首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms of penetration of Phytophthora cinnamomi Rands into seedling eucalypt roots were studied by light and electron microscopy. Culture grown seedlings of root-rot tolerant Eucalyptus st johnii and root-rot susceptible Eucalyptus obliqua were inoculated with both zoospores and mycelium. Zoospores encysted on roots of both species and the germ tubes penetrated without the formation of appressoria. Swellings, previously described as appressoria, were formed when the germ tube was slow to enter the host by intracellular penetration. Vegetative hyphae penetrated both inter- and intracellularly into the zones of root elongation and differentiation, often through root hairs. Evidence of hydrolysis of the host cell-wall at the point of penetration was observed in electron micrographs. Several hours after the germ tube penetrated the epidermis, a thick plug of amorphous material formed in the germ tube slightly below the level of the outer walls of the epidermal cells, sealing off the hypha within the root. Behaviour of zoospores and germ tubes and the mechanism of penetration were similar on both hosts. Micrographs do not suggest any kind of a hypersensitive reaction by the host cells during the early stages of infection.  相似文献   

2.
Bacillus cereus UW85 suppresses seedling damping-off diseases caused by Oomycetes and produces antibiotics that inhibit development of Oomycetes in culture. The goal of this study was to determine how UW85 and its antibiotics affected the behavior of an Oomycete, Pythium torulosum, in its interaction with plant roots. We studied tobacco seedlings inoculated with zoospores of P. torulosum and UW85 culture, culture filtrate, washed cells, antibiotics (zwittermicin A or kanosamine), purified from cultures of UW85, and UW030, a mutant of UW85 that does not suppress disease and does not produce the antibiotics. Microscopic observation revealed that all of the treatments inhibited zoospore activity around roots and encystment on roots. Treatment with UW85 culture, culture filtrate, zwittermicin A, or kanosamine delayed cyst germination and the elongation rate of germ tubes, whereas treatment with UW030 or washed UW85 cells did not. In an in vitro seedling bioassay of disease suppression, the antibiotics, zwittermicin A and kanosamine, suppressed disease singly or together, although UW85 culture suppressed disease more effectively than did the antibiotics. The results show that B. cereus cultures affect zoospore behavior in the presence of roots, and B. cereus-produced antibiotics, zwittermicin A and kanosamine, contribute to disease suppression and inhibition of germ tube elongation in the presence of the plant root. Received: 9 September 1998 / Accepted: 13 October 1998  相似文献   

3.
Development of tobacco root systems was characterized under controlled environmental conditions by use of morphometric root analysis. According to the classification scheme of this system, roots terminating in apical meristems are defined as first-order roots. Elements of second-order roots begin where two first-order roots merge, and so forth. Growth of root systems was similar for susceptible and resistant tobacco cultivars in nonautoclaved and autoclaved soils. During 15 days of growth subsequent to transplanting of 2-week-old plants, relative multiplication and extension rates of first-order and second-order roots were constant. Apparent unit extension rates of first-order and second-order root elements increased through 15 days of root system growth. Classification of tobacco root systems by the morphometric scheme provided a useful means of partitioning susceptibility of tissues to infection byPhytophthora parasitica var.nicotianae. Zoospores applied at the tips of first-order roots were most successful in causing infections; 73.3% of the roots inoculated with 16 zoospores per root tip became infected. Percentages of infections after inoculation of first-order root tissues 2 cm behind root tips or after inoculation of second-order roots were 10 and 4.3%, respectively.Florida Agricultural Experiment Station, Journal Series Paper 8106.  相似文献   

