首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mutations in the aberrant X segragation (Axs) gene disrupt the segregation of achiasmate chromosomes during female meiosis in Drosophila melanogaster. We show that Axs encodes the founding member of an eukaryotic family of transmembrane proteins. Axs protein colocalizes with components of the endoplasmic reticulum and is present within a structure ensheathing the meiotic spindle. In both meiotic and mitotic cells, Axs is recruited to the microtubules of assembling spindles. We propose that Axs and the sheath represent novel mediators of meiotic spindle assembly and chromosome segregation.  相似文献   

2.
Axs mutations disrupt both the progression of the meiotic cell cycle and meiotic chromosome segregation in Drosophila. Axs protein co-localizes with endoplasmic reticulum components and is present within a novel structure ensheathing the meiotic spindle. We show that Axs encodes the founding member of a eukaryotic family of trans-membrane proteins.  相似文献   

3.
The regular segregation of achiasmate chromosomes in Drosophila melanogaster females is ensured by two distinct segregational systems. The segregation of achiasmate homologs is assured by the maintenance of heterochromatic pairing; while the segregation of heterologous chromosomes is ensured by a separate mechanism that may not require physical association. Axs(D) (Aberrant X segregation) is a dominant mutation that specifically impairs the segregation of achiasmate homologs; heterologous achiasmate segregations are not affected. As a result, achiasmate homologs frequently participate in heterologous segregations at meiosis I. We report the isolation of two intragenic revertants of the Axs(D) mutation (Axs(r2) and Axs(r3)) that exhibit a recessive meiotic phenotype identical to that observed in Axs(D)/Axs(D) females. A third revertant (Axs(r1)) exhibits no meiotic phenotype as a homozygote, but a meiotic defect is observed in Axs(r1)/Axs(r2) females. Therefore mutations at the Axs(D) locus define a gene necessary and specific for homologous achiasmate segregation during meiosis. We also characterize the interactions of mutations at the Axs locus with two other meiotic mutations (ald and ncd). Finally, we propose a model in which Axs(+) is required for the normal separation of paired achiasmate homologs. In the absence of Axs(+) function, the homologs are often unable to separate from each other and behave as a single segregational unit that is free to segregate from heterologous chromosomes.  相似文献   

4.
A. E. Zitron  R. S. Hawley 《Genetics》1989,122(4):801-821
We describe the isolation and characterization of Aberrant X segregation (Axs), a dominant female-specific meiotic mutation. Although Axs has little or no effect on the frequency or distribution of exchange, or on the disjunction of exchange bivalents, nonexchange X chromosomes undergo nondisjunction at high frequencies in Axs/+ and Axs/Axs females. This increased X chromosome nondisjunction is shown to be a consequence of an Axs-induced defect in distributive segregation. In Axs-bearing females, fourth chromosome nondisjunction is observed only in the presence of nonexchange X chromosomes and is argued to be the result of improper X and fourth chromosome associations within the distributive system. In XX females bearing a compound fourth chromosome, the frequency of nonhomologous disjunction of the X chromosomes from the compound fourth chromosome is shown to account for at least 80% of the total X nondisjunction observed. In addition, Axs diminishes or ablates the capacity of nonexchange X chromosomes to form trivalents in females bearing either a Y chromosome or a small free duplication for the X. Axs also impairs compound X from Y segregation. The effect of Axs on these segregations parallels the defects observed for homologous nonexchange X chromosome disjunction in Axs females. In addition to its dramatic effects on the X chromosome, Axs exerts a similar effect on the segregation of a major autosome. We conclude that Axs defines a locus required for proper homolog disjunction within the distributive system.  相似文献   

5.
There are numerous examples of the regular segregation of achiasmate chromosomes at meiosis I in Drosophila melanogaster females. Classically, the choice of achiasmate segregational partners has been thought to be independent of homology, but rather made on the basis of availability or similarities in size and shape. To the contrary, we show here that heterochromatic homology plays a primary role in ensuring the proper segregation of achiasmate homologs. We observe that the heterochromatin of chromosome 4 functions as, or contains, a meiotic pairing site. We show that free duplications carrying the 4th chromosome pericentric heterochromatin induce high frequencies of 4th chromosome nondisjunction regardless of their size. Moreover, a duplication from which some of the 4th chromosome heterochromatin has been removed is unable to induce 4th chromosome nondisjunction. Similarly, in the absence of either euchromatic homology or a size similarity, duplications bearing the X chromosome heterochromatin also disrupt the segregation of two achiasmate X chromosome centromeres. Although heterochromatic regions are sufficient to conjoin nonexchange homologues, we confirm that the segregation of heterologous chromosomes is determined by size, shape, and availability. The meiotic mutation Axs differentiates between these two processes of achiasmate centromere coorientation by disrupting only the homology-dependent mechanism. Thus there are two different mechanisms by which achiasmate segregational partners are chosen. We propose that the absence of diplotene-diakinesis during female meiosis allows heterochromatic pairings to persist until prometaphase and thus to co-orient homologous centromeres. We also propose that heterologous disjunctions result from a separate and homology-independent process that likely occurs during prometaphase. The latter process, which may not require the physical association of segregational partners, is similar to those observed in many insects, in Saccharomyces cerevisiae and in C. elegans males. We also suggest that the physical basis of this process may reflect known properties of the Drosophila meiotic spindle.  相似文献   

