首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim To infer future changes in the distribution of isolated relict tree populations at the limit of a species’ geographical range, a deep understanding of the regeneration niche and the spatial pattern of tree recruitment is needed. Location A relict Pinus uncinata population located at the south‐western limit of distribution of the species in the Iberian System of north‐eastern Spain. Methods Pinus uncinata individuals were mapped within a 50 × 40‐m plot, and their size, age and reproductive status were estimated. Data on seed dispersal were obtained from a seed‐release experiment. The regeneration niche of the species was assessed based on the associations of seedling density with substrate and understorey cover. The spatial pattern of seedlings was described using point‐pattern (Ripley's K) and surface‐pattern (correlograms, Moran's I) analyses. Statistical and inverse modelling were used to characterize seedling clustering. Results Pine seedlings appeared aggregated in 6‐m patches. Inverse modelling estimated a longer mean dispersal distance (27 m), which corresponded to the size of a large cluster along the north to north‐eastward direction paralleled by an eastward trend of increasing seedling age. The two spatial scales of recruitment were related to two dispersal processes. The small‐scale clustering of seedlings was due to local seed dispersal in open areas near the edge of Calluna vulgaris mats: the regeneration niche. The long‐range expansion might be caused by less frequent medium‐distance dispersal events due to the dominant north‐westerly winds. Main conclusions To understand future range shifts of marginal tree populations, data on seed dispersal, regeneration niche and spatial pattern of recruitment at local scales should be obtained. The monitoring of understorey communities should be a priority in order to predict correctly shifts in tree species range in response to global warming.  相似文献   

2.
Questions: What are important forest characteristics determining colonization of forest patches by forest understorey species? Location: Planted forests on land recently reclaimed from the sea, the Netherlands. Methods: We related the distribution of forest specialist species in the understorey of 55 forests in Dutch IJsselmeer polders to the following forest characteristics: age, area, connectivity, distance to mainland (as a proxy for distance to seed source) and path density. We used species of the Fraxino‐Ulmetum association for the Netherlands as reference for species that could potentially occur in the study area. Results: Area and age of the surveyed forests explained a large part of the variation in overall species composition and species number of forest plant species. The importance of connectivity and distance to the mainland of forest habitats became apparent only at a more detailed level of dispersal groups and individual species. The importance of forest parameters differed between dispersal groups and also between individual species. After 60 years, 75% of the potential pool of wind‐dispersed species has reached the polders, whereas this was only 50% for species lacking specific adaptations to long‐distance dispersal. However, the average percentage of successful colonizing species present per forest was substantially lower, ranging from 15 to 37%. Conclusions: The data strongly suggest that the colonization process in polder forests is still in its initial phase, during which easily dispersed species dominate the vegetation. Colonization success of common species that lack adaptations to long‐distance dispersal is affected by spatial configuration of the forests, and most rare species that could potentially occur in these forests are still absent. Implications for conservation of rare species in fragmented landscapes are discussed.  相似文献   

3.
Savannas are highly diverse and dynamic environments that can shift to forest formations due to protection policies. Long‐distance dispersal may shape the genetic structure of these new closed forest formations. We analyzed eight microsatellite loci using a single‐time approach to understand contemporary pollen and effective seed dispersal of the tropical tree, Copaifera langsdorffii Desf. (Fabaceae), occurring in a Brazilian fire‐ and livestock‐protected savanna. We sampled all adult trees found within a 10.24 ha permanent plot, young trees within a subplot of 1.44 ha and open‐pollinated seeds. We detected a very high level of genetic diversity among the three generations in the studied plot. Parentage analysis revealed high pollen immigration rate (0.64) and a mean contemporary pollen dispersal distance of 74 m. In addition, half‐sib production was 1.8 times higher than full‐sibs in significant higher distances, indicating foraging activity preference for different trees at long distances. There was a significant and negative correlation between diameter at breast height (DBH) of the pollen donor with the number of seeds (r = ?0.640, P‐value = 0.032), suggesting that pollen donor trees with a higher DBH produce less seeds. The mean distance of realized seed dispersal (recruitment kernel) was 135 m due to the large home range dispersers (birds and mammals) in the area. The small magnitude of spatial genetic structure found in young trees may be a consequence of overlapping seed shadows and increased tree density. Our results show the positive side of closed canopy expansion, where animal activities regarding pollination and seed dispersal are extremely high.  相似文献   

