首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Utilization of assimilates for growth and maintenance of tops and roots of Lolium multiflorum was determined for plants supplied with either nitrate or ammonium. Carbon dioxide exchange rates were measured continuously for tops and roots separately. Three-day periods were applied for two irradiation levels. On the last day of each three-day period no nitrogen was supplied to the two treatments. In the nitrate treatment, the coefficient of utilization for converting assimilates into constructive growth (YG) remained unaffected in absence of nitrate. However, in absence of nitrate the maintenance respiration (M) for both tops and roots was only one third of that in presence of nitrate. In the treatment with ammonium the maintenance respiration of the plants was not influenced by the absence of ammonium. However, especially for the tops YG increased in absence of ammonium. In both the treatments, growth respiration of the roots was inefficient compared to that of the tops. Only in the case of absence of nitrate, maintenance respiration of the roots was similar to that of the tops.  相似文献   

2.
Lolium multiflorum L. was grown in pots in controlled environments. CO2-exchange rates were continuously measured on two pots during 46 and 52 days, respectively, separating between tops and roots. After 20 days, the plants were entirely defoliated and the plants were then followed during the regrowth period. During the experiment, alternating 2–3 day periods of high and low irradiance were applied. Analogously treated plants were frequently harvested to obtain the distribution of assimilates between tops and roots. From integration of CO2-exchange rates, diurnal photosynthesis and respiration were obtained, and utilization of assimilates was analysed. The respiration associated with the synthesis of new structural material (growth respiration) was dependent on assimilates originating from both the current and the preceding 24 h diurnal cycles. The amount of new structural material synthesized during the current 24 h diurnal cycle was estimated from the relative contribution of assimilates accumulated from the preceding and the current 24 h and diurnal cycles to growth respiration of the current 24 h. From this approximation, the respiratory components connected to synthesis of new structural material and to maintenance of already established material were found. Growth and maintenance respirations of the tops were alike during the predefoliation and the regrowth periods. For the roots, however, growth respiration was higher and maintenance respiration lower in the regrowth period. The difference between daily integrated CO2-exchange and the amount converted into new structural material was assumed to be the daily change in assimilates stored. On the first day of a period of high irradiance, the assimilation per unit leaf weight was higher than on the following day of high irradiance, and an accumulation of storage material took place. On the first day of a period of low irradiance, the assimilation per unit leaf weight was lower than on the following day of low irradiance, and there was a depletion of assimilates stored. These effects were most pronounced during the regrowth period, indicating a change in the metabolic sink demand. This indicates a strong feedback mechanism between sources and sinks, in the sense that accumulation of products will inhibit assimilation.  相似文献   

3.
Respiration and dry matter producation were measured in shoots of senecia aquaticus Hill, which is flood tolerant and in shoots of S. jacobaea L., which is flood- sensitive. Both species were grown in culture solutions of high and of low oxygen concentration Growth of food of S. jacobaca was unaffected by a low oxygen supply bur growth of S. jacobaca was severly hampered by a low oxygen concentration in the root medium. Kinetic data about the rate of apparent photosynthesis at low oxygen conetration and different carbon dioxide concentrations indicated that at light saturation respiration was strongly repressed during photosynthesis. Shoot growth respiration, i.e. the amount of carbon dioxide produced for synthesis of shoot dry, matter appeared to be absent on S. jacobaea and to be very low (13.mg CO2/g dry shoots) in S. aquaticus. In comparison with values prepiration rate was 2.8. 2.0. 1.5 and 1.3mg CO2/h.g dry shoots in aerobically and anaerobically growth S. jacobaea and in aerobically and anaerobically growth S. aquabaea respectively. These values were also low in comprision with values previously found for roots of the same species. Shoot dark respiration on S. aquaticus was inbihitedd by a com bination on CN and salicylhydroxamic acid (SHAM), but not by application on one of these inhibitors alone. It was therefore concluded that an alternative oxidative pathway was present but not active in shoots of S. aquaticus. In the absence of inhibited of the cylochorome pathway. The low value of growth respiration and maintenance respiration rate in the shoots as compared with those in the roots of the investigated Sencio species are discussed in relation to the activity of the alternative oxidative pathway and to the possibilbity of a direct supply of ATP by photosynthesis intead of respiratory meta bolism.  相似文献   