4.
Since the summer 2017, severe decline symptoms have been observed on 10- to 25-year-old avocado trees in almost all commercial orchards planted in the Mediterranean coastal region of Turkey. Young, newly planted trees in infected orchards were also affected by the disease. Affected trees showed wilting, leaf discoloration, defoliation and severe dieback. Some trees were completely desiccated. Although fine roots of symptomatic trees usually were decayed, reddish brown cankers also occurred on taproots and lateral roots of heavily infected trees. The pathogens were isolated from necrotic root and soil samples of symptomatic trees, using selective medium and soil baiting, and were identified based on morphological features and DNA sequences of the internal transcribed spacer (ITS) region. One isolate each of Phytophthora cryptogea and P. palmivora was identified, while all other isolates were P. cinnamomi. In addition, a subcortical fan-shaped mycelium, characteristic of Armillaria spp., was observed in the stem base of a symptomatic tree and identified as Armillaria gallica by DNA sequences of the internal transcribed spacer (ITS) and the translational elongation factor 1-α (EF 1-α) gene regions. Pathogenicity of Phytophthora isolates was tested by stem inoculation on one-year-old avocado seedlings. Two months after inoculation, canker lesions developed on stems of seedlings inoculated by any of the three Phytophthora spp. In contrast, collenchyma callus formed over the wound points on control plants over the same time period. This is the first report of P. cinnamomi, P. cryptogea, P. palmivora and A. gallica causing root rot of avocado trees in Turkey. In addition, P. cryptogea and A. gallica are reported for the first time associated with disease on this host. Due to the severe symptoms and widespread occurrence, P. cinnamomi should be considered a potential threat to avocado cultivation and natural ecosystems of this region of Turkey.  相似文献   

5.
Summary Biflagellate zoospores from the giant kelpMacrocystis pyrifera underwent germination after adhering to a substrate and produced germ tubes that were approximately 13–15 m in length. Coincident with the germ tube elongation was organelle (other than the nucleus) translocation along the tube. Shortly after formation of the germ tube, the zoospore nucleus divided and one daughter nucleus translocated along the germ tube. The nucleus did not appear to undergo chromosomal condensation prior to division. The nuclear division and/or translocation of the daughter nucleus did not begin until well after germ tube elongation was complete, demonstrating that these are temporally distinct developmental events. The translocation of one daughter nucleus coincided with differentiation of the distal end of the germ tube into a bulbous structure. Following this, the first gametophytic cross wall was formed and, subsequently, the daughter nucleus remaining in the original zoospore body underwent repositioning, assuming a position in the germ tube near the cross wall. Cytochalasin D inhibited germ tube elongation suggesting that actin microfilaments are probably involved in this developmental process. In addition, when cytochalasin D was added to the culture after the germ tube elongation was complete, it did not affect either nuclear division or translocation, indicating that microfilaments were not directly involved in these nuclear events. Colchicine and the plant specific microtubule disrupting agent, amiprophos methyl blocked nuclear division and translocation without affecting germination or germ tube elongation. These data suggest that actin microfilaments are primarily responsible for complete germination, specifically germ tube elongation, while microtubules are involved in nuclear division and translocation. The present study demonstrates that germination (and germ tube elongation) and nuclear translocation inM. pyrifera gametophytes are temporally and mechanistically distinct developmental events.  相似文献   

6.
Life Cycle of <Emphasis Type="Italic">Plasmodiophora brassicae</Emphasis>   总被引:1,自引:0,他引:1  
Plasmodiphora brassicae is a soil-borne obligate parasite. The pathogen has three stages in its life cycle: survival in soil, root hair infection, and cortical infection. Resting spores of P. brassicae have a great ability to survive in soil. These resting spores release primary zoospores. When a zoospore reaches the surface of a root hair, it penetrates through the cell wall. This stage is termed the root hair infection stage. Inside root hairs the pathogen forms primary plasmodia. A number of nuclear divisions occur synchronously in the plasmodia, followed by cleavage into zoosporangia. Later, 4–16 secondary zoospores are formed in each zoosporangium and released into the soil. Secondary zoospores penetrate the cortical tissues of the main roots, a process called cortical infection. Inside invaded roots cells, the pathogen develops into secondary plasmodia which are associated with cellular hypertrophy, followed by gall formation in the tissues. The plasmodia finally develop into a new generation of resting spores, followed by their release back into soil as survival structures. In vitro dual cultures of P. brassicae with hairy root culture and suspension cultures have been developed to provide a way to nondestructively observe the growth of this pathogen within host cells. The development of P. brassicae in the hairy roots was similar to that found in intact plants. The observations of the cortical infection stage suggest that swelling of P. brassicae-infected cells and abnormal cell division of P. brassicae-infected and adjacent cells will induce hypertrophy and that movement of plasmodia by cytoplasmic streaming increases the number of P. brassicae-infected cells during cell division.  相似文献   