4.
A 2-year field study of the frugivorous diet of a howling monkey troop, in a tropical rain forest in French Guiana, shows that they disperse by endozoochory ≥95% of plant species from which they eat ripe fruit. Passage through the digestive tract of howlers does not significantly modify the germination success of most plant species samples. Their low digestion rate (X = 20 hr 40 min) is the ultimate cause of a bimodal defecation rhythm that results in the concentration of 60% of defecations being deposited under sleeping sites. The distance of seed dispersal can reach more than 550 m from parent trees,with a mean of 260 m. Although howling monkeys consume fruits differing in morphological characteristics, they are particularly able to disseminate seeds of species whose fruits have a hard and indehiscent external coat or large seeds or both. In French Guiana, they may be especially important dispersers of the Sapotaceae with fruits that simultaneously present both characteristics.  相似文献   

5.
Aim Dispersal assembly and niche assembly are two competing theories proposed to explain the maintenance of species diversity in tropical forests. Dispersal theory emphasizes the role of chance colonization events and distance‐limited seed dispersal in explaining species abundance and distribution, whereas niche theory emphasizes differences among species in requirements for potentially limiting resources. Species distribution patterns in tropical forests often correlate with geology and topography, but tests of the relative importance of dispersal and niche partitioning have been hampered by an inadequate characterization of resource availability. The aim of this study was to explore how soil chemical and physical properties, climate, and geographic distance affect understorey palm communities in lower montane forests. Location Fortuna Forest Reserve, Chiriqui Province, and Palo Seco Forest Reserve, Bocas del Toro Province, in western Panama. Methods Understorey palms and soil nutrient concentrations were surveyed within 10 sites on different soil types across a 13‐km transect. Variation in palm community composition was examined in relation to spatial and environmental variables. Results The 25 understorey palm species recorded in the study were non‐randomly distributed among forests differing in soil nutrient availability. In support of dispersal theory, floristic similarity decreased predictably with increasing geographic distance. However, environmental and soil variables were also correlated with geographic distance. Floristic similarity was also highly associated with a subset of environmental variables. Variation in palm community similarity was most strongly correlated with inorganic nitrogen availability and cation concentration. A subset of soil variables had a stronger relationship with floristic similarity when geographic distance was controlled for than did geographic distance when differences in soils were controlled for. Main conclusions Both dispersal and niche processes affect palm species distribution patterns. Although spatially limited dispersal may influence species distribution patterns, soil‐based habitat associations, particularly with respect to soil nitrogen, cation availability and aluminium concentrations, remain important factors influencing palm community composition at the mesoscale level in this tropical montane forest.  相似文献   

6.
Question: Does clear‐felling influence forest herb colonization into post‐agricultural forest? Location: A stand of poplar cultivars with a dense understorey of Acer pseudoplatanus in Muizen forest (northern Belgium), planted in 1952 on farmland adjacent to ancient forest and clear‐felled in 1997. Methods: Shade‐tolerant forest herbs were surveyed in 112 grid‐based sample plots: just before clear‐felling, and 5 and 10 yr afterwards. Shade‐tolerant herbs were subdivided into ancient forest species (AFS) and other shade‐tolerant species (OSS). Effects of clear‐felling on species number per plot, total cover per plot and colonization rate of species groups were compared using non‐parametrical tests. Species number per plot was modelled by means of generalized linear mixed models (GLMMs), with inventory time, distance to the nearest parcel edge, and cover of light‐loving species (LS) as explanatory variables. The C‐S‐R signature (competitive, stress‐tolerant and ruderal strategies, respectively) shift of sample plots was calculated on the selected shade‐tolerant species. Results: Frequency of most species increased during the 10‐yr period. Number of OSS increased more and faster than that of AFS. OSS increased to the level of the adjacent forest, but was lower where LS cover remained high. There was a positive correlation between the change of the colonization rate and the competitive plant strategy. Conclusions: We assume that clear‐felling stimulated generative reproduction of shade‐tolerant herbs, whereas quickly emerging woody species controlled competitive exclusion by LS. Succession of dark and light phases, such as provided by an understorey managed as a coppice, could promote colonization of shade‐tolerant herbs into post‐agricultural forest.  相似文献   

