily by oral ingestion of street dusts, were found to be within the acceptable range for both, children and adults. As and Cr are the main non-carcinogenic elements, whereas Cr is the major carcinogenic element among the investigated dust-bound metals in the study area.  相似文献   

9.
In this study, paddy soil and rice grain samples were collected from the vicinity around the Xinqiao mine in Tongling, China to test for the presence of heavy metals (Cd, Ni, Cr, Cu, Zn, and Pb) in soil-rice system. Results indicated that the soil samples were primarily contaminated with Cd and Cu and followed with Zn and Pb. In rice grains, Cd, Cu, and Cr concentrations exceeded recommended guidelines. However, the regional distribution of heavy metals in rice grains and soil was inconsistent. The bioaccumulation factor of heavy metals in rice grains decreased in the order of Cd > Zn > Cu > Ni > Cr > Pb. The BAF was significantly positively correlated with TCLP-extractable metals and significantly negatively correlated with soil pH. However, the relationship between soil organic matter and the BAF in rice grains was complex. Health risk assessment through rice intake showed that hazard quotients of Cu and Cd were greater than 1 and could pose a considerable non-cancer health risk to adults and children; meanwhile, Cr, Ni, and Cd could pose an unacceptable cancer risk. The results indicated that the government must take measures to reduce heavy metal contents in paddy soil and rice.  相似文献   

10.
Xijiang River is the main surface water source in Guangxi province, South China. This study was carried out to investigate the distribution and potential ecological risks of seven heavy metals (Cu, Pb, Zn, As, Cd, Ni, and Cr) in surface sediments in Xijiang River basin. The results illustrated that the average concentrations of Zn, Pb, Cd, Cu, As, Ni, and Cr were 483.9, 207.5, 13.35, 23.50, 312.1, 28.75, and 50.62 mg/kg, respectively. Among them, Zn, Pb, Cd, and As were the major heave metals with concentration exceeding Class 3 threshold value of Chinese national standard. The result also showed samples with high ecological risk were mainly located in the upstream of Xijiang River basin as Diaojiang River, Hongshui River, Jincheng River, and Dahuan River. Based on the pollution risk assessment, the area manifested composite pollution of heavy metals in the sediments, signifying As, Pb, and Cd as the dominant heavy metals, and there were high ecological risk in sediments for these metals. According to correlation matrix and factor analysis (FA), the seven heavy metals were divided into three types/classes, Cd, as and Zn attributed by anthropogenic sources, natural sources corresponds for Ni and Cr while both natural and anthropogenic sources were attributed to Cu.  相似文献   

11.
在综合考虑深圳市城市功能区分异特征的基础上,进行全市表层土壤系统采样,全面监测土壤表层8种重金属元素污染状况,分析不同重金属元素含量的统计学特征,探讨不同城市功能区对土壤表层重金属污染的影响,采用内梅罗指数和潜在生态危害指数评估不同重金属元素和不同城市功能区的生态风险水平,分别进行基于两种方法的全市重金属污染生态风险分区。结果表明: 1)深圳市土壤表层的Mn、Ni、Cr和Pb 4种元素受人为活动的影响程度较低,Cd、Zn、Cu和As 4类元素受人为活动影响较大。地表环境约束因素背景下的高强度城市化和工业化过程,是各种重金属污染区域分异和功能区分异的决定性因素。2)深圳市土壤重金属污染风险较高的重金属元素为Cd、Zn、Cu和Pb,特别是Pb污染问题尤为突出,必须加强管控工作。深圳市总体土壤表层重金属污染风险水平高于国内相关城市,需要引起足够重视。3)内梅罗指数法和潜在生态危害指数法的侧重点不同,在单一重金属元素风险判断、不同城市功能区生态风险的总体评价,以及市域土壤重金属污染生态风险分级评价方面结果差异较大,组合使用效果更好。  相似文献   

12.
Heavy metals enrichment in groundwater poses great ecological risks to human beings. In the present research work, a total of 59 groundwater samples from 12 sampling points in Dingji coal mine, Huainan coalfield, were collected and measured for Cu, Pb, Zn, Cd, Ni, Mn, Cr, and Fe by inductively coupled plasma mass spectrometry (ICP-MS). The human health risk caused by heavy metals through the pathway of drinking water was evaluated and analyzed using the US Environment Protection Agency (USEPA) evaluation model. It has been found that the carcinogenic risk values were between 1.05 × 10?5 and 3.5 × 10?4, all exceeding the maximum acceptable level recommended by the USEPA, and the carcinogenic risk of Cr accounted for 99.67% of the total carcinogenic risk. The non-carcinogenic health risk values were all lower than the negligible level given by the USEPA, and the contribution of non-carcinogenic health risk was in the order of Cr > Zn > Cu / Pb >Mn > Fe > Cd > Ni. Among them, Cr had the largest contribution, accounting for 36% of the total non-carcinogenic risk value. In this study, the carcinogenic risk constituted 99.99% of the total health risk, indicating that the total health risk essentially consisted of carcinogenic risk. The research results suggest that much more attention should be paid to the health risk caused by Cr in the groundwater.  相似文献   