7.
The curvature of roots in response to gravity is attributed to the development of a differential concentration gradient of IAA in the top and bottom of the elongation region of roots. The development of the IAA gradient has been attributed to the redistribution of IAA from the stele to cortical tissues in the elongation region. The gravistimulated redistribution of IAA was investigated by applying [3H]IAA to the cut surface of 5 mm apical primary root segments. The movement of label from the stele-associated [3H]IAA into the root, tip, root cap, and cortical tissues on the top and bottom of the elongation region was determined in vertically growing roots and gravistimulated roots. Label from the stele moved into the region of cell differentiation (root tip) prior to accumulating in the elongation region. Little label was observed in the root cap. Gravistimulation did not increase the amount of label moving from the stele; but gravistimulation did increase the amount of label accumulating in cortical tissues on the lower side of the elongation region, and decreased the amount of label accumulating in cortical tissues on the upper side of the elongation region. Removal of the cap prior to or immediately following gravity stimulation rendered the roots partially insensitive to gravity and also prevented gravity-induced asymmetric redistribution of label. However, removal of the root cap following 30 min of gravistimulation did not alter root curvature or the establishment of an IAA asymmetry across the region of root elongation. These results suggest that a signal originating in the root cap directs auxin redistribution in tissues behind the root cap, leading to the development of an asymmetry of IAA concentration in the elongation region that in turn causes the differential growth rate in the elongation region of a graviresponding root.  相似文献   

8.
The curvature of roots in response to gravity is attributed to the development of a differential concentration gradient of IAA in the top and bottom of the elongation region of roots. The development of the IAA gradient has been attributed to the redistribution of IAA from the stele to cortical tissues in the elongation region. The gravistimulated redistribution of IAA was investigated by applying [3H]IAA to the cut surface of 5 mm apical primary root segments. The movement of label from the stele-associated [3H]IAA into the root, tip, root cap, and cortical tissues on the top and bottom of the elongation region was determined in vertically growing roots and gravistimulated roots. Label from the stele moved into the region of cell differentiation (root tip) prior to accumulating in the elongation region. Little label was observed in the root cap. Gravistimulation did not increase the amount of label moving from the stele; but gravistimulation did increase the amount of label accumulating in cortical tissues on the lower side of the elongation region, and decreased the amount of label accumulating in cortical tissues on the upper side of the elongation region. Removal of the cap prior to or immediately following gravity stimulation rendered the roots partially insensitive to gravity and also prevented gravity-induced asymmetric redistribution of label. However, removal of the root cap following 30 min of gravistimulation did not alter root curvature or the establishment of an IAA asymmetry across the region of root elongation. These results suggest that a signal originating in the root cap directs auxin redistribution in tissues behind the root cap, leading to the development of an asymmetry of IAA concentration in the elongation region that in turn causes the differential growth rate in the elongation region of a graviresponding root.  相似文献   

9.
Two-day-old wheat seedlings were placed on the edge of a P. arrhenomanes culture for 3 h at 25°C, and transferred into test tubes (18 mm dia.) containing glass beads and 1 ml of sterile water. Roots were sampled every 6 or 12 h for 84 h, and observed with the scanning electron microscope, or serial sectioned for light microscopy. Roots were colonized extensively in the region of root hair formation near the tip within 30 h after inoculation. Extensive penetration occurred 0.1—2 mm behind the root tip, with hyphae breaching the endodermis and gaining entry into the stele. Behind this area, hyphae remained limited to the outer cortical cells, or did not penetrate at all. Hyphae grew intracellularly, and became irregularly inflated inside cells. In most cases, hyphae penetrated the roots directly through the epidermis with appressoria being formed, or through breaks on the surface. However, histological evidence suggested chemical action taking place both outside and inside the cells.  相似文献   

10.
Cuttings of Agathis australis (D. Don) Lindl passed through a well-defined series of morphological changes prior to root emergence. These phases were incorporated into a morphological index which can be used as a guide for the selection of cuttings at known developmental and anatomical stages. After a variable period (lag phase) during which no external change occurred there was an increase in stem diameter a few milimetres above the cut base. This swelling gradually increased in size and isolated bulges developed. Longitudinal splits then arose in the epidermis over the bulges, followed by root emergence through the splits. Root initiation occurred shortly after the sub-basal swelling commenced in cuttings that eventually rooted. Removal of the basal 8 mm of a rooted cutting (which included the roots) usually led to re-rooting of the cuttings. However, if the roots were merely trimmed off, the cutting never formed new roots and always died. The basal region apparently has the capacity to produce only one set of roots. Occasionally the stem diameter continued to increase and the swelling extended to include the basal region. Such cuttings never formed isolated wellings and never rooted.
In general the younger the plant from which the cutting was taken, the shorter the lag phase and the higher the final percentage rooting. Cuttings taken from older plants had a lower rooting percentage and a more variable lag phase, which was related to the time of year the cuttings were taken since root emergence always occurred in spring. Irrespective of the age of the original material there was a constant time period (3–4 weeks) from root initiation to root emergence.  相似文献   

