首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 108 毫秒
1.
We determined the mRNA levels and the activities in nuclear and non-nuclear fractions of protein phosphatase type 1 (PP1) and type 2A (PP2A) through the cell cycle in synchronized mouse NIH3T3 fibroblasts. The mRNA level for PP1 alpha was gradually elevated in late G1 phase, began to decrease in M phase, and reached the control level with entering into the next G1 phase. The mRNA level for PP2A was rapidly increased in early G1 phase, kept at the high level, and decreased after S phase. In nuclear fractions of cells, spontaneous activities of both PP1 and PP2A were gradually increased until M phase and rapidly decreased with entering the next G1 phase, while in non-nuclear fraction such dramatic alterations were not observed. Potential activities of PP1 in both fractions revealed by Co(2+)-trypsin treatment showed an oscillaion patterns similar to those of the spontaneous activities. These results strongly suggest that cell cycle dependent gene expressions and activities of PP1 and PP2A play roles in DNA synthesis and mitosis during the cell cycle.  相似文献   

2.
Nuclear and cytoplasmic protein kinases were measured during the traverse of synchronous CHO cultures through G1 into S phase. Cells were synchronized by selective detachment of cells blocked in metaphase using colcemid. Nuclei were isolated and the protein kinases extracted from the nuclear preparation with 0.6 M NaCl. This procedure solubilized greater than 90% of the total protein kinase activity present in the nuclear preparation. DEAE chromatography of this extract showed 5 apparently different ionic forms of nuclear protein kinases. The nuclear protein kinases preferred casein and phosvitin to histone as substrates and were cyclic AMP-independent. Nuclear protein kinase activities increased greater than two-fold, when expressed as units of activity per cell nucleus, during G1 phase traverse, concomitant with a 70% increase in nuclear non-histone proteins (those soluble in 0.6 M NaCl). This resulted in only a 40% increase in the specific activities (units/microgram protein in 0.6 M NaCl extractable nuclear fraction) of these enzymes as cells progressed through G1 into S phase. This was in contrast to cytoplasmic cyclic AMP-dependent protein kinase activities which also increased two-fold during progression through G1 phase while total cellular protein increased less than 20%. Activation of, as well as synthesis of, cyclic AMP-dependent cytoplasmic protein kinases during G1 phase suggests a regulatory mechanism for precise temporal phosphorylation, whereas the constant specific activity in nuclear kinases during cell cycle is more compatible with the maintenance of bulk phosphorylation processes in the nucleus.  相似文献   

3.
The change in activity of nuclear poly(ADP-ribose) glycohydrolase during the cell cycle of HeLa S3 cells was investigated. The poly(ADP-ribose) glycohydrolase activity was solubilized from HeLa S3 cell nuclei and chromosomes only by sonication at high ionic strength. The enzyme hydrolyzed poly(ADP-ribose) exoglycosidically, producing ADP-ribose. After release from mitosis, the activity of the solubilized nuclear poly(ADP-ribose) glycohydrolase per nucleus or per unit protein, assayed with [3H]poly(ADP-ribose) (average chain length, n = 15) as substrate, was lowest in the early G1 phase and highest in the late G1 phase. The specific activity in the late G1 phase was about two times that in the early G1 phase. The high activity remained constant during the S-G2-M phase. A similar change during the cell cycle was observed after release from hydroxyurea block. These results suggest that the activity of poly(ADP-ribose) glycohydrolase doubled during the G1 phase of the cell cycle of HeLa S3 cells.  相似文献   

4.
5.
The Leydig I-10 tumor cell line was synchronized by the double thymidine block method using 1.0 mM thymidine. Protein phosphokinase activity of subcellular fractions was determined at various times throughout the cell cycle. Microsomal cAMP-independent kinase activity increased in G2 and decreased during the S and G1 phases. Except for relatively small increases during the G1 and late S phases, microsomal cAMP-dependent kinase activity remained unchanged throughout most of the cycle. In the lysosomal-mitochondrial fraction, cAMP-dependent and cAMP-independent protein kinase activity increased during the S phase. Independent kinase activity peaked again during G1, while the dependent kinase became depressed. Phosphokinase activity increased in the nuclear fraction in late G2 and during mitosis, and was due to increases in both cAMP-independent and cAMP-dependent kinase activity. Cytosol cAMP-dependent kinase activity increased in G2 and during mitosis; cAMP-independent kinase activity showed some increased activity during late G2 and mitosis. These temporal variations in the subcellular kinase activities throughout the cell cycle may act to phosphorylate subcellular protein substrates in a cell cycle-specific fashion.  相似文献   

