首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Androgens are required for the maintenance of normal sexual activity in adulthood and for enhancing muscle growth and lean body mass in adolescents and adults. Androgen receptor (AR) ligands with tissue selectivity (selective androgen receptor modulators, or SARMs) have potential for treating muscle wasting, hypogonadism of aging, osteoporosis, female sexual dysfunction, and other indications. JNJ-37654032 is a nonsteroidal AR ligand with mixed agonist and antagonist activity in androgen-responsive cell-based assays. It is an orally active SARM with muscle selectivity in orchidectomized rat models. It stimulated growth of the levator ani muscle with ED(50) 0.8 mg/kg, stimulating maximal growth at a dose of 3mg/kg. In contrast, it stimulated ventral prostate growth to 21% of its full size at 3mg/kg. At the same time, JNJ-37654032 reduced prostate weight in intact rats by 47% at 3mg/kg, while having no inhibitory effect on muscle. Using magnetic resonance imaging to monitor body composition, JNJ-37654032 restored about 20% of the lean body mass lost following orchidectomy in aged rats. JNJ-37654032 reduced follicle-stimulating hormone levels in orchidectomized rats and reduced testis size in intact rats. JNJ-37654032 is a potent prostate-sparing SARM with the potential for clinical benefit in muscle-wasting diseases.  相似文献   

2.
Approximately 80-90% of prostate cancers are androgen dependent at initial diagnosis. The androgen receptor (AR) is present in most advanced prostate cancer specimens and is believed to have a critical role in its development. Today, treatment of prostate cancer is done by inhibition of AR using antiandrogens such as flutamide (pro-drug of hydroxyflutamide), nilutamide, and bicalutamide. However, there is currently no noninvasive imaging modalities to detect, guide, and monitor specific treatment of AR-positive prostate cancer. (R)-3-Bromo-N-(4-fluoro-3-(trifluoromethyl)phenyl)-2-hydroxy-2-methyl-propanamide [18F]-1 and N-(4-fluoro-3-(trifluoromethyl)phenyl)-2-hydroxy-2-methylpropanamide [18F]-2, derivatives of hydroxyflutamide, were synthesized as a fluorine-containing imaging agent candidates. A three-step fluorine-18 radiosynthesis route was developed, and the compounds were successfully labeled with a 10+/-3% decay corrected radiochemical yield, 95% radiochemical purity, and a specific activity of 1500+/-200 Ci/mmol end of bombardment (n = 10). These labeled biprobes not only may enable for the future quantitative molecular imaging of AR-positive prostate cancer using positron emission tomography but may also allow for image-guided treatment of prostate cancer.  相似文献   

3.
Most prostate cancers (Pcas) develop into castration-resistant prostate cancer (CRPC) after receiving androgen deprivation therapy (ADT). The expression levels of PLCε and wnt3a are increased in Pca and regulate androgen receptor (AR) activity. However, the biological function and mechanisms of PLCε and wnt3a in CRPC remain unknown. In this study, we found that the expression levels of PLCε, wnt3a, and AR were significantly increased in CRPC tissues as well as bicalutamide-resistant-LNCaP and enzalutamide-resistant-LNCaP cells. In addition, PLCε knockdown partly restored the sensitivity of drug-resistant cells to bicalutamide and enzalutamide by inhibiting the activity of the wnt3a/β-catenin/AR signaling axis. Interestingly, the resistance of LNCaP cells docetaxel is related to PLCε but not the wnt3a/β-catenin pathway. We also found that the combination of PLCε knockdown and enzalutamide treatment synergistically suppressed cell proliferation, tumor growth, and bone metastasis using in vitro and in vivo experiments. Our study revealed that PLCε is involved in the progression of drug-resistance in CRPC and could be a new target for the treatment of CRPC.  相似文献   

4.
Androgen receptor (AR) function is critical for the development of male reproductive organs, muscle, bone and other tissues. Functionally impaired AR results in androgen insensitivity syndrome (AIS). The interaction between AR and microRNA (miR) signaling pathways was examined to understand the role of miRs in AR function. Reduction of androgen levels in Sprague-Dawley rats by castration inhibited the expression of a large set of miRs in prostate and muscle, which was reversed by treatment of castrated rats with 3 mg/day dihydrotestosterone (DHT) or selective androgen receptor modulators. Knockout of the miR processing enzyme, DICER, in LNCaP prostate cancer cells or tissue specifically in mice inhibited AR function leading to AIS. Since the only function of miRs is to bind to 3' UTR and inhibit translation of target genes, androgens might induce miRs to inhibit repressors of AR function. In concordance, knock-down of DICER in LNCaP cells and in tissues in mice induced the expression of corepressors, NCoR and SMRT. These studies demonstrate a feedback loop between miRs, corepressors and AR and the imperative role of miRs in AR function in non-cancerous androgen-responsive tissues.  相似文献   