4.
A two-component model of growth and maintenance respiration is used to study the response of northern red oak (Quercus rubra L.) seedlings and 32-year-old trees to sub-ambient (10 μmol h; cumulative dose based on 7 h daily mean), ambient (43 μmol h), and twice-ambient (85 μmolh) ozone. The relative growth rates (RGR) of leaves sampled from seedlings and trees were similar across treatments, as were specific leaf respiration rates (SRR). Growth coefficients estimated from the SRR versus RGR relationship averaged 25-3 mol CO2 kg?1 leaf dry mass produced for seedlings and 21-5 mol kg?1 for trees. Maintenance coefficients ranged from 0-89 to 1-07 mol CO2 kg?1 leaf dry mass d?1 for seedlings and from 0-64 to 0-84 mol kg-1 d?1 for trees. Neither coefficient was affected by ozone. Leaves sampled throughout the growing season also showed little response of respiration to ozone. This occurred despite a 30% reduction in net photosynthesis for trees grown at twice-ambient ozone. These results suggest that growth and maintenance respiration in young northern red oak leaves are not affected by ozone and that in older leaves injury can occur without a parallel increase in so-called ‘maintenance’ respiration.  相似文献   

5.
Autotrophic respiration may regulate how ecosystem productivity responds to changes in temperature, atmospheric [CO2] and N deposition. Estimates of autotrophic respiration are difficult for forest ecosystems, because of the large amount of biomass, different metabolic rates among tissues, and seasonal variation in respiration rates. We examined spatial and seasonal patterns in autotrophic respiration in a Pinus strobus ecosystem, and hypothesized that seasonal patterns in respiration rates at a common temperature would vary with [N] for fully expanded foliage and fine roots, with photosynthesis for foliage, and with growth for woody tissues (stems, branches, and coarse roots). We also hypothesized that differences in [N] would largely explain differences in maintenance or dormant‐season respiration among tissues. For April–November, mean respiration at 15 °C varied from 1.5 to 2.8 μmol kg?1 s?1 for fully expanded foliage, 1.7–3.0 for growing foliage, 0.8–1.6 for fine roots, 0.6–1.1 (sapwood) for stems, 0.5–1.8 (sapwood) for branches, and 0.2–1.5 (sapwood) for coarse roots. Growing season variation in respiration for foliage produced the prior year was strongly related to [N] (r2 = 0.94), but fine root respiration was not related to [N]. For current‐year needles, respiration did not covary with [N]. Night‐time foliar respiration did not vary in concert with previous‐day photosynthesis for either growing or fully expanded needles. Stem growth explained about one‐third of the seasonal variation in stem respiration (r2 = 0.38), and also variation among trees (r2 = 0.43). We did not determine the cause of seasonal variation in branch and coarse root respiration, but it is unlikely to be directly related to growth, as the pattern of respiration in coarse roots and branches was not synchronized with stem growth. Seasonal variations in temperature‐corrected respiration rates were not synchronized among tissues, except foliage and branches. Spatial variability in dormant‐season respiration rates was significantly related to tissue N content in foliage (r2 = 0.67), stems (r2 = 0.45), coarse roots (r2 = 0.36), and all tissues combined (r2 = 0.83), but not for fine roots and branches. Per unit N, rates for P. strobus varied from 0.22 to 3.4 μmol molN?1 s?1 at 15 °C, comparable to those found for other conifers. Accurate estimates of annual autotrophic respiration should reflect seasonal and spatial variation in respiration rates of individual tissues.  相似文献   

6.
Six Lolium genotypes with contrasting apparent photorespiration and COa compensation concentration, [C02]c, were compared for net photosynthesis, dark respiration, leaf starch accumulation, rate of leaf expansion and shoot regrowth. Plants were grown in day/night temperatures of 15/10 and 25/20 oC. There were significant (P < 0–05) differences between the genotypes in all these parameters. At 25/20 oC apparent photorespiration was correlated with [CO2]c. Correlation coefficients, pooled from both temperature regimes, revealed that genotypes with high rates of net photosynthesis accumulated more leaf starch during light periods than genotypes with slow photosynthesis, but rates of leaf expansion and dry matter increase were only correlated, negatively, with dark respiration. Apparent photorespiration was negatively correlated with dark respiration. These findings suggest that attributes related to photorespiration such as [CO2]c and O2 uptake from CO2-free air in the light are unlikely to be useful selection criteria for growth of C3 grasses, that net photosynthesis was probably not limiting growth and that maintenance respiration may have been an important determinant of genotypic differences in growth rate. Selections for slow and fast rates of dark respiration of mature leaves were therefore made at 8 and at 25 oC from within two different populations of L. perenne, S.23. This characteristic showed repeatabilities (broad-sense heritability) of from 0–41 to o-66. Six independent comparisons of simulated swards of the slow- and fast-respiring selections were made under periodic cutting regimes, either in a growth room at 25 oC or in a glasshouse from August to May. Growth of all plots of slow-respiring genotypes was consistently more rapid than that of the fast-respiring, at 25 oC in the growth room, and during autumn and spring in the glasshouse. There was no difference in winter growth. The implications of these results for the use of gas exchange measurements as selection criteria in plant breeding programmes are discussed.  相似文献   