6.
To ascertain the activity and substrate specificity of nuclear protein kinases during various stages of the cell cycle of HeLa S3 cells, a nuclear phospho-protein-enriched sample was extracted from synchronised cells and assayed in vitro in the presence of homologous substrates. The nuclear protein kinases increased in activity during S and G2 phase to a level that was twice that of kinases from early S phase cells. The activity was reduced during mitosis but increased again in G1 phase. When the phosphoproteins were separated into five fractions by cellulose-phosphate chromatography each fraction, though not homogenous, exhibited differences in activity. Variations in the activity of the protein kinase fractions were observed during the cell cycle, similar to those observed for the unfractionated kinases. Sodium dodecyl sulfate polyacrylamide gel electrophoretic analysis of the proteins phosphorylated by each of the five kinase fractions demonstrated a substrate specificity. The fractions also exhibited some cell cycle stage-specific preference for substrates; kinases from G1 cells phosphorylated mainly high molecular weight polypeptides, whereas lower molecular weight species were phosphorylated by kinases from the S, G2 and mitotic stages of the cell cycle. Inhibition of DNA and histone synthesis by cytosine arabinoside had no effect on the activity or substrate specificity of S phase kinases. Some kinase fractions phosphorylated histones as well as non-histone chromosomal proteins and this phosphorylation was also cell cycle stage dependent. The presence of histones in the in vitro assay influenced the ability of some fractions to phosphorylate particular non-histone polypeptides; non-histone proteins also appeared to affect the in vitro phosphorylation of histones.  相似文献   

7.
Cell cycle-dependent regulation of the DNA-dependent protein kinase   总被引:1,自引:0,他引:1  
  相似文献   

8.
T Ooka  J Daillie 《Biochimie》1975,57(2):235-246
We have demonstrated the presence of two DNA polymerases in KB cells and studied the variation of their activities in a synchronous cell population. During the cell cycle we observed in nuclei, only one DNA dependent DNA polymerase, the 3.4 S or minipolymerase, and similarly in the cytoplasm only one enzyme, the 8.3 S or maxipolymerase. The former shows preference for native DNA and the latter for denatured DNA. Their Mg++ and K+ requirements are different and their pH optima are 8.5 and 7 for nuclear polymerase and cytoplasmic polymerase respectively. The cytoplasmic polymerase activity remains stable from one cell cycle to the other with each cell reconstituting its stock at the start of the following cycle (G1 and early S phases). On the contrary nuclear activity decreases in G2, M and early G1, then increases to a maximum in the middle of the S phase. This fluctuation in enzyme activity could be due to degradation, transfer to the cytoplasm or the association of the enzyme with the chromatin and/or the nuclear membrane after completion of DNA synthesis. Our results do not permit us to choose between these three hypotheses. However their significance is discussed in the light of the results obtained by some authors who, on the contrary, have tended to minimise the role of the minipolymerase in DNA duplication, whereas we, from our findings, ascribe a preponderant role to this enzyme. The cytoplasmic maxipolymerase (8.3 S) may simply be a storage form of the enzyme from which minipolymerase can be formed as needed.  相似文献   

9.
Protein kinase CK2 is a ubiquitous protein serine/threonine kinase that is involved in cell growth and proliferation as well as suppression of apoptosis. Several studies have suggested that the kinase plays a role in cell cycle progression; however, changes in enzyme activity during phases of cell cycle have not been detected. Nuclear matrix is a key locus for CK2 signaling in the nucleus. We therefore examined CK2 signaling to the nuclear matrix in distinct phases of cell cycle by employing synchronized ALVA-41 prostate cancer cells. Removal of serum from the culture medium resulted in G0/G1 arrest, and a reduction in the nuclear matrix-associated CK2 activity which was rapidly reversed on addition of serum. Arresting the cells in G(0)/G(1) phase with hydroxyurea and subsequent release to S phase by serum gave similar results. Cells arrested in the G(2)/M phase by treatment with nocodazole demonstrated an extensive reduction in the nuclear matrix-associated CK2 which was reversed rapidly on addition of serum. Changes in the immunoreactive CK2 protein were concordant with the activity data reflecting a dynamic trafficking of the kinase in distinct phases of cell cycle. Under the same conditions, CK2 activity in total cellular lysate remained essentially unaltered. These results provide the first direct evidence of discrete modulations of CK2 in the nuclear matrix during the cell cycle progression. Inducible overexpression of CK2 in CHO cells yielded only a modest increase in CK2 activity even though a significant increase in expression was apparent at the level of CK2 alpha-specific message. Stably transfected ALVA-41 cells, however, did not show a significant change in CK2 levels despite increased expression at the message level. Not surprisingly, both types of the stably transfected cells failed to show any alteration in cell cycle progression. Distribution of the CK2 activity in the cytosolic versus nuclear matrix fractions in normal cells appears to be different from that in the cancer cells such that the ratio of nuclear matrix to cytosolic activity is much higher in the latter. Considering that nuclear matrix is central to several nuclear functions, this pattern of intracellular distribution of CK2 may have implications for its role in the oncogenic process. Published 2003 Wiley-Liss, Inc.  相似文献   