7.
The animal‐mediated pollination and seed‐dispersal mutualisms of Ficus species give them key roles in tropical ecosystems, but may make them vulnerable to habitat fragmentation. The development of highly polymorphic markers is needed to analyse their genetic diversity and investigate the effects of fragmentation on gene flow. Of thirteen microsatellite loci isolated from Ficus insipida, a monoecious species in French Guiana, eleven were polymorphic (two to six alleles each). High levels of variation were found among loci; expected heterozygosities ranged from 0.151 to 0.715. All markers revealed a broad cross‐species affinity when tested in 23 other Ficus species.  相似文献   

8.
Dispersal limitation can retard natural establishment of desirable species on restoration sites, especially where landscapes are fragmented, but dispersal limitation is assumed to become less critical with time as early colonists become reproductively mature. Distribution patterns of recruiting trees in a 20‐year‐old passively restored bottomland in northeast Louisiana suggested persistent dispersal limitation in some bottomland hardwood species and influence of dense shrub patches on colonization. To test these hypotheses, we measured seed rain as a function of distance to seed source and association with shrub cover. Seed rain of the wind‐dispersed Fraxinus pennsylvanica was highest near the forest edge, except where mature recruits occurred. Although shrub presence did not influence dispersal of F. pennsylvanica, its negative influence on probability of occurrence in the sapling layer suggests that shrub cover may limit its regeneration. The bird‐dispersed Crataegus viridis and Ilex decidua were found in the seed rain and as reproductive individuals within the field; neither had a positive relationship with shrub presence. Dispersal of heavy‐seeded Quercus spp. and Carya aquatica was limited to within 20 m of the forest edge. These results imply that dispersal limitation is diminishing in wind‐ and bird‐dispersed species with maturation of in‐field recruits and that shrub patches may influence these patterns. Heavy‐seeded species, however, remain restricted to field edges that directly abut a seed source. If canopy closure by wind‐ and bird‐dispersed species precedes dispersal of heavy‐seeded species into the field, establishment of Quercus and Carya spp. may remain low for the foreseeable future.  相似文献   

9.
The post‐dispersal fate of Chrysophyllum lucentifolium (a canopy tree; Sapotaceae) seeds was analyzed in French Guiana over three consecutive years. Experiments using 750 thread‐marked seeds were performed to investigate seed removal, predation, and caching by terrestrial vertebrates on howler monkey (Alouatta seniculus) defecation sites, where clumps of intact C. lucentifolium seeds were observed. Year‐to‐year variations in seed fate during the peak fruiting period were considered in relation to overall fruit and seed resource availability estimated by a raked‐trail survey. The effect of two forest areas, which differed in soil and floristic composition, was examined with conspecific fruiting tree density as a covariant. Exclosure versus open treatment was used to discriminate small rodents (not larger than a spiny rat) from other vertebrates. The presence of fresh howler dung did not affect seed fate after 20 days as shown by comparisons between defecation sites and control during the first year. There was a significant effect of year on the percentage of seeds remaining after 20 days. Low seed removal in 1995 and 1996 (compared to 1997) corresponded to higher overall fruiting and higher fruiting of C. lucentifolium, or the presence of alternative resources for rodents. An effect of forest area was observed on the seed removal rate, which varied with years and protection. Comparatively, an effect of forest area on the percentage of seeds lost was observed in 1996 and an effect of treatment on the percentage of seeds eaten was seen in 1995. The mode of seed caching suggested that spiny rats were the main seed remover. Results of this study suggest that greater seedling recruitment may occur when large fruit crop and high howler dispersal co‐occur with a lower impact of rodents (i.e., when rodents are saturated by abundant and diversified fruit resources such as in 1995). Such event synchrony, however, is highly unpredictable after only three years of study.  相似文献   