5.
Androgen (AR) and progesterone (PR) receptors were measured in resected prostate tissues of patients with benign prostatic hypertrophy. One group of patients received an anti-estrogen, tamoxifen (Tm 20 mg b.i.d.) for 10 days prior to prostate resection; a second group served as controls and were untreated. Plasma levels of Tm were 200-500 pmol/ml at the time of surgery. Statistically significant decreases (P less than 0.05) were found in cytosol PR (154 fmol/mg DNA +/- 33 SE in 14 Tm-patients vs 266 +/- 40 SE in 13 untreated patients) and in nuclear AR (103 fmol/mg DNA +/- 70 SE in 18 Tm-patients vs 257 +/- 62 SE in 17 controls). Cytosol AR was not significantly different in Tm-treated patients (257 fmol/mg DNA +/- 79 SE in 15 Tm-patients vs 346 +/- 130 SE in 17 controls, P greater than 0.6). Although receptor recycling is one of several possible explanations, these decreases in progesterone and nuclear androgen receptors in Tm-treated patients suggest that estrogen has a role in the biological regulation of steroid receptors in the human prostate.  相似文献   

6.
7.
The synthesis and in vivo SAR of N-benzyl, N-aceto, and N-ethylene ether derivatives of 2-(2,2,2-trifluoroethyl)-5,6-dichloro-benzimidazole as novel androgen receptor antagonists are described. SAR studies led to the discovery of 4-bromo-benzyl benzimidazole 17 as a more potent androgen receptor antagonist in the rat prostate (ID(50)=0.13mg/day), compared with bicalutamide (ID(50)=0.23mg/day).  相似文献   

8.
9.
Methotrexate (MTX), a widely used antimetabolite in paediatric cancer to treatment, has been widely reported to cause bone loss and bone marrow (BM) microvascular (particularly sinusoids) damage. Investigations must now investigate how MTX-induced bone loss and microvasculature damage can be attenuated/prevented. In the present study, we examined the potency of icariin, an herbal flavonoid, in reducing bone loss and the dilation/damage of BM sinusoids in rats caused by MTX treatment. Groups of young rats were treated with five daily MTX injections (0.75 mg/kg) with and without icariin oral supplementation until Day 9 after the first MTX injection. Histological analyses showed a significant reduction in the bone volume/tissue volume (BV/TV) fraction (%) and trabecular number in the metaphysis trabecular bone of MTX-treated rats, but no significant changes in trabecular thickness and trabecular spacing. However, the BV/TV (%) and trabecular number were found to be significantly higher in MTX + icariin-treated rats than those of MTX alone-treated rats. Gene expression analyses showed that icariin treatment maintained expression of osteogenesis-related genes but suppressed the induction of adipogenesis-related genes in bones of MTX-treated rats. In addition, icariin treatment attenuated MTX-induced dilation of BM sinusoids and upregulated expression of endothelial cell marker CD31 in the metaphysis bone of icariin + MTX-treated rats. Furthermore, in vitro studies suggest that icariin treatment can potentially enhance the survival of cultured rat sinusoidal endothelial cells against cytotoxic effect of MTX and promote their migration and tube formation abilities, which is associated with enhanced production of nitric oxide.  相似文献   

10.
To examine the role of the estrogen receptor-alpha (ERalpha) during male skeletal development, bone density and structure of aged ERalphaKO mice and wild-type (WT) littermates were analyzed and skeletal changes in response to sex steroid deficiency and replacement were also studied. In comparison to WT, ERalphaKO mice had smaller and thinner bones, arguing for a direct role of ERalpha to obtain full skeletal size in male mice. However, male ERalphaKO mice had significantly more trabecular bone as assessed both by pQCT and histomorphometry, indicating that ERalpha is not essential to maintain cancellous bone mass. Six weeks following orchidectomy (ORX), both WT and ERalphaKO mice showed high-turnover osteoporosis as revealed by increases in serum osteocalcin and decreases in trabecular (-38% and -58% in WT and ERalphaKO, respectively) and cortical bone density (-5% and -4% in WT and ERalphaKO, respectively). Administration of testosterone propionate (T, 5 mg/kg/day) completely prevented bone loss both in ERalphaKO and in WT mice. As expected, estradiol (E2, 60 microg/kg/day) replacement did not prevent cancellous bone loss in ORX ERalphaKO mice. However, E2 stimulated bone formation at the endocortical surface in ORX ERalphaKO, suggesting that osteoblasts may respond to nonERalpha-mediated estrogen action. In conclusion, although functional ERalpha may play a significant role during male skeletal development, this receptor does not seem essential for androgen-mediated skeletal maintenance in older male mice.  相似文献   