6.

Background  

Progesterone binding to the surface of the amphibian oocyte initiates the meiotic divisions. Our previous studies with Rana pipiens oocytes indicate that progesterone binds to a plasma membrane site within the external loop between the M1 and M2 helices of the α-subunit of Na/K-ATPase, triggering a cascade of lipid second messengers and the release of the block at meiotic prophase. We have characterized this site, using a low affinity ouabain binding isoform of the α1-subunit.  相似文献   

7.
Morrill GA  Kostellow AB  Askari A 《Steroids》2012,77(11):1160-1168
Progesterone and its polar metabolite(s) trigger the meiotic divisions in the amphibian oocyte through a non-genomic signaling system at the plasma membrane. Published site-directed mutagenesis studies of ouabain binding and progesterone-ouabain competition studies indicate that progesterone binds to a 23 amino acid extracellular loop of the plasma membrane α-subunit of Na/K-ATPase. Integral membrane proteins such as caveolins are reported to form Na/K-ATPase-peptide complexes essential for signal transduction. We have characterized the progesterone-induced Na/K-ATPase-caveolin (CAV-1)-steroid 5α-reductase interactions initiating the meiotic divisions. Peptide sequence analysis algorithms indicate that CAV-1 contains two plasma membrane spanning helices, separated by as few as 1-2 amino acid residues at the cell surface. The CAV-1 scaffolding domain, reported to interact with CAV-1 binding (CB) motifs in signaling proteins, overlaps transmembrane (TM) helix 1. The α-subunit of Na/K-ATPase (10 TM helices) contains double CB motifs within TM-1 and TM-10. Steroid 5α-reductase (6 TM helices), an initial step in polar steroid formation, contains CB motifs overlapping TM-1 and TM-6. Computer analysis predicts that interaction between antipathic strands may bring CB motifs and scaffolding domains into close proximity, initiating allostearic changes. Progesterone binding to the α-subunit may thus facilitate CB motif:CAV-1 interaction, which in turn induces helix-helix interaction and generates both a signaling cascade and formation of polar steroids.  相似文献   

8.
During the course of meiotic prophase, intrinsic double-strand breaks (DSBs) must be repaired before the cell can engage in meiotic nuclear division. Here we investigate the mechanism that controls the meiotic progression in Schizosaccharomyces pombe that have accumulated excess meiotic DSBs. A meiotic recombination-defective mutant, meu13Delta, shows a delay in meiotic progression. This delay is dependent on rec12+, namely on DSB formation. Pulsed-field gel electrophoresis analysis revealed that meiotic DSB repair in meu13Delta was retarded. We also found that the delay in entering nuclear division was dependent on the checkpoint rad+, cds1+ and mek1+ (the meiotic paralog of Cds1/Chk2). This implies that these genes are involved in a checkpoint that provides time to repair DSBs. Consistently, the induction of an excess of extrinsic DSBs by ionizing radiation delayed meiotic progression in a rad17(+)-dependent manner. dmc1Delta also shows meiotic delay, however, this delay is independent of rec12+ and checkpoint rad+. We propose that checkpoint monitoring of the status of meiotic DSB repair exists in fission yeast and that defects other than DSB accumulation can cause delays in meiotic progression.  相似文献   