13.
Abstract

With industrialization and human activities, shellfish may be contaminated by various pollutants such as heavy metals. This study aims at the concentrations of As, Cr, Mn, Ni, Cu, Zn, Cd, Sn, Sb and Pb in shellfish collected from Fujian of China, and the risk of heavy metals in shellfish on human health based on target hazard quotients (THQ). Results showed that the THQ values of the elements were far below 1, except for As with an average value of 1.148 in razor clam. No detrimental health effects of heavy metals on humans health was observed by daily consumption of mussel and oyster, but the exposed population to short-necked clam, scallop and razor clam might experience noncarcinogenic health risks because each of the total THQ values was above 1 for the three shellfish.  相似文献   

14.
This study investigated the concentrations of selected metals (Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Pb, Sr, and Zn) in freshwater source lakes in Pakistan and assessed the preliminary health risks associated with them. Water samples were collected from Khanpur and Simly Lakes and analyzed for the metals using flame atomic absorption spectrophotometry. Major contributions were noted for Ca, K, Mg, and K; however, the measured levels of Cd, Co, Cr, and Pb were many times higher than the permissible national/international guideline values. The risk characterization revealed that hazard quotient (HQing) and hazard index (HIing) values exceeded the acceptable limit unity, indicating non-carcinogenic risk to the recipients via oral intake of contaminated water. The carcinogenic risk (CRing) via ingestion route for Cd, Cr, and Pb was found much greater than the acceptable limit (10–6). Overall, Cd, Co, Cr, and Pb were the major contributors to potential adverse health risk to the inhabitants. Multivariate analysis demonstrated anthropogenic intrusions of the metals in both lakes. The study clearly indicated that there was gross contamination of water in both lakes, so special attention should be paid to manage the pollution sources of metals.  相似文献   

15.
Enrichment of trace elements in groundwater poses considerable risks to human health. The concentrations of seven trace elements (Cr, Mn, Ni, Cu, Zn, Cd, and Pb) in 34 samples of shallow groundwater from the study area were estimated. We assessed the concentrations of the trace elements and health risks with statistical analysis and the US Environment Protection Agency (USEPA) model. The results showed that the mean concentrations of trace elements decreased as follows: Mn > Zn > Ni > Cr > Cu > Cd > Pb. Apart from Mn at one sampling point, the concentrations of all trace elements were below the guideline values of the World Health Organization for drinking water. Correlation and cluster analysis indicated that the trace elements fell into groups, with Ni and Cu in one group, and Mn, Zn, and Cd in another, which suggested that the trace elements grouped together had similar sources. The total non-carcinogenic risk values ranged from 8.52 × 10?4 to 1.27 × 10?1. The total carcinogenic risk caused by Cr and Cd averaged 1.62 × 10?6, which exceeded the acceptable level of 1 × 10?6 recommended by the USEPA. The carcinogenic risk of Cr accounted for 75.93% of Rtotal.  相似文献   

16.
This study aimed to assess the drinking water quality and human potential health risk in Peshawar, which is the most populous district of Khyber Pakhtunkhwa Province, Pakistan. Water was randomly collected throughout Peshawar District (urban = 45 samples and rural = 29 samples). These samples were analyzed for heavy metal (As, Cd, Co, Cu, Cr, Hg, Ni, Pb, and Zn) concentrations using the atomic absorption spectrometer (Perkin Elmer, AAS-PEA-700). Heavy metal concentrations in drinking water revealed the highest pollution index (PI) values—17.80, 11.92, 7.50, and 5.70 for the Pb, Cr, Cd, and Ni, respectively. The contaminations of Cd and Pb were significantly higher (p < .05) than their maximum allowable limits set by the World Health Organization. Heavy metal contaminations in drinking water were evaluated for health risk assessment: the chronic risk or hazard quotient (HQ) and cancer risk. Results revealed that HQ values were >1 for the Cd and Pb, suggesting that the exposed human beings could be at chronic risk. Therefore, serious measures such as drinking water treatments and contamination controlling policies are needed to avoid the hazardous effects of toxic heavy metals.  相似文献   

17.
Heavy metals and As in rice are of increasing concern in China. In this study, concentrations of Pb, Cd, Cu, Cr, Sb, Ni, and As in rice collected from markets in Fuzhou, China, were investigated by ICP-MS and AFS, and their potential health risk to inhabitants were estimated by target hazard quotient (THQ), hazard index (HI), and target cancer risk (TR). The results showed that the concentrations of the seven studied elements in rice grain were all below the permissible limits of China's national standards for foodstuffs (NY/T 419–2007 and GB 2726–2012). For non-carcinogenic risk, the THQ values of individual elements were within the safe interval. However, without considering the bio-accessibility and speciation of toxic elements, the HI values suggest inhabitants in Fuzhou may experience potential health effects due to rice consumption. Cadmium is the major contributor to HI, followed by As. The TR values of As for adults and children were both higher than the acceptable range. The results of this study suggest that more attention should be paid toward monitoring toxic substances (especially Cd and As) in rice in order to assure the food safety for consumers in Fuzhou, China.  相似文献   