11.
Abnormal differentiation in epithelial stem cells or their immediate proliferative progeny, the transiently amplifying population (TAP), may explain malignant pathogenesis in the human prostate. These models are of particular importance as differing sensitivities to androgen among epithelial cell subpopulations during differentiation are recognised and may account for progression to androgen independent prostate cancer. Androgens are crucial in driving terminal differentiation and their indirect effects via growth factors from adjacent androgen responsive stroma are becoming better characterised. However, direct effects of androgen on immature cells in the context of a prostate stem cell model have not been investigated in detail and are studied in this work. In alpha2beta1hi stem cell enriched basal cells, androgen analogue R1881 directly promoted differentiation by the induction of differentiation-specific markers CK18, androgen receptor (AR), PSA and PAP. Furthermore, treatment with androgen down-regulated alpha2beta1 integrin expression, which is implicated in the maintenance of the immature basal cell phenotype. The alpha2beta1hi cells were previously demonstrated to lack AR expression and the direct effects of androgen were confirmed by inhibition using the anti-androgen bicalutamide. AR protein expression in alpha2beta1hi cells became detectable when its degradation was repressed by the proteosomal inhibitor MG132. Stratifying the alpha2beta1hi cells into stem (CD133(+)) and transient amplifying population (TAP) (CD133(-)) subpopulations, AR mRNA expression was found to be restricted to the CD133(-) (TAP) cells. The presence of a functional AR in the TAP, an androgen independent subpopulation for survival, may have particular clinical significance in hormone resistant prostate cancer, where both the selection of immature cells and functioning AR regulated pathways are involved.  相似文献   

12.
Information on the pathophysiology of glucocorticoid-induced osteoporosis (GIO) is limited, since its clinical picture often reflects a combined effect of glucocorticoids (GC) and the treated systemic disease (i.e., inflammation and immobility). In 50 healthy adult (30-mo-old) primiparous G?ttingen minipigs, we studied the short-term (8 mo, n = 30) and long-term (15 mo, n = 10) effect of GC on bone and mineral metabolism longitudinally and cross-sectionally compared with a control group (n = 10). All animals on GC treatment received prednisolone orally at a dose of 1.0 mg x kg body wt(-1) x day(-1) for 8 wk and thereafter at 0.5 mg/kg body wt(-1) x day(-1). In the short term, GC reduced bone mineral density (BMD) at the lumbar spine by -47.5 +/- 5.1 mg/cm(3) from baseline (P < 0.001), which was greater (P < 0.05) than the loss [not significant (NS)] in the control group of -11.8 +/- 12.6 mg/cm(3). Calcium absorption decreased from baseline by -2,488 +/- 688 mg/7 days (P < 0.001) compared with -1,380 +/- 1,297 mg/7 days (NS) in the control group. Plasma bone alkaline phosphatase (BAP) decreased from baseline by -17.8 +/- 2.2 U/l (P < 0.000), which was significantly different (P < 0.05) from the value of the control group of -1.43 +/- 4.8 U/l. In the long term, the loss of BMD became more pronounced and bone mineral content (BMC), trabecular thickness, mechanical stability, calcium absorption, 25-hydroxyvitamin D(3), 1,25-dihydroxyvitamin D(3), and parathyroid hormone tended to be lower compared with the control group. There was a negative association between the cumulative dose of GC and BMD, which was associated with impaired osteoblastogenesis. In conclusion, the main outcomes after GC treatment are comparable to symptoms of GC-induced osteoporosis in human subjects. Thus the adult G?ttingen miniature pig appears to be a valuable animal model for GC-induced osteoporosis.  相似文献   