10.
Aim To investigate whether six plant life‐history traits that have been related to colonization ability at local scales are also related to the geographical range characteristics of 273 forest plant species. Location Continental western Europe, five countries in particular: France, Luxemburg, Belgium, the Netherlands and Germany. The region is situated between 42° and 55°N and 5°W and 15°E and has a summed total area of 971,404 km2. Methods Distribution data were compiled from five national data bases and converted to a 10′ grid. Life‐history traits were taken from existing compilations of autecological information of European species. The spatial arrangement of occupied grid cells was investigated using Ripley's K. Cross‐species correlations and phylogenetically independent contrasts were used to investigate the relationships between plant life‐history traits and three range characteristics: area of occupancy, latitudinal extent and centroid latitude. Results For herbaceous species, seed dispersal mode, seed production and seed bank longevity exhibited significant associations with geographical range characteristics, including area of occupancy. Woody plant species exhibited fewer significant associations, although maximum height was positively associated with range centroid latitude within the study area. Furthermore, the ranges of species with limited dispersal ability were found to be more clustered than the ranges of species with morphological adaptations for long‐distance seed dispersal. Main conclusions For western European forest plant species, life‐history traits that are related to colonization ability at local scales are associated with variation in large‐scale geographical range characteristics. This finding implies that the distributions of some forest plant species in the study area may be limited by seed dispersal and colonization capacity rather than climate or other environmental factors.  相似文献   

11.
About 45 palm species occur in the Atlantic forest of Brazil, and most of them are affected by loss of seed dispersers resulting from forest fragmentation and hunting. Here we report the effects of habitat loss and defaunation on the seed dispersal system of an endemic palm, Astrocaryum aculeatissimum . We evaluated seed removal, insect and rodent seed predation, and scatter-hoarding in nine sites, ranging from 19 ha to 79 000 ha. We report the seedling, juvenile and adult palm densities in this range of sites. Endocarps remaining beneath the parent palm had a higher probability of being preyed upon by insects in small, mostly fragmented and more defaunated sites. The frequency of successful seed removal, scatter-hoarding and consumption by rodents increased in the larger, less defaunated sites. Successful removal and dispersal collapsed in small (< 1000 ha), highly defaunated sites and frequently resulted in low densities of both seedlings and juveniles. Our results indicate that a large fraction of Atlantic forest palms that rely on scatter-hoarding rodents may become regionally extinct due to forest fragmentation and defaunation. Current management practices including palm extraction and hunting pressure have a lasting effect on Atlantic forest palm regeneration by severely limiting successful recruitment of prereproductive individuals. © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 151 , 141–149.  相似文献   

12.
Question: What are the qualitative and quantitative long‐term changes in the vascular epiphyte assemblage on a particular host tree species? Location: Lowland rain forest of the San Lorenzo Crane Plot, Republic of Panama. Methods: We followed the fate of the vascular epiphyte assemblage on 99 individuals of the palm Socratea exorrhiza by three censuses over the course of five years. Results: The composition of the epiphyte assemblage changed little during the course of the study. While the similarity of epiphyte vegetation decreased on individual palms through time, the similarity analysed over all palms increased. Even well established epiphyte individuals experienced high mortality with only 46% of the originally mapped individuals surviving the following five years. We found a positive correlation between host tree size and epiphyte richness and detected higher colonization rates of epiphytes per surface area on larger trees. Conclusions Epiphyte assemblages on individual S. exorrhiza trees were highly dynamic while the overall composition of the epiphyte vegetation on the host tree species in the study plot was stable. We suggest that higher recruitment rates, due to localized seed dispersal by already established epiphytes, on larger palms promote the colonization of epiphytes on larger palms. Given the known growth rates and mortality rates of the host tree species, the maximum time available for colonization and reproduction of epiphytes on a given tree is estimated to be ca. 60 years. This time frame will probably be too short to allow assemblages to be ever saturated.  相似文献   