7.
Contrasting effects of soil CO2 concentration on root respiration rates during short-term CO2 exposure, and on plant growth during long-term CO2 exposure, have been reported. Here we examine the effects of both short- and long-term exposure to soil CO2 on the root respiration of intact plants and on plant growth for bean (Phaseolus vulgaris L.) and citrus (Citrus volkameriana Tan. & Pasq.). For rapidly growing bean plants, the growth and maintenance components of root respiration were separated to determine whether they differ in sensitivity to soil CO2. Respiration rates of citrus roots were unaffected by the CO2 concentration used during the respiration measurements (200 and 2000 μmol mol−1), regardless of the soil CO2, concentration during the previous month (600 and 20 000 μmol mol−1). Bean plants were grown with their roots exposed to either a natural CO2 diffusion gradient, or to an artificially maintained CO2 concentration of 600 or 20 000 μmol mol−1. These treatments had no effect on shoot and root growth. Growth respiration and maintenance respiration of bean roots were also unaffected by CO2 pretreatment and the CO2 concentration used during the respiration measurements (200–2000 μmol mol−1). We conclude that soil CO2 concentrations in the range likely to be encountered in natural soils do not affect root respiration in citrus or bean.  相似文献   

8.
Carbon use efficiency (CUE, the ratio between the amount of carbon incorporated into dry matter to the amount of carbon fixed in gross photosynthesis) is an important parameter in estimating growth rate from photosynthesis data or models. It previously has been found to be relatively constant among species and under different environmental conditions. Here it is shown that CUE can be expressed as a function of the relative growth rate (rGR) and the growth (gr) and maintenance respiration coefficients (mr): 1/CUE = 1 + gr + mr/rGR. Net daily carbon gain (Cdg), rGR, and CUE were estimated from whole‐plant gas exchange measurements on lettuce (Lactuca sativa L.) ranging from 24 to 66 d old. Carbon use efficiency decreased from 0.6 to 0.2 with increasing dry mass, but there was no correlation between CUE and Cdg. The decrease in CUE with increasing dry mass was correlated with a simultaneous decrease in rGR. From the above equation, gr and mr were estimated to be 0.48 mol mol?1 and 0.039 g glucose g–1 dry matter d?1, respectively. Based on the gr estimate, the theoretical upper limit for CUE of these plants was 0.68. The importance of maintenance respiration in the carbon balance of the plants increased with increasing plant size. Maintenance accounted for 25% of total respiration in small plants and 90% in large plants.  相似文献   

9.
Two Vitis species were cultured in vitro under photoautrophic (sucrose-free culture medium) and photomixotrophic (sucrose 15 g l-1) conditions during the period following microcutting rooting (day 34 to day 120). Several parameters were measured at the end of the culture: growth, plant dry weight, carbohydrate uptake from the medium and rates of photosynthesis and dark respiration. The two species behaved very differently. Under photoautotrophic conditions, dark respiration, net photosynthesis and daily CO2 fixation were higher in Vitis vinifera than in Vitis rupestris. Culture under mixotrophic conditions caused increase in growth, respiration and photosynthesis in Vitis rupestris. In contrast, photosynthesis decreased in Vitis vinifera under the same conditions.  相似文献   