9.
It has been established that meiotic recombination and chromosome segregation are inhibited when meiotic DNA replication is blocked. Here we demonstrate that early meiotic gene (EMG) expression is also inhibited by a block in replication. Since early meiotic genes are required to promote meiotic recombination and DNA division, the low expression of these genes may contribute to the block in meiotic progression. We have identified three Hur- (HU reduced recombination) mutants that fail to couple meiotic recombination and gene expression with replication. One of these mutations is in RPD3, a gene required to maintain meiotic gene repression in mitotic cells. Complete deletions of RPD3 and the repression adapter SIN3 permitted recombination and early meiotic gene expression when replication was inhibited with hydroxyurea (HU). Biochemical analysis showed that the Rpd3p-Sin3p-Ume6p repression complex does exist in meiotic cells. These observations suggest that repression of early meiotic genes by SIN3 and RPD3 is critical for the normal response to inhibited replication. A second response to inhibited replication has also been discovered. HU-inhibited replication reduced the accumulation of phospho-Ume6p in meiotic cells. Phosphorylation of Ume6p normally promotes interaction with the meiotic activator Ime1p, thereby activating EMG expression. Thus, inhibited replication may also reduce the Ume6p-dependent activation of EMGs. Taken together, our data suggest that both active repression and reduced activation combine to inhibit EMG expression when replication is inhibited.  相似文献   

10.
In starfish oocytes, activity of the maturation-promoting factor (MPF) and that of a major cAMP-independent protein kinase dropped at the time of meiotic cleavage, and rose again after the first but not the second meiotic cleavage. Protein synthesis was required before the first meiotic cleavage for both MPF and protein kinase activity to rise again after the first meiotic cleavage. Microinjection of either leupeptin or soybean trypsin inhibitor early enough prior to first polar body emission suppressed both the meiotic cleavage and the associated drop of MPF activity. Microinjection of leupeptin or soybean trypsin inhibitor during the 10-min period before the first meiotic cleavage also suppressed cytokinesis but did not prevent a decrease in MPF activity at the normal time of cytokinesis. The lysosomotropic inhibitor ammonia neither suppressed cytokinesis nor the drop of MPF activity at the time of first meiotic cleavage. Activity of neutral proteases sensitive to leupeptin and soybean trypsin inhibitor was demonstrated in oocyte homogenates prepared at the time of first meiotic cleavage. It is proposed that such proteases might be involved in degradation of protein kinase(s) and in the drop of MPF activity at the time of first meiotic cleavage.  相似文献   

11.
12.
13.
DNA double-strand breaks (DSBs) are introduced into the genome to initiate meiotic recombination. Their accurate repair is monitored by the meiotic recombination checkpoint that prevents nuclear division until completion of meiotic DSB repair. We show that the Saccharomyces cerevisiae Sae2 protein, known to be involved in processing meiotic DSBs, is phosphorylated periodically during the meiotic cycle. Sae2 phosphorylation occurs at the onset of premeiotic S phase, is maximal at the time of meiotic DSB generation and decreases when DSBs are repaired by homologous recombination. Hyperactivation of the meiotic recombination checkpoint caused by the failure to repair DSBs results in accumulation and persistence of phosphorylated Sae2, indicating a possible link between checkpoint activation and meiosis-induced Sae2 phosphorylation. Accordingly, Sae2 phosphorylation depends on the checkpoint kinases Mec1 and Tel1, whose simultaneous deletion also impairs meiotic DSB repair. Moreover, replacing with alanines the Sae2 serine and threonine residues belonging to Mec1/Tel1-dependent putative phosphorylation sites impairs not only Sae2 phosphorylation during meiosis, but also meiotic DSB repair. Thus,checkpoint-mediated phosphorylation of Sae2 is important to support its meiotic recombinationfunctions.  相似文献   

14.
DNA double-strand breaks (DSBs) are highly hazardous for genome integrity, but meiotic cells deliberately introduce them into their genome in order to initiate homologous recombination, which ensures proper homologous chromosome segregation. To minimize the risk of deleterious effects, meiotic DSB formation, processing and repair are tightly regulated in order to occur only at the right time and place. Furthermore, a highly conserved signal-transduction pathway, called meiotic recombination checkpoint, coordinates DSB repair with meiotic progression and promotes meiotic recombination.  相似文献   

15.
Experiments were carried out to determine the origin of cortical polarity in mouse eggs and its possible relation to the meiotic apparatus. Cortices of mature eggs overlying the meiotic apparatus (microvillus-free area) were distinguished by an absence of microvilli and a thickened layer of actin. In contrast, the surfaces of immature oocytes were covered entirely with a dense population of microvilli and were subtended by a uniform layer of actin. When induced to undergo maturation, meiotic spindles formed in the center of immature oocytes and then moved peripherally. Coincident with the cortical localization of the meiotic spindle was the formation of a microvillus-free area, i.e., a loss of microvilli and a thickening of the actin layer associated with this region of the egg cortex. If immature oocytes were incubated in cytochalasin B, meiotic spindles formed; however, they failed to move peripherally and microvillus-free areas did not develop. Oocytes incubated in colchicine did not form meiotic spindles, although the chromosomes condensed and became localized to cortices where microvillus-free areas developed. Cytochalasin B-treated mature eggs maintained intact meiotic spindles and exhibited a disappearance of microvillus-free areas and a reduction in cortical actin. The chromosomes of mature eggs treated with colchicine remained associated with microvillus-free areas despite the disappearance of meiotic spindles. Occasionally, colchicine-treated eggs possessed more than one cortically located mass of chromosomes, each of which was associated with a microvillus-free area. These observations indicate that mechanisms involving the movement of the meiotic spindle to the oocyte cortex and development and maintenance of cortical polarity are cytochalasin B sensitive. Commensurate with the localization of meiotic chromosomes to the egg cortex is the reorganization of cortical actin and the formation of a microvillus-free area.  相似文献   