11.
The effect of two Azospirillum strains (SP-7, Dol) was compared on root proton efflux and root enlargement of three wheat cultivars (Ghods, Omid and Roshan). Root colonization varied greatly among strain–plant combinations. Inoculation enhanced proton efflux and root elongation of wheat roots but this effect was directly dependent on the strain–plant combination. Strain SP-7 stimulated the greatest proton efflux and root elongation in cv. Roshan, whereas strain Dol induced the best effect on both these phenomena in cv. Ghods. Based on positive correlation between these two phenomena, it was suggests that proton efflux is related to increasing of root length by Azospirillum inoculation. The number of bacteria of both Azospirillum strains in root of cv. Omid was less than the other cultivars. Proton extrusion and root elongation of cv. Omid failed to respond significantly with these two strains. This may be due to incompatible host-strain combination. Thus compatible strains are necessary for increasing of proton efflux and root extension in wheat cultivars.  相似文献   

12.
Root production of four cultivars of flue-cured tobacco was quantified in the field, greenhouse and phytotron. The cultivars ranged in level of partial resistance to the black shank pathogen, Phytophthora parasitica var. nicotianae, from susceptible to highly resistant. In the field, root-observation plates were installed approximately 10 cm from plants, and in greenhouse and phytotron studies, plants were grown in 4-liter containers with one sloping transparent side for root observation. Root growth was determined weekly for four weeks after transplanting in the field and daily up to 14 days after transplanting in the greenhouse and phytotron. Root tracings were made on acetate sheets placed against the sloping transparent side of the containers or against the transparent observation plates in the field following removal of soil from the outside of the observation plate. Root growth was quantified by retracing the root pattern on the acetate sheets over a digitizing tablet attached to a personal computer. Numbers of roots, root length, and mean and maximum rate of root growth were determined. Cultivars Hicks (susceptible) and K-326 (low level of resistance) had significantly larger root systems than moderately resistant G-28 or highly resistant NC 82. Differences in total root length were due to increased branching that resulted in development of significantly greater numbers of roots in Hicks and K-326. For example, between day 21 and 28, Hicks produced more than three times the number of new roots as NC 82 in the field. The mean rate of root extension observed (2.17 mm hr–1) was similar in all four cultivars. Infection efficiency on the different cultivars was determined in the field by inoculating roots with zoospores of P. p. nicotianae. Lesions were visible as water soaked areas within 24 hr of inoculation. At 48 hr after inoculation, percentages of inoculations that resulted in lesion formation were 57, 46, 23, and 16% for Hicks, K-326, G-28 and NC 82, respectively. The possible role of rooting intensity as a mechanism of avoidance to P. p. nicotianae in tobacco cultivars is discussed.  相似文献   

13.
The differential regulation of the activities and amounts of mRNAs for two enzymes involved in isoflavonoid phytoalexin biosynthesis in soybean was studied during the early stages after inoculation of primary roots with zoospores from either race 1 (incompatible, host resistant) or race 3 (compatible, host susceptible) of Phytophthora megasperma f.sp. glycinea, the causal fungus of root rot disease. In the incompatible interaction, cloned cDNAs were used to demonstrate that the amounts of phenylalanine ammonia-lyase and chalcone synthase mRNAs increased rapidly at the time of penetration of fungal germ tubes into epidermal cell layers (1–2 h after inoculation) concomitant with the onset of phytoalxxin accumulation; highest levels were reached after about 7 h. In the compatible interaction, only a slight early enhancement of mRNA levels was found and no further increase occurred until about 9 h after inoculation. The time course for changes in the activity of chalcone synthase mRNA also showed major differences between the incompatible and compatible interaction. The observed kinetics for the stimulation of mRNA expression related to phytoalexin synthesis in soybean roots lends further support to the hypothesis that phytoalexin production is an early defense response in the incompatible plant-fungus interaction. The kinetics for the enhancement of mRNA expression after treatment of soybean cell suspension cultures with a glucan elicitor derived from P. megasperma cell walls was similar to that measured during the early stages of the resistant response of soybean roots.Abbreviations cDNA copy DNA - CHS chalcone synthase - PAL phenylalanine ammonia-lyase  相似文献   