13.
Selective androgen receptor modulators (SARMs) now under development can protect against muscle and bone loss without causing prostate growth or polycythemia. 17β-Hydroxyestra-4,9,11-trien-3-one (trenbolone), a potent testosterone analog, may have SARM-like actions because, unlike testosterone, trenbolone does not undergo tissue-specific 5α-reduction to form more potent androgens. We tested the hypothesis that trenbolone-enanthate (TREN) might prevent orchiectomy-induced losses in muscle and bone and visceral fat accumulation without increasing prostate mass or resulting in adverse hemoglobin elevations. Male F344 rats aged 3 mo underwent orchiectomy or remained intact and were administered graded doses of TREN, supraphysiological testosterone-enanthate, or vehicle for 29 days. In both intact and orchiectomized animals, all TREN doses and supraphysiological testosterone-enanthate augmented androgen-sensitive levator ani/bulbocavernosus muscle mass by 35-40% above shams (P ≤ 0.001) and produced a dose-dependent partial protection against orchiectomy-induced total and trabecular bone mineral density losses (P < 0.05) and visceral fat accumulation (P < 0.05). The lowest doses of TREN successfully maintained prostate mass and hemoglobin concentrations at sham levels in both intact and orchiectomized animals, whereas supraphysiological testosterone-enanthate and high-dose TREN elevated prostate mass by 84 and 68%, respectively (P < 0.01). In summary, low-dose administration of the non-5α-reducible androgen TREN maintains prostate mass and hemoglobin concentrations near the level of shams while producing potent myotrophic actions in skeletal muscle and partial protection against orchiectomy-induced bone loss and visceral fat accumulation. Our findings indicate that TREN has advantages over supraphysiological testosterone and supports the need for future preclinical studies examining the viability of TREN as an option for androgen replacement therapy.  相似文献   

14.
Lymphoid enhancer-binding factor (LEF)1 is a major mediator and a target in canonical Wnt/β-catenin pathway. Interactions between the androgen receptor (AR) and canonical Wnt pathways have been implicated in the development of the genitourinary organs. Here, we investigated the localization and role of LEF1-positive cells during development of the prostate gland in human and in the murine model. We show that during human prostate development, LEF1 is restricted to the basal epithelial layer of the urogenital sinus. During mouse development, Lef1 is also present in the urogenital mesenchyme in addition to the basal epithelial layer of the urogenital sinus. In the course of elongation and branching of the prostatic ducts, Lef1 is localized to the proliferating epithelium at the distal tips of the buds. Notably, during branching morphogenesis, domains of Lef1 and AR are mutually exclusive. We further employed the TOPGAL reporter strain to examine the dynamics of Wnt signaling in the context of prostate regression upon a 7-d treatment with a competitive AR inhibitor, bicalutamide. We found that Wnt/Lef1-positive basal cells are not dependent upon androgen for survival. Furthermore, upon bicalutamide treatment, Wnt/Lef1-positive basal progenitors repopulated the luminal compartment. We conclude that Wnt/Lef1 activity identifies an androgen-independent population of prostate progenitors, which is important for embryonic development and organ maintenance and regeneration in the adult.  相似文献   

15.
New evidence suggests a control of bone mass by the central nervous system. We have previously shown that functional serotonin receptors are present in bone cells and that serotonin stimulates proliferation of osteoblast precursor cells in vitro. In the present study we investigated the effects of serotonin on bone tissue in vivo. Ten, 2-month-old female Sprague-Dawley rats were injected with serotonin subcutaneously (s.c.) (5 mg/kg) once daily for 3 months, controls received saline. Using microdialysis and HPLC, free circulating serotonin levels were measured. DXA scans were made after 3 months of serotonin administration. Bone architecture and mechanical properties were investigated by micro-computed tomography (microCT), histomorphometry, and mechanical testing. A long-lasting hyperserotoninemia with a >10-fold increase in serotonin appeared. Total body BMD was significantly higher (0.1976+/-0.0015 vs. 0.1913+/-0.0012 g/cm2) in rats receiving serotonin. Cortical thickness (Ct.Th) measured by microCT analysis was also higher, whereas trabecular bone volume (BV) was lower. Interestingly, the perimeter and cross-sectional moment of inertia (MOI), a proxy for geometrical bone strength, were the same in both groups. These data suggest that serotonin reduces resorption or/and increases apposition of endosteal bone. Mechanical testing showed that femoral stiffness was higher in serotonin-dosed animals. The energy absorption also seemed slightly, but not significantly higher. In conclusion, hyperserotoninemia led to a higher BMD, altered bone architecture and higher femural bone stiffness in growing rats, demonstrating that serotonin may have important effects on bone in vivo.  相似文献   