18.
The aims of this study were to determine the concentrations, distribution, potential ecological risk (PER), and human health risk (Risk) of heavy metals in urban soils from a coal mining city in China. A total of 36 topsoil samples from Huainan city, Anhui, East China, were collected and analyzed for As, Hg, Pb, Cd, Cr, and Cu. The PER was calculated to assess the pollution level. The hazard index (HI) and carcinogenic risk were used to assess the human health risk of heavy metals in the study area. The average concentration of As, Hg, Pb, Cd, Cr, and Cu were 12.54, 0.21, 24.21, 0.19, 49.39, and 21.74 mg kg?1, respectively. The correlations between heavy metals indicated that Cu, Cr, Cd, and Pb mainly originated from automobile exhaust emissions, coal gangue, fly ash, and industrial wastewater, and that As and Hg mainly came from coal combustion exhaust. The PER index values of heavy metals decreased in the following order: Hg > Cd > As> Cu > Pb > Cr. The HI and Risk values indicated that the noncarcinogenic and carcinogenic risks of selected metals in the urban soil were both below the threshold values.  相似文献   

19.
新疆焉耆盆地辣椒地土壤重金属污染及生态风险预警   总被引:5,自引:0,他引:5  
从新疆加工辣椒主产地(焉耆盆地)采集105个辣椒地典型土壤样品,测定其中As、Cd、Cr、Cu、Mn、Ni、Pb和Zn等8种重金属元素的含量。采用污染负荷指数(Pollution load index,PLI)、潜在生态风险指数(Potential ecological risk index,RI)和生态风险预警指数(Ecological risk warning index,I_(ER))对辣椒地土壤重金属污染及生态风险进行评价。结果表明:(1)焉耆盆地辣椒地土壤Cd、Cr、Ni、Pb和Zn含量的平均值分别超出新疆灌耕土背景值的1.65、1.40、1.32、3.21、6.42倍。辣椒地土壤Pb和Zn呈现重度污染,Cd、Cr和Ni轻度污染,As、Mn和Cu无污染。(2)土壤PLI平均值为1.40,呈现轻度污染。各重金属元素单项生态风险指数从大到小依次为:Cd、Ni、As、Cu、Pb、Cr、Zn。土壤RI平均值为18.40,属于轻微生态风险态势,IER平均值为-4.78,属于无警态势;博湖县辣椒地污染水平、潜在生态风险程度与生态风险预警等级最高,焉耆县污染水平、潜在生态风险程度与生态风险预警等级最低。(3)辣椒地土壤As、Cd、Pb与Zn主要受到人类活动的影响,Cr、Cu、Mn和Ni主要受到土壤地球化学作用的控制。Cd是焉耆盆地辣椒地生态风险等级最高的重金属元素,研究区农业生产过程中要防范Cd的污染风险。  相似文献   

20.
于2018年5月—2020年6月对南水北调中线总干渠11个采样点表层水中18种重金属的浓度进行周期性采样监测, 并分别利用USEPA推荐的健康风险评价模型和物种敏感性分布(SSD)法评估常见重金属的人体健康风险水平和水生态风险水平。化学分析结果显示, 18种重金属均被普遍检出, 平均浓度大小排序为: Fe>Sr>Ba>Zn>Ti>Ni>Mn>Cu>V>Cr>As>U>Rb>Se>Pb>Bi>Co>Cd, 均未超出《地表水环境质量标准》(GB 3838—2002)Ⅰ类水标准和《生活饮用水卫生标准》(GB 5749—2006)限值。健康风险评价结果显示, 南水北调中线总干渠表层水中8种常见重金属(Cr、Cd、As、Cu、Pb、Zn、Ni、Mn)对儿童和成人的总健康风险值处于10–8级别。基于构建的8种常见重金属(As、Ni、Pb、Cr、Zn、Se、Cd、Cu)的SSD曲线, 计算重金属对本土淡水生物5%危害浓度(HC5)和潜在影响比例(PAF), 结果显示, 南水北调中线总干渠水中目标重金属对全体水生生物种群的影响比例小于5%, 但Cu和Zn分别可对8.54%和16.77%的藻类种群造成影响, Cr可对6.44%的甲壳类种群造成影响。上述结果表明, 南水北调中线总干渠水中重金属的当前含量不高, 不会对人体造成潜在健康风险; 以保护95%的生物物种为标准, 个别重金属对总干渠中藻类、甲壳类种群可能具有一定潜在风险, 尚有待进一步关注。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号