10.
The cell cycle of matrix cells in the telencephalon of the mouse embryo at different stages at day 10, 13, and 17 of gestation was investigated by means of 3H-thymidine autoradiography.The cell cycle time of matrix cells in the day 10 group was found to be 7.0 h, and lengthened linearly with embryonic age. The cell cycle times of day 13 and 17 groups were 15.5 and 26.0 h, respectively.The duration of G1 and S phases also lengthened linearly with embryonic age. The durations of G1 phase were 0.1, 6.8, and 13.8 h, for day 10, 13, and 17 groups, respectively, and those of S phase were 5.1, 6.9, and 10.4 h, for day 10, 13, and 17 groups, respectively. On the other hand, the durations of both G2 and M phases remained unchanged and these were 1.0 and 0.8 h, respectively, throughout the embryonic stages.It was a characteristic of the alteration of the cell cycle of the telencephalon during mouse embryonic life that not only G1 but also S phases lengthened linearly with embryonic age and both G2 and M phases remained constant.  相似文献   

11.
The cytostatic and cytolytic effects of dexamethasone were studied as functions of cell cycle position in mouse L1210 leukemia cells. To this end, the cells were separated according to size by sedimentation at unit gravity in a specially designed sedimentation chamber. The fractions were analyzed by radioautography and flow cytophotometry. The size-distributions obtained by 1g sedimentation coincided with cell-cycle age distribution. With increasing fraction number, samples highly enriched in G1, S, and G2/M cells, respectively were obtained: the smallest cells being in early G1 and the largest in mitosis. In the presence of dexamethasone (10?6-10?5 M), growth slowed down after a few cell cycles and the cells accumulated in early G1 phase. Lytic cell kill by continued exposure to the drug was confined to the fractions containing the small, early G1-phase cells. These fractions were also enriched in noncycling cells that were not labeled by prolonged exposure to 3H-thymidine. After removal of dexamethasone, the cells in S and G2/M phase completed cell cycle traverse but were retarded again in the G1 and early S phase of the next division cycle. The data suggest a memory effect for previous drug exposure. It is concluded that the cytostatic and cytolytic effects of dexamethasone are separate, though not unrelated events. Cytolysis is confined to the noncycling cells that in untreated populations can exit from the dividing compartment during a transitional phase of about 60 minutes subsequent to mitotic division. The cytostatic effects potentiate cytolysis by accumulating the cells in the early G1 phase and thus increasing the probability of their transit to the G0 compartment, sensitive for drug-mediated cytolysis.  相似文献   

12.
We investigated deoxyribonucleoside triphosphate metabolism in S49 mouse T-lymphoma cells synchronized in different phases of the cell cycle. S49 wild-type cultures enriched for G1 phase cells by exposure to dibutyryl cyclic AMP (Bt2cAMP) for 24 h had lower dCTP and dTTP pools but equivalent or increased pools of dATP and dGTP when compared with exponentially growing wild-type cells. Release from Bt2cAMP arrest resulted in a maximum enrichment of S phase occurring 24 h after removal of the Bt2cAMP, and was accompanied by an increase in dCTP and dTTP levels that persisted in colcemid-treated (G2/M phase enriched) cultures. Ribonucleotide reductase activity in permeabilized cells was low in G1 arrested cells, increased in S phase enriched cultures and further increased in G2/M enriched cultures. In cell lines heterozygous for mutations in the allosteric binding sites on the M1 subunit of ribonucleotide reductase, the deoxyribonucleotide pools in S phase enriched cultures were larger than in wild-type S49 cells, suggesting that feedback inhibition of ribonucleotide reductase is an important mechanism limiting the size of deoxyribonucleoside triphosphate pools. The M1 and M2 subunits of ribonucleotide reductase from wild-type S49 cells were identified on two-dimensional polyacrylamide gels, but showed no significant change in intensity during the cell cycle. These data are consistent with allosteric inhibition of ribonucleotide reductase during the G1 phase of the cycle and release of this inhibition during S phase. They suggest that the increase in ribonucleotide reductase activity observed in permeabilized S phase-enriched cultures may not be the result of increased synthesis of either the M1 or M2 subunit of the enzyme.  相似文献   