14.
Previous work has shown that the contact inhibition that occurs among roots of Ambrosia dumosa shrubs has a self/nonself recognition capability. In the current study, we investigated some of the geographic and genotypic dimensions of this recognition capability by using root observation chambers to observe the effects of encounters of individual roots on root elongation rates. We measured such effects in encounters between roots of plants from the same region and compared these to effects in encounters between roots of plants from two different regions. We also measured effects of encounters between roots of plants from the same clones and compared these to effects of encounters of roots of plants from different clones. Roots of plants from the same region (population) showed the usual “nonself” precipitous decline in elongation rates following contact, but when roots of plants from different regions contacted each other, elongation rates continued unchanged. When roots of separate plants from the same clone contacted each other, the same “nonself” precipitous decline in elongation rates as seen in encounters between roots of plants of different clones from the same region occurred. Meanwhile, in these same experiments “self” contacts between sister roots connected to the same plants resulted in no changes in elongation rates. Thus, differences between individuals from two geographically separate populations of Ambrosia dumosa may be sufficient to thwart the “nonself,” population-level recognition of similarity apparently necessary for contact inhibition. Furthermore, the “self” recognition mechanism, which precludes contact inhibition between two roots on the same plant, appears to be physiological rather than genetic in nature.  相似文献   

15.
Fan L  Neumann PM 《Plant physiology》2004,135(4):2291-2300
Growth of elongating primary roots of maize (Zea mays) seedlings was approximately 50% inhibited after 48 h in aerated nutrient solution under water deficit induced by polyethylene glycol 6000 at -0.5 MPa water potential. Proton flux along the root elongation zone was assayed by high resolution analyses of images of acid diffusion around roots contacted for 5 min with pH indicator gel. Profiles of root segmental elongation correlated qualitatively and quantitatively (r(2) = 0.74) with proton flux along the surface of the elongation zone from water-deficit and control treatments. Proton flux and segmental elongation in roots under water deficit were remarkably well maintained in the region 0 to 3 mm behind the root tip and were inhibited from 3 to 10 mm behind the tip. Associated changes in apoplastic pH inside epidermal cell walls were measured in three defined regions along the root elongation zone by confocal laser scanning microscopy using a ratiometric method. Finally, external acidification of roots was shown to specifically induce a partial reversal of growth inhibition by water deficit in the central region of the elongation zone. These new findings, plus evidence in the literature concerning increases induced by acid pH in wall-extensibility parameters, lead us to propose that the apparently adaptive maintenance of growth 0 to 3 mm behind the tip in maize primary roots under water deficit and the associated inhibition of growth further behind the tip are related to spatially variable changes in proton pumping into expanding cell walls.  相似文献   

16.
Five groundnut cultivars were grown in transparent tubes of pasteurized loam compost in growth-chamber conditions. Weekly tracings were made of all the roots visible through the walls of the tubes. White roots were assessed as living, and brown or decayed roots as dead; this correlated with microscopical assessments of root viability based on cytoplasmic staining with neutral red followed by plasmolysis.For all five cultivars, root laterals began to die 3–4 weeks after plants were sown. Death of root laterals progressed down the soil profile with time, while new roots were produced successively deeper from the extending taproot. The half-life of individual roots was calculated as 3.7–4.4 weeks for all cultivars, based on assessments of the roots that died up to plant maturity (14–20 weeks, depending on cultivar). At maturity, 73–83% of the cumulative length of root systems had died. The onset and rate of root death were not related to onset of flowering or pod-filling; instead, the peak times of root death at different distances down the root system were related to earlier (3–5 week) peak times of root production in those regions. The net result of root turnover was that, despite continued new root production, the maximum length of living (white) roots of each cultivar was recorded at 2–4 weeks after sowing. Death of the earliest formed root laterals was also observed in the first five weeks after sowing of groundnut in an experimental field plot in Malawi. Progressive root turnover is considered to be a normal feature of groundnut, perhaps representing an energy-economy strategy.  相似文献   