16.
17.
Receptor activator of NF-kappaB ligand (RANKL), produced by osteoblastic lineage cells and activated T cells, is an essential factor for osteoclast differentiation, activation, and survival. Therefore, RANKL is a focal point of therapies targeting bone diseases where there is an imbalance of bone metabolism in favor of bone resorption. The present study assesses the effects of exogenous RANKL on growing bone. RANKL (100 microg x kg-1x day-1 for 7 days) administered to Sprague-Dawley weanling rats caused major deficits in growth, appearance, and bone mineral densities (BMD). Urinary deoxypyridinoline crosslinks, a measure of bone turnover, were higher in the RANKL-treated rats (P = 0.031), and the bone mineral content was lower (P < 0.001). The final BMD in the RANKL-treated rats was lower (P = 0.039) than in the control rats (19 +/- 7 vs. 38 +/- 5 mg/cm3). Moreover, calculated cortical bone density in each bone slice (total BMD - trabecular BMD) indicated there was only 5% cortical bone remaining in RANKL-treated rats. We conclude that therapies targeting RANKL are likely to have effects on cortical as well as trabecular bone density.  相似文献   

18.
Cyclic AMP (cAMP) is a continually produced nucleotide inactivated by hydrolysis to 5'AMP via phosphodiesterase (PDE) enzymes. Rolipram is a selective PDE4 inhibitor reported to have anti-inflammatory effects and used in the treatment of asthma and chronic obstructive pulmonary disease (COPD). The current study was designed to determine whether Rolipram could prevent and restore bone loss in ovariectomized (OVX) rats. Six-month-old Sprague Dawley rats underwent either sham-operated or bilateral ovariectomy, and were left untreated for 60 days to develop osteopenia. Then they were treated with vehicle, 6 mg/kg PGE(2), 3 microg/kg Alendronate or 0.1-1.0 mg/kg Rolipram for 60 days. At sacrifice, the right tibiae were processed for quantitative bone histomorphometric measurements. The right femurs were measured by dual energy A-ray absorptiometry and the 5th lumbar vertebrae were subjected to micro-computed tomography to access bone mass and architecture changes. Our results indicated that OVX induced negative bone balance in all five bone sites we tested, with bone resorption exceeding bone formation. Rolipram at 0.1-0.6 mg/kg dose levels prevented while at 1 mg/kg restored ovariectomy-induced cancellous and cortical bone loss in the tibia, femur and lumbar vertebra. Dynamic bone histomorphometry suggested that these beneficial effects were achieved by partially maintaining the elevated bone formation at the trabecular bone surface and increasing bone formation at the periosteal bone surface of the cortex. Furthermore, it reduced bone turnover at the trabecular and the endocortical bone surfaces. The prevention of further bone loss effects were comparable to those of an anti-resorption agent (Alendronate) but were not as great as those of an anabolic agent (PGE(2)). In addition, Rolipram treatment increased body and muscle weights compared to the vehicle-treated OVX rats. In conclusion, our study in an osteopenic rat model suggested that a selective PDE4 inhibitor may be used for the treatment of established osteoporosis.  相似文献   

19.
It has been showed that Cd induces low areal bone mineral density, but we do not know the effect of Cd on cubic bone density. This study was aimed to investigate the effects of Cd on volumetric bone mineral density (VBMD) and tissue bone mineral density (TBMD) in male rats. Twenty-four Sprague-Dawley male rats were randomly divided into four groups that were given cadmium chloride by subcutaneous injection at doses of 0, 0.1, 0.5, and 1.5?mg/kg body weight for 8?weeks, respectively. Then, microcomputed tomography scanning was performed on the proximal tibia, and region of interest was reconstructed using microview software. The VBMD, bone volume fraction of rats treated with 1.5?mg Cd/kg, were significantly decreased compared to control (p?相似文献   

20.
Autologous down-regulation of androgen receptor messenger ribonucleic acid   总被引:6,自引:0,他引:6  
Autoregulation of androgen receptor (AR) mRNA was investigated using Northern blot analysis with AR cDNA fragments as probes. The amount of AR mRNA increased 2- to 10-fold with androgen withdrawal and decreased below control levels after androgen stimulation in rat ventral prostate, coagulating gland, epididymis, seminal vesicle, kidney, and brain, and in a human prostate cancer cell line, LNCaP. In rat ventral prostate, AR mRNA increased 2- to 3-fold within 24 h after castration and remained elevated for 4 days. Treatment with testosterone propionate beginning 24 h after castration reduced ventral prostate AR mRNA 4-fold within 8 h of androgen replacement. Administration of estradiol 24 h after castration had no significant effect on prostatic AR mRNA. Androgens, including testosterone and the synthetic androgen methyltrienolone (R1881), or the antiandrogen cyproterone acetate down-regulated AR mRNA in vitro in LNCaP cells, whereas estradiol was without effect. Administration of testosterone propionate to rats with androgen insensitivity did not decrease AR mRNA. Down-regulation of AR mRNA by androgen is therefore a receptor-mediated process which occurs in vivo in rat tissues that differ in androgen responsiveness and in cultured human prostate cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号