13.
Thymidine kinase (TK) activity was measured in relation to the cell cycle of in vivo growing ascites tumour cells. The cells were synchronized by means of centrifugal elutriation and the cell cycle composition of the cell fractions was determined by flow cytometry. TK activity was low in G1, increased during S phase and declined in G2. A half-life of TK activity of about 45 min was found throughout the cell cycle. Four isoenzymes at pI values of 4.1, 5.3, 6.9 and 8.3, denoted as isoenzymes 1-4, were identified using isoelectric focusing. Isoenzymes 3 and 4 were responsible for the profound cell cycle related changes in the TK activity. Corresponding isoenzymes were also found in the fetal mouse liver. In the adult mouse liver isoenzyme 2 was the dominating isoenzyme. The half-life of the isoenzymes was in the same range as for the total TK activity. We conclude that the low TK activity in G1 is due to degradation of the enzyme in G2 at a normal rate combined with an arrest in the synthesis of TK. We also conclude that isoenzyme 4 and the intermediate isoenzyme 3, which had earlier been suggested to be a mitochondrial form of TK, in fact represent cytoplasmatic forms of TK. According to cell cycle and pI studies, isoenzyme 2 belongs to the mitochondrial form. Studies with various phosphor donors and specific substrates, however, indicate that it also contains a cytoplasmic component.  相似文献   

14.
Activity changes of a number of enzymes involved in carbohydrate metabolism were determined in cell extracts of fractionated exponential-phase populations of Saccharomyces cerevisiae grown under excess glucose. Cell-size fractionation was achieved by an improved centrifugal elutriation procedure. Evidence that the yeast populations had been fractionated according to age in the cell cycle was obtained by examining the various cell fractions for their volume distribution and their microscopic appearance and by flow cytometric analysis of the distribution patterns of cellular DNA and protein contents. Trehalase, hexokinase, pyruvate kinase, phosphofructokinase 1, and fructose-1,6-diphosphatase showed changes in specific activities throughout the cell cycle, whereas the specific activities of alcohol dehydrogenase and glucose-6-phosphate dehydrogenase remained constant. The basal trehalase activity increased substantially (about 20-fold) with bud emergence and decreased again in binucleated cells. However, when the enzyme was activated by pretreatment of the cell extracts with cyclic AMP-dependent protein kinase, no significant fluctuations in activity were seen. These observations strongly favor posttranslational modification through phosphorylation-dephosphorylation as the mechanism underlying the periodic changes in trehalase activity during the cell cycle. As observed for trehalase, the specific activities of hexokinase and phosphofructokinase 1 rose from the beginning of bud formation onward, finally leading to more than eightfold higher values at the end of the S phase. Subsequently, the enzyme activities dropped markedly at later stages of the cycle. Pyruvate kinase activity was relatively low during the G1 phase and the S phase, but increased dramatically (more than 50-fold) during G2. In contrast to the three glycolytic enzymes investigated, the highest specific activity of the gluconeogenic enzyme fructose-1, 6-diphosphatase 1 was found in fractions enriched in either unbudded cells with a single nucleus or binucleated cells. The observed changes in enzyme activities most likely underlie pronounced alterations in carbohydrate metabolism during the cell cycle.  相似文献   