13.
Slow‐colonizing forest understorey plants are probably not able to rapidly adjust their distribution range following large‐scale climate change. Therefore, the acclimation potential to climate change within their actual occupied habitats will likely be key for their short‐ and long‐term persistence. We combined transplant experiments along a latitudinal gradient with open‐top chambers to assess the effects of temperature on phenology, growth and reproductive performance of multiple populations of slow‐colonizing understorey plants, using the spring flowering geophytic forb Anemone nemorosa and the early summer flowering grass Milium effusum as study species. In both species, emergence time and start of flowering clearly advanced with increasing temperatures. Vegetative growth (plant height, aboveground biomass) and reproductive success (seed mass, seed germination and germinable seed output) of A. nemorosa benefited from higher temperatures. Climate warming may thus increase future competitive ability and colonization rates of this species. Apart from the effects on phenology, growth and reproductive performance of M. effusum generally decreased when transplanted southwards (e.g., plant size and number of individuals decreased towards the south) and was probably more limited by light availability in the south. Specific leaf area of both species increased when transplanted southwards, but decreased with open‐top chamber installation in A. nemorosa. In general, individuals of both species transplanted at the home site performed best, suggesting local adaptation. We conclude that contrasting understorey plants may display divergent plasticity in response to changing temperatures which may alter future understorey community dynamics.  相似文献   

14.
Abstract. An integrated analysis of the colonization patterns of forest plant species was carried out in a 34‐ha, mixed deciduous forest in northern Belgium. First, we sought to describe the relationships between land use history and environmental conditions. Land use history and soil type were related and negative correlations between pH and secondary forest age were found. The density of the shrub layer increases with secondary forest age. Litter quantity and cover of Urtica dioica were mainly indirectly influenced by land use history. Litter starts accumulating at low pH values and high shrub density and Urtica dioica grows vigorously on nutrient enriched soils where much light can reach the ground. Next, the importance of these human‐altered environmental conditions for the colonization of forest plant species was assessed relative to the importance of dispersal limitation. Therefore, the distribution of 16 forest species was mapped and species‐specific spatio‐temporal isolation measures were calculated. The analysis revealed that the colonization patterns of the slowly colonizing species (i.e. ‘ancient forest plant species’) are best explained by a combination of spatio‐temporal isolation, soil type, pH and the (non‐)cover of Urtica dioica. By contrast, spatio‐temporal isolation was never a limiting factor for good colonizing forest species. Our results suggest that colonization of ‘ancient forest plant species’ is hampered by a combination of dispersal‐ and recruitment limitation and that the relative importance of both factors is species‐specific.  相似文献   

15.
An aggregated distribution of dispersed seeds may influence the colonization process in tree communities via inflated spatial uncertainty. To evaluate this possibility, we studied 10 tree species in a temperate forest: one primarily barochorous, six anemochorous and two endozoochorous species. A statistical model was developed by combining an empirical seed dispersal kernel with a gamma distribution of seedfall density, with parameters that vary with distance. In the probability density, the fitted models showed that seeds of Fagaceae (primarily barochorous) and Betulaceae (anemochorous) were disseminated locally (i.e. within 60 m of a mother tree), whereas seeds of Acer (anemochorous) and endozoochorous species were transported farther. Greater fecundity compensated for the lower probability of seed dispersal over long distances for some species. Spatial uncertainty in seedfall density was much greater within 60 m of a mother tree than farther away, irrespective of dispersal mode, suggesting that seed dispersal is particularly aggregated in the vicinity of mother trees. Simulation results suggested that such seed dispersal patterns could lead to sites in the vicinity of a tree being occupied by other species that disperse seeds from far away. We speculate that this process could promote coexistence by making the colonization rates of the species more similar on average and equalizing species fitness in this temperate forest community.  相似文献   

16.