10.
Abstract Growth and gas exchange measurements are used in conjunction with a carbon balance model to describe the millet (Pennisetum typhoides)–witchweed (Striga hermonthica) host—parasite association. Striga hermonthica reduces the growth of millet by 28% and radically alters the architecture of infected plants. Whilst grain yield and stem dry weight are reduced (by 80 and 53%, respectively), leaf and root growth are stimulated (by 41 and 86%, respectively). The difference in production between infected and uninfected millet plants can be accounted for by two processes: first, export of carbon to the parasite (accounting for 16% of the dry weight not gained); and second, parasite-induced reductions in host photosynthesis (accounting for 84% of the dry weight not gained). Striga hermonthica is dependent on carbon exported from the host, since the plant has low rates of photosynthesis coupled with high rates of respiration. The carbon balance model suggests that in mature S. hermonthica plants parasitic on millet, 85% of the carbon is host-derived. Carbon fluxes are also estimated using δ13C measurements, since S. hermonthica is a C3 plant parasitizing a C4 host. In conjunction with gas exchange measurements, these suggest that in root, stem and leaf of S. hermonthica, 87, 70 and 49% of carbon is hostderived, respectively.  相似文献   

11.
Continuous measurements of CO2-evolution and dry matter accumulation were carried out on shoots and roots separately of intact Helianthus annuus L. cv. Autumn Beauty plants grown in nutrient solution at different root temperatures. The data were used to distinguish between growth and maintenance components of respiration. The maintenance and growth coefficients were higher in the root system than in the shoots. The overall efficiency of assimilate utilization was within the range reported in the literature. An increase in root temperature increased the maintenance part of root respiration and, to a lesser degree, also shoot maintenance respiration. Neither root nor shoot growth respiration coefficients were affected by root temperature. It is concluded that the study of whole-plant respiration masks differences in energy utilization between shoots and roots.  相似文献   

12.
Summary Seedlings of Scots pine (Pinus sylvestris L.) from Russia (59°58N) and Poland (53°34N) were grown for 4 months in controlled environment chambers, simulating the photoperiod conditions of 50° and 60° N. The Russian population grown at 50° N showed earlier height growth cessation than the Polish population. Photoperiodic conditions of 60° N increased proportional allocation of dry mass to shoots and lowered allocation to roots in the Russian population, which also had greater allocation to roots than the Polish population in both treatments. Total non-structural carbohydrate concentrations in roots and secondary needles of both populations were significantly higher at the end of the 4 month growing season at 50° compared to 60° N. Net photosynthesis rates were similar for both provenances and both treatments. The rate of transpiration was higher and water-use efficiency lower for plants grown in long-day conditions of 60° N. The mean respiration rate of roots ranged between 30 and 36 nmol CO2 · g-1 dry mass · s-1 and was 2–4 times higher than values observed for needles. Root respiration rates were greater in the Polish than the Russian population. Despite this, the greater allocation to root dry mass of the Russian population resulted in greater root respiratory cost as a proportion of daily carbon gain. Overall, root respiration accounted for between 18 to 34% of the total daily net carbon assimilation of these populations. Root and total respiration as a proportion of net daily carbon assimilation were greater at 50° than 60°N. Mean net integrated CO2 gains were 2.2–2.5 mmol CO2 · day-1 for seedlings from Russia compared to 3 mmol CO2 · day-1 for Poland.  相似文献   

13.
Predictions of warming and drying in the Mediterranean and other regions require quantifying of such effects on ecosystem carbon dynamics and respiration. Long‐term effects can only be obtained from forests in which seasonal drought is a regular feature. We carried out measurements in a semiarid Pinus halepensis (Aleppo pine) forest of aboveground respiration rates of foliage, Rf, and stem, Rt over 3 years. Component respiration combined with ongoing biometric, net CO2 flux [net ecosystem productivity (NEP)] and soil respiration measurements were scaled to the ecosystem level to estimate gross and net primary productivity (GPP, NPP) and carbon‐use efficiency (CUE=NPP/GPP) using 6 years data. GPP, NPP and NEP were, on average, 880, 350 and 211 g C m?2 yr?1, respectively. The above ground respiration made up half of total ecosystem respiration but CUE remained high at 0.4. Large seasonal variations in both Rf and Rt were not consistently correlated with seasonal temperature trends. Seasonal adjustments of respiration were observed in both the normalized rate (R20) and short‐term temperature sensitivity (Q10), resulting in low respiration rates during the hot, dry period. Rf in fully developed needles was highest over winter–spring, and foliage R20 was correlated with photosynthesis over the year. Needle growth occurred over summer, with respiration rates in developing needles higher than the fully developed foliage at most times. Rt showed a distinct seasonal maximum in May irrespective of year, which was not correlated to the winter stem growth, but could be associated with phenological drivers such as carbohydrate re‐mobilization and cambial activity. We show that in a semiarid pine forest photosynthesis and stem growth peak in (wet) winter and leaf growth in (dry) summer, and associated adjustments of component respiration, dominated by those in R20, minimize annual respiratory losses. This is likely a key for maintaining high CUE and ecosystem productivity similar to much wetter sites, and could lead to different predictions of the effect of warming and drying climate on productivity of pine forests than based on short‐term droughts.  相似文献   