15.
16.
Cell cycle regulatory proteins have been characterized in somatic cells and exhibit phase-specific expression patterns. Changes in expression of these regulatory proteins have not been clearly characterized in early preimplantation mouse embryos. This study utilized indirect immunofluorescence to determine the expression pattern of G1/S phase cyclins D and E; S, G2/M phase cyclins A and B1, and cdk 2 during the first three cell cycles of mouse embryo development. Cyclin D demonstrated low expression throughout the first cell cycle but had a somatic-like pattern of expression in cycles 2 and 3 with peak expression at G1 declining through S phase to a low during G2. Cyclin E was present at peak levels in G1 declining through S to a low in G2 during both the first and third cell cycles, but remained at moderate levels during the entire second cell cycle. Cyclin A was maintained at moderate levels throughout the first two cell cycles but showed a somatic-like pattern with a low level in G1 increasing during S phase with peak levels during G2 of the third cell cycle. Cyclin B consistently demonstrated a pattern opposite to a somatic G2/M cyclin, with peak levels in G1 declining through S phase to a low in G2 during each of the three cell cycles examined. Cdk 2 was present at consistent levels during G1 and S phases of all three cell cycles declining slightly in G2.  相似文献   

17.
S C Hsu  M Qi    D B DeFranco 《The EMBO journal》1992,11(9):3457-3468
Glucocorticoid receptor (GR) nuclear translocation, transactivation and phosphorylation were examined during the cell cycle in mouse L cell fibroblasts. Glucocorticoid-dependent transactivation of the mouse mammary tumor virus promoter was observed in G0 and S phase synchronized L cells, but not in G2 synchronized cells. G2 effects were selective on the glucocorticoid hormone signal transduction pathway, since glucocorticoid but not heavy metal induction of the endogenous Metallothionein-1 gene was also impaired in G2 synchronized cells. GRs that translocate to the nucleus of G2 synchronized cells in response to dexamethasone treatment were not efficiently retained there and redistributed to the cytoplasmic compartment. In contrast, GRs bound by the glucocorticoid antagonist RU486 were efficiently retained within nuclei of G2 synchronized cells. Inefficient nuclear retention was observed for both dexamethasone- and RU486-bound GRs in L cells that actively progress through G2 following release from an S phase arrest. Finally, site-specific alterations in GR phosphorylation were observed in G2 synchronized cells suggesting that cell cycle regulation of specific protein kinases and phosphatases could influence nuclear retention, recycling and transactivation activity of the GR.  相似文献   

18.
Activation of Na+/H+ exchange activity is a ubiquitous response to growth factors and has been implicated in the mitogenic response. Little is known of how the antiport influences events in the nucleus which ultimately control the cell cycle. Using potent Na+/H+ exchange inhibitors we show for normal mouse bone marrow-derived macrophages that this activity is required for the colony-stimulating factor-1-induced gene expression of the M1 and M2 subunits of ribonucleotide reductase, an enzyme critical for DNA synthesis. Suppression of M1 and M2 mRNA levels occurred when the inhibitors were added up to 8 h after the growth factor, mirroring their ability to prevent entry into S phase at similar times. Antiport activity was not required for the induction of other genes associated with cell cycle progression including proliferating cell nuclear antigen and the G1 cyclin, CYL1. These results highlight the differential expression of various cell cycle-associated genes and demonstrates that non-coordinate regulation of CYL1 cyclin and DNA synthesis gene expression can occur. The selective dependence of ribonucleotide reductase subunit gene expression on Na+/H+ exchange activity may provide a biochemical basis for the requirement of persistent antiporter activity during G1 for subsequent entry into S phase.  相似文献   

19.
It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/β1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life cycles. This junction may determine the characteristic parvovirus tropism for proliferative and cancer cells, and its disturbance could critically contribute to persistence in host tissues.  相似文献   

20.
The fraction of membrane-bound and free polysomes during different phases of the cell cycle was determined in suspension cultures of mouse plasmacytoma cells, synchronized by growth in isoleucine-deficient medium. The membrane-bound polysomes reached a maximum value (about 28 % of total polysomes) during the G 1 phase. In the S phase and G 2 phase only 18 to 20 % of the total polysomes were found to be membrane-bound. A high percentage of membrane-bound polysomes in the G 1 phase of the cell cycle agrees with the earlier finding that maximum synthesis of immunoglobulin light chain takes place on polysomes bound to the membrane in the G 1 phase of the cell cycle. The presence of a significant fraction of membrane-bound polysomes in the S and G 2 phases of the cell cycle would suggest that membrane-bound polysomes are also involved in the synthesis of proteins other than immunoglobulins.The ultrastructure of the cells during the various phases of the cell cycle was also studied. During the G 1 phase the surface of the majority of cells was distinguished by the presence of ruffles and slender villus-like cytoplasmic projections. In the S phase the surface contour tended to become smooth and even. These differences in the surface morphology may reflect the change in function which occurs during the transition from the G 1 to the S phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号