16.
Meiosis is a defining feature of eukaryotes but its phylogenetic distribution has not been broadly determined, especially among eukaryotic microorganisms (i.e. protists)-which represent the majority of eukaryotic 'supergroups'. We surveyed genomes of animals, fungi, plants and protists for meiotic genes, focusing on the evolutionarily divergent parasitic protist Trichomonas vaginalis. We identified homologs of 29 components of the meiotic recombination machinery, as well as the synaptonemal and meiotic sister chromatid cohesion complexes. T. vaginalis has orthologs of 27 of 29 meiotic genes, including eight of nine genes that encode meiosis-specific proteins in model organisms. Although meiosis has not been observed in T. vaginalis, our findings suggest it is either currently sexual or a recent asexual, consistent with observed, albeit unusual, sexual cycles in their distant parabasalid relatives, the hypermastigotes. T. vaginalis may use meiotic gene homologs to mediate homologous recombination and genetic exchange. Overall, this expanded inventory of meiotic genes forms a useful "meiosis detection toolkit". Our analyses indicate that these meiotic genes arose, or were already present, early in eukaryotic evolution; thus, the eukaryotic cenancestor contained most or all components of this set and was likely capable of performing meiotic recombination using near-universal meiotic machinery.  相似文献   

17.
18.
The meiotic recombination checkpoint is a signalling pathway that blocks meiotic progression when the repair of DNA breaks formed during recombination is delayed. In comparison to the signalling pathway itself, however, the molecular targets of the checkpoint that control meiotic progression are not well understood in metazoans. In Drosophila, activation of the meiotic checkpoint is known to prevent formation of the karyosome, a meiosis-specific organisation of chromosomes, but the molecular pathway by which this occurs remains to be identified. Here we show that the conserved kinase NHK-1 (Drosophila Vrk-1) is a crucial meiotic regulator controlled by the meiotic checkpoint. An nhk-1 mutation, whilst resulting in karyosome defects, does so independent of meiotic checkpoint activation. Rather, we find unrepaired DNA breaks formed during recombination suppress NHK-1 activity (inferred from the phosphorylation level of one of its substrates) through the meiotic checkpoint. Additionally DNA breaks induced by X-rays in cultured cells also suppress NHK-1 kinase activity. Unrepaired DNA breaks in oocytes also delay other NHK-1 dependent nuclear events, such as synaptonemal complex disassembly and condensin loading onto chromosomes. Therefore we propose that NHK-1 is a crucial regulator of meiosis and that the meiotic checkpoint suppresses NHK-1 activity to prevent oocyte nuclear reorganisation until DNA breaks are repaired.  相似文献   

19.
Four loci on abnormal chromosome 10 contribute to meiotic drive in maize   总被引:2,自引:0,他引:2  
Hiatt EN  Dawe RK 《Genetics》2003,164(2):699-709
We provide a genetic analysis of the meiotic drive system on maize abnormal chromosome 10 (Ab10) that causes preferential segregation of specific chromosomal regions to the reproductive megaspore. The data indicate that at least four chromosomal regions contribute to meiotic drive, each providing distinct functions that can be differentiated from each other genetically and/or phenotypically. Previous reports established that meiotic drive requires neocentromere activity at specific tandem repeat arrays (knobs) and that two regions on Ab10 are involved in trans-activating neocentromeres. Here we confirm and extend data suggesting that only one of the neocentromere-activating regions is sufficient to move many knobs. We also confirm the localization of a locus/loci on Ab10, thought to be a prerequisite for meiotic drive, which promotes recombination in structural heterozygotes. In addition, we identified two new and independent functions required for meiotic drive. One was identified through the characterization of a deletion derivative of Ab10 [Df(L)] and another as a newly identified meiotic drive mutation (suppressor of meiotic drive 3). In the absence of either function, meiotic drive is abolished but neocentromere activity and the recombination effect typical of Ab10 are unaffected. These results demonstrate that neocentromere activity and increased recombination are not the only events required for meiotic drive.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号