17.
Primary roots of Zea mays cv. Ageotropic are nonresponsive to gravity and elongate approximately 0.80 mm h?1. Applying mucilage-like material (K-Y Jelly) to the terminal 1.5 cm of these roots induces graviresponsiveness and slow elongation 28% (i.e. from 0.80 to 0.58mm h?1). Applying mucilage-like material to one side of the terminal 1.5 cm of the root induces curvature toward the mucilage, irrespective of the root's orientation to gravity. Applying a 2-mm-wideband of mucilage-like material to a root's circumference 8 to 10 mm behind the root cap neither induces gravicurvature nor affects elongation significantly. Similarly, applying mucilage-like material to only the root cap does not significantly affect elongation or graviresponsiveness. Gravicurvature of mutant roots occurs only when mucilage-like material is applied to the root/root-cap junction. Reversing the caps of wild-type and mutant roots produces gravitropic responses characteristic of the root cap rather than the host root. These results are consistent with the suggestion that gravitropic effectors are growth inhibitors that move apoplastically through mucilage between the root cap and root.  相似文献   

18.
Axial force was applied to the root tip of corn (Zea mays L. cv. Merit) seedlings using a computerized, feedback-controlled mechanical device. The system's feedback capability allowed continuous control of a constant tip load, and the attached displacement transducer provided the time course of root elongation. Loads up to 7.5 g decreased the root elongation rate by 0.13 mm h-1 g-1, but loads 7.5 to 17.5 g decreased the growth rate by only 0.04 mm h-1 g-1. Loads higher than 18 g stopped root elongation completely. Measurement of the cross-sectional areas of the root tips indicated that the 18 g load had applied about 0.98 MPa of axial pressure to the root, thereby exceeding the root's ability to respond with increased turgor pressure. Recorded time-lapse images of loaded roots showed that radial thickening (swelling) occurred behind the root cap, whose cross-sectional area increased with tip load.  相似文献   

19.
Contractile roots of Hyacinthus orientalis L. cv ‘Pink Pearl’ shorten as a result of growth of inner cortical cells which expand radially and contract longitudinally. Brief treatment with IAA (indole-3-acetic acid—0.5 and 1.0 mg/1) induces subapical swelling, root cap proliferation and decreased rates of elongation in potentially contractile roots. Growth resumes with removal of IAA from the culture medium and contraction subsequently occurs. The pattern of subsequent contraction is affected by prior IAA treatment; contraction occurs in the normal manner both acropetal and basipetal to the points of IAA-induced swelling, but does not occur in the swollen region itself. Microscopic examination of the swollen region reveals that cells of the middle and outer cortex are radially expanded and longitudinally shortened relative to middle and outer cortical cells of contracted and uncontracted portions of the same root and control roots. In contrast, inner cortical cells in swollen regions of IAA-treated roots show approximately 50% less radial expansion than inner cortical cells of control contracted roots. Middle and outer cortical cells in the swollen region of IAA-treated roots undergo radial expansion, while middle and outer cortical cells in adjacent contracting zones are compressed by radially expanding inner cortical cells. Average volumes of cortical cells in the IAA-induced swollen region increased approximately two-fold when contraction occurred in adjacent regions. These results suggest that in hyacinth roots, under certain circumstances, inner and outer cortical cells alike possess the ability for growth reorientation and expansion. However, during the usual course of contractile root development, cells of the outer cortex are restricted in this ability, through an as yet unknown mechanism, and are passively compressed by the radially expanding inner cortical cells.  相似文献   

20.
Plasmodiophorid parasites in the genus Polymyxa infect roots by means of zoospores and transmit more than 15 soil-borne viruses in a wide range of arable crops. Barley mutants, selected for variations in root hair formation and morphology, were used to demonstrate that root hairs were important but not essential for infection by zoospores of Polymyxa graminis . The relative rates of parasite establishment in roots were determined indirectly as the relative number of zoospores released by roots inoculated with P. graminis in wild-type and mutant plants. The number of P. graminis zoospores released per gram root fresh weight was significantly reduced in brb and rhl1 . b mutants, both of which have no root hairs. This is an important result because there are no natural sources of resistance to P. graminis. Reducing infection levels of viruliferous P. graminis will slow the build up of virus inoculum in the soil and the selection of strains able to overcome the virus resistance in current cereal cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号