Aim

Our knowledge of Pleistocene refugia and post-glacial recolonization routes of forest understorey plants is still very limited. The geographical ranges of these species are often rather narrow and show highly idiosyncratic, often fragmented patterns indicating either narrow and species-specific ecological tolerances or strong dispersal limitations. However, the relative roles of these factors are inherently difficult to disentangle.

Location

Central and south-eastern Europe.

Time period

17,100 BP – present.

Major taxa studied

Five understorey herbs of European beech forests: Aposeris foetida, Cardamine trifolia, Euphorbia carniolica, Hacquetia epipactis and Helleborus niger.

Methods

We used spatio-temporally explicit modelling to reconstruct the post-glacial range dynamics of the five forest understorey herbs. We varied niche requirements, demographic rates and dispersal abilities across plausible ranges and simulated the spread of species from potential Pleistocene refugia identified by phylogeographical analyses. Then we identified the parameter settings allowing for the most accurate reconstruction of their current geographical ranges.

Results

We found a largely homogenous pattern of optimal parameter settings among species. Broad ecological niches had to be combined with very low but non-zero rates of long-distance dispersal via chance events and low rates of seed dispersal over moderate distances by standard dispersal vectors. However, long-distance dispersal events, although rare, led to high variation among replicated simulation runs.

Main conclusions

Small and fragmented ranges of many forest understorey species are best explained by a combination of broad ecological niches and rare medium- and long-distance dispersal events. Stochasticity is thus an important determinant of current species ranges, explaining the idiosyncratic distribution patterns of the study species despite strong similarities in refugia, ecological tolerances and dispersal abilities.  相似文献   

17.
Pollen and seed dispersal are key processes affecting the demographic and evolutionary dynamics of plant species and are also important considerations for the sustainable management of timber trees. Through direct and indirect genetic analyses, we studied the mating system and the extent of pollen and seed dispersal in an economically important timber species, Entandrophragma cylindricum (Meliaceae). We genotyped adult trees, seeds and saplings from a 400‐ha study plot in a natural forest from East Cameroon using eight nuclear microsatellite markers. The species is mainly outcrossed (= 0.92), but seeds from the same fruit are often pollinated by the same father (correlated paternity, rp = 0.77). An average of 4.76 effective pollen donors (Nep) per seed tree contributes to the pollination. Seed dispersal was as extensive as pollen dispersal, with a mean dispersal distance in the study plot approaching 600 m, and immigration rates from outside the plot to the central part of the plot reaching 40% for both pollen and seeds. Extensive pollen‐ and seed‐mediated gene flow is further supported by the weak, fine‐scale spatial genetic structure (Sp statistic = 0.0058), corresponding to historical gene dispersal distances (σg) reaching approximately 1,500 m. Using an original approach, we showed that the relatedness between mating individuals (Fij = 0.06) was higher than expected by chance, given the extent of pollen dispersal distances (expected Fij = 0.02 according to simulations). This remarkable pattern of assortative mating could be a phenomenon of potentially consequential evolutionary and management significance that deserves to be studied in other plant populations.  相似文献   