14.
Summary Response of corn to Zn and Cu on a salinized soil in pots has been studied. Zinc increased the dry weights of tops and roots at all levels of NaCl+CaCl2. Increasing Zn level increased the weights considerably at 10 mM NaCl+CaCl2. Copper increased the weight of tops at 10 mM NaCl+CaCl2: it had little effects on plant weights at 50–125 mM NaCl+CaCl2. The growth response of plant to low Cu was somewhat similar to that of higher Zinc.NaCl+CaCl2 treatments, in general, increased Zn concentrations in tops as well as roots. At low Zn application, Zn concentrations in the tops were higher than those in the roots but at high Zn application, the concentrations of Zn in tops were similar to those in the roots.NaCl+CaCl2 treatments increased Cu concentrations in the tops to a slight extent but had a depressive effect on those in the roots. Copper concentrations in the tops were, however, much below those in the roots. The greater retention of Cu in the roots remains to be explained.  相似文献   

15.
The effects of root-zone salinity (0, 30, and 60 mmol L–1 of NaCl) and root-zone temperature (10, 15, 20, and 25°C) and their interactions on the number of tillers, total dry matter production, and the concentration of nutrients in the roots and tops of barley (Hordeum vulgare L.) were studied. Experiments were conducted in growth chambers (day/night photoperiod of 16/8 h and constant air temperature of 20°C) and under water-culture conditions. Salinity and root temperature affected all the parameters tested. Interactions between salinity and temperature were significant (p<0.05) for the number of tillers, growth of tops and roots, and the concentration of Na, K, P in the tops and the concentration of P in the roots. Maximum number of tillers and the highest dry matter were produced when the root temperature was at the intermediate levels of 15 to 20°C. Effect of salinity on most parameters tested strongly depended on the prevailing root temperature. For example, at root temperature of 10°C addition of 30 mmol L–1 NaCl to the nutrient solution stimulated the growth of barley roots; at root temperature of 25°C, however, the same NaCl concentration inhibited the root growth. At 60 mmol L–1, root and shoot growth were maximum when root temperature was kept at the intermediate level of 15°C; most inhibition of salinity occurred at both low (10°C) and high (25°C) root temperatures. As the root temperature was raised from 10 to 25°C, the concentration of Na generally decreased in the tops and increased in the roots. At a given Na concentration in the tops or in the roots, respective growth of tops or roots was much less inhibited if the roots were grown at 15–20°C. It is concluded that the tolerance of barley plant to NaCl salinity of the rooting media appears to be altered by the root temperature and is highest if the root temperature is kept at 15 to 20°C.  相似文献   

16.
Abstract Raising ambient levels of CO2 during the night, between 350 and 950cm3m?3, reduced the dark respiration rate of Medicago sativum seedlings. The percentage effect was greater for maintenance respiration than for dark respiration as a whole, and when the plants were in a low photosynthate status. Twenty-four h carbon balance studies confirmed a reduction in night time respiration and an increase of net carbon gain when night time [CO2] was high. Growth experiments showed a small but significant increase of dry weight in Medicago sativum seedlings exposed to high [CO2] (~ 1200 cm3m?3) at night. This effect was greater for plants grown with Rhizobium nodules than for plants grown with nitrate in the absence of Rhizobium. A similar, but smaller and statistically non-significant effect of high night time [CO2] on growth was found for Xanthium strumarium seedlings. The significance of these findings is discussed in relation to the rising CO2 content of the atmosphere.  相似文献   