18.
Dispersal is a central life‐history trait for most animals and plants: it allows to colonize new habitats, escape from competition or avoid inbreeding. Yet, not all species are mobile enough to perform sufficient dispersal. Such passive dispersers may use more mobile animals as dispersal vectors. If multiple potential vectors are available, an active choice can allow to optimize the dispersal process and to determine the distribution of dispersal distances, i.e. an optimal dispersal kernel. We explore dispersal and vector choice in the neotropical flower mite Spadiseius calyptrogynae using a dual approach which combines experiments with an individual‐based simulation model. Spadiseius calyptrogynae is found in lowland rainforests in Costa Rica. It inhabits inflorescences of the understorey palm Calyptrogyne ghiesbreghtiana and is phoretic on a number of flower visitors including bats, beetles and stingless bees. We hypothesised that the mites should optimise their dispersal kernel by actively choosing a specific mix of potential phoretic vectors. In a simple olfactometer setup we showed that the flower mites do indeed discriminate between potential vectors. Subsequently we used an individual‐based model to analyse the evolutionary forces responsible for the observed patterns of vector choice. The mites combine vectors exhibiting long‐distance dispersal with those allowing for more localized dispersal. This results in a fat‐tailed dispersal kernel that guarantees the occasional colonization of new host plant patches (long distance) while optimizing the exploitation of clumped resources (local dispersal). Additionally, kin competition results in a preference for small vectors that transport only few individuals at a time. At the same time, these vectors lead to directed dispersal towards suitable habitat, which increases the stability of this very specialized interaction. Our findings can be applied to other phoretic systems but also to vector‐based seed dispersal, for example.  相似文献   

19.
Seed dispersal ecology of Bactris acanthocarpa Mart. (Arecaceae), an Atlantic forest understory palm, was investigated during two years as an attempt to test the following predictions: (i) seeds of Bactris are dispersed by mammals and large-gaped birds; (ii) Bactris benefits from seed dispersal in terms of seed predation avoidance, improvement of seed germination and seedling survival; and (iii) spatial distribution of adults is related to patterns of seed dispersal. The study was conducted at Dois Irmãos Reserve, a 387.4-ha reserve of Atlantic forest in northeastern Brazil (8º S–35º W). Black–rumped agoutis (Dasyprocta prymnolopha) and Guianan squirrels (Sciurus aestuans) were identified as the seed dispersers/predators, moving seeds short distances (< 4 m from parents) and at low rates (0.04-0.05 diaspore/palm/day). Pyrene burial prevented seed predation by vertebrates and reduced by half seed infestation by Scolytidae beetles. Only buried pyrenes germinated. Pyrene predation was not correlated with distance from conspecific adults. In contrast, early seedling mortality was higher near conspecific adults. Most adults (64%) had their nearest conspecific adult neighbour > 4 m away in contrast to 96% of seedlings that occurred concentrated within 4 m from adults (77% under the palm crowns). Here, we present evidence that spatial distribution of B. acanthocarpa is partly due to low rates of seed removal, short-distance seed dispersal by agoutis and squirrels, and early seedling mortality associated with presence of seedlings under palm crowns.  相似文献   

20.
Questions: How does the seed bank respond to different types of tree‐fall gaps and seasonal variations? How does the soil seed bank influence recovery of the standing vegetation in the mature forest and tree‐fall gaps? Location: 1800 — 2020 m a.s.l., Quercus‐Pinus forest, Baja California Sur, Mexico. Methods: Seed size, species composition and germination were estimated under different environmental conditions during dry and rainy seasons: a mature forest plot and gaps created by dead standing trees, snapped‐of f trees and uprooted trees. The soil seed bank was investigated using direct propagule emergence under laboratory conditions, from soil cores obtained during both seasons. Results: 21 species, 20 genera and 14 families constitute the seed bank of this forest community. Fabaceae, Asteraceae, Euphorbiaceae and Lamiaceae were the most frequently represented families in the seed bank. Floristic composition and species richness varied according to the different modes of tree death. Species composition of seed banks and standing vegetation had very low similarity coefficients and were statistically different. Seed bank sizes varied between 164 and 362 ind.m‐2 in the mature forest plot for the dry and rainy seasons, respectively, while soil seed bank sizes for gaps ranged between 23–208 ind.m‐2 forthe dry season and between 81–282 ind.m‐2 for the rainy season. Conclusions: Seed bank sizes and germination response were always higher in the rainy season under all the environmental conditions analysed. Results suggest that timing responses to gap formation of the soil seed bank could be more delayed in this temperate forest than expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号