17.
Abstract Advanced selections (families 20010 and 20062) of P. radiata D. Don were exposed to either 340 or 660 μmol CO2 mol 1 for 2 years to establish if growth responses to high CO2 would persist during the development of woody tissues. The experiment was carried out in glasshouses and some of the trees at each CO2 concentration were subjected to phosphorus deficiency and to periodic drought. CO2 enrichment increased whole-plant dry matter production irrespective of water availability, but only when phosphorus supply was adequate. The greatest increase occurred during the exponential period of growth and appeared to be tied to increased rates of photosynthesis, which caused accelerated production of leaf area. The increase in whole-plant dry matter production was similar for both families; however, family 20010 partitioned larger amounts of dry weight to the trunks than family 20062. which favoured the roots and branches. Wood density was generally increased by elevated CO2 and for family 20010 this increase was due to thickening of the tracheid walls. Tracheid length was similar at both CO2 levels but differed between families. These results suggest that, as the atmospheric CO2 concentration rises, field-grown P. radiata should produce more dry weight at sites where phosphorus is not acutely deficient, even where drought limits growth; however, increases in wood production are likely only for genotypes which continue to partition at least the same proportion of dry weight to wood in the trunk.  相似文献   

18.
Continuous measurements of CO2-release from intact roots of Lolium multiflorum growing in nutrient solution were carried out during 3–7 weeks. Periods of days with high level of irradiance and periods with low level alternated. Root respiration rate was found to depend on photosynthesis. The change in root respiration, induced by change in photosynthesis, was delayed. The root respiration rate showed diurnal fluctuations with two characteristic peaks occurring 4–6 and 14–16 hours after onset of the photoperiod. The amplitudes increased with increasing photosynthesis. The frequencies were independent of the length of photoperiod, when this varied between 8 and 16 hours. The fluctuations are discussed in relation to diurnal fluctuations in protein synthesis.  相似文献   

19.
Elevated CO2 enhances carbon uptake of a plant stand, but the magnitude of the increase varies among growth stages. We studied the relative contribution of structural and physiological factors to the CO2 effect on the carbon balance during stand development. Stands of an annual herb Chenopodium album were established in open-top chambers at ambient and elevated CO2 concentrations (370 and 700 μmol mol−1). Plant biomass growth, canopy structural traits (leaf area, leaf nitrogen distribution, and light gradient in the canopy), and physiological characteristics (leaf photosynthesis and respiration of organs) were studied through the growing season. CO2 exchange of the stand was estimated with a canopy photosynthesis model. Rates of light-saturated photosynthesis and dark respiration of leaves as related with nitrogen content per unit leaf area and time-dependent reduction in specific respiration rates of stems and roots were incorporated into the model. Daily canopy carbon balance, calculated as an integration of leaf photosynthesis minus stem and root respiration, well explained biomass growth determined by harvests (r 2 = 0.98). The increase of canopy photosynthesis with elevated CO2 was 80% at an early stage and decreased to 55% at flowering. Sensitivity analyses suggested that an alteration in leaf photosynthetic traits enhanced canopy photosynthesis by 40–60% throughout the experiment period, whereas altered canopy structure contributed to the increase at the early stage only. Thus, both physiological and structural factors are involved in the increase of carbon balance and growth rate of C. album stands at elevated CO2. However, their contributions were not constant, but changed with stand development.  相似文献   

20.
Ten phenolic compounds were examined for their effect on mung bean (Phaseolus aureus L.) hypocotyl growth and on respiration and coupling parameters of isolated mung bean hypocotyl mitochondria. Three compounds—tannic, gentisic, and p-coumaric acids—inhibited hypocotyl growth and when incubated with isolated hypocotyl mitochondria released respiratory control, inhibited respiration, and prevented substrate-supported Ca2+ and PO4 transport. Vanillic acid also inhibited hypocotyl growth and reduced mitochondrial Ca2+ uptake but did not affect respiration or respiratory control of isolated mitochondria. This is the first compound reported to selectively inhibit Ca2+ uptake in plant mitochondria. Two other phenolic compounds—α, 3,5-resorcylic and protocatechuic acids—showed no significant effect on hypocotyl growth and did not affect mitochondrial oxidative phosphorylation either separately or in various combinations. Four phenolic compounds—ferulic, caffeic, p-hydroxybenzoic, and syringic acids—showed a significant reduction in mung bean hypocotyl growth but did not inhibit any of the mitochondrial processes examined. The results show that phenolic compounds which alter respiration or coupling responses in isolated mitochondria also inhibit hypocotyl growth and may reflect a mechanism of action for these natural growth inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号