首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutant male osteogenic disorder Shionogi (ODS) rats, unable to synthesize ascorbic acid, were fed diets containing a high content of docosahexaenoic acid (DHA) and different amounts of ascorbic acid, to study the effect of DHA on peroxidative susceptibility of the retina and possible antioxidant action of ascorbic acid. ODS rats were fed from 7 weeks of age with diets containing high DHA (6.4% of total energy). A control group received a diet high in linoleic acid. The diets also contained varying amounts of ascorbic acid. Fatty acid compositions and phospholipid hydroperoxides in rod outer segment (ROS) membranes, and retinal ascorbic acid were analyzed. DHA in ROS membranes was significantly increased in rats fed high DHA, compared with the linoleic acid diet. Levels of phospholipid hydroperoxides in the DHA-fed rats were significantly higher than the linoleic acid-fed rats. Ascorbic acid supplementation did not suppress the phospholipid hydroperoxide levels after a high DHA diet, even when the supplement increased the content of retinal ascorbic acid. In conclusion, high DHA feeding induced a marked increase of phospholipid hydroperoxides in ROS membranes of ODS rats. Supplementation of ascorbic acid did not reverse this increase.  相似文献   

2.
The lipid peroxidation product 4-hydroxy-2-nonenal (HNE) is proposed to be a toxic factor in the pathogenesis of Alzheimer disease. The primary products of lipid peroxidation are phospholipid hydroperoxides, and degraded reactive aldehydes, such as HNE, are considered secondary peroxidation products. In this study, we investigated the role of amyloid-beta peptide (A beta) in the formation of phospholipid hydroperoxides and HNE by copper ion bound to A beta. The A beta1-42-Cu2+ (1:1 molar ratio) complex showed an activity to form phospholipid hydroperoxides from a phospholipid, 1-palmitoyl-2-linoleoyl phosphatidylcholine, through Cu2+ reduction in the presence of ascorbic acid. The phospholipid hydroperoxides were considered to be a racemic mixture of 9-hydroperoxide and 13-hydroperoxide of the linoleoyl residue. When Cu2+ was bound to 2 molar equivalents of A beta(1-42) (2 A beta1-42-Cu2+), lipid peroxidation was inhibited. HNE was generated from one of the phospholipid hydroperoxides, 1-palmitoyl-2-(13-hydroperoxy-cis-9, trans-11-octadecadienoyl) phosphatidylcholine (PLPC-OOH), by free Cu2+ in the presence of ascorbic acid through Cu2+ reduction and degradation of PLPC-OOH. HNE generation was markedly inhibited by equimolar concentrations of A beta(1-40) (92%) and A beta(1-42) (92%). However, A beta(1-42) binding 2 or 3 molar equivalents of Cu2+ (A beta1-42-2Cu2+, A beta1-42-3Cu2+) acted as a pro-oxidant to form HNE from PLPC-OOH. These findings suggest that, at moderate concentrations of copper, A beta acts primarily as an antioxidant to prevent Cu2+-catalyzed oxidation of biomolecules, but that, in the presence of excess copper, pro-oxidant complexes of A beta with Cu2+ are formed.  相似文献   

3.
Lipid peroxidase activity in rat liver was studied. Rat liver cytosolic fraction was found to be capable of reducing lipid hydroperoxides. On the contrary, no lipid hydroperoxide reduction was observed in microsomes. It was found that at least two proteins in rat liver cytosol are capable of reducing phospholipid hydroperoxides. One of them is precipitated by 33-55% at (NH4)2SO4 saturation and requires reduced glutathione (GSH) as a hydrogen donor, while the other one is precipitated by 55-80% at (NH4)2SO4 saturation and reduces phospholipid hydroperoxides in the presence of a unidentified low molecular weight cytosolic factor, but not GSH or NADPH.  相似文献   

4.
This study investigated phospholipid hydroperoxides as substrates for non-selenium GSH peroxidase (NSGPx), an enzyme also called 1-Cys peroxiredoxin. Recombinant human NSGPx expressed in Escherichia coli from a human cDNA clone (HA0683) showed GSH peroxidase activity with sn-2-linolenoyl- or sn-2-arachidonoyl-phosphatidylcholine hydroperoxides as substrate; NADPH or thioredoxin could not substitute for GSH. Activity did not saturate with GSH, and kinetics were compatible with a ping-pong mechanism; kinetic constants (mM(-1) min(-1)) were k(1) = 1-3 x 10(5) and k(2) = 4-11 x 10(4). In the presence of 0.36 mM GSH, apparent K(m) was 120-130 microM and apparent V(max) was 1.5-1.6 micromol/min/mg of protein. Assays with H(2)O(2) and organic hydroperoxides as substrate indicated activity similar to that with phospholipid hydroperoxides. Maximal enzymatic activity was at pH 7-8. Activity with phospholipid hydroperoxide substrate was inhibited noncompetitively by mercaptosuccinate with K(i) 4 miroM. The enzyme had no GSH S-transferase activity. Bovine cDNA encoding NSGPx, isolated from a lung expression library using a polymerase chain reaction probe, showed >95% similarity to previously published human, rat, and mouse sequences and does not contain the TGA stop codon, which is translated as selenocysteine in selenium-containing peroxidases. The molecular mass of bovine NSGPx deduced from the cDNA is 25,047 Da. These results identify a new GSH peroxidase that is not a selenoenzyme and can reduce phospholipid hydroperoxides. Thus, this enzyme may be an important component of cellular antioxidant defense systems.  相似文献   

5.
The susceptibility of small and large egg yolk phosphatidylcholine unilamellar vesicles to Fe(2+)/histidine-Fe(3+)- and Fenton reagent (Fe(2+)-H(2)O(2))-induced lipid peroxidation was evaluated by measuring the formation of thiobarbituric acid reactive substances (TBARS). It has been found that surface curvature or phospholipid packing exerts significant effect on the oxidative susceptibility of the unsaturated lipid bilayers and the highly curved and loosely packed small unilamellar vesicles (SUVs) exhibit much less resistance to the oxidative stress induced by the water-soluble free radical sources. The presence of lipid hydroperoxides in sonicated vesicles was excluded as the cause for higher level of lipid peroxidation in the phospholipid SUVs. Instead, the experimental results can be explained by the difference in ability of the water-soluble oxidants to penetrate the two types of lipid membranes. This hypothesis is supported by data obtained from fluorescence lifetime and quenching studies.  相似文献   

6.
A novel glutathione peroxidase, which is active toward hydroperoxides of phospholipid in the presence of a detergent, has been purified to homogeneity from a rat liver postmicrosomal supernatant fraction by ammonium sulfate fractionation and three different column chromatographies. From a DE52 column, glutathione peroxidase active toward phosphatidylcholine dilinoleoyl hydroperoxides was eluted in one major and two minor peaks. The enzyme in the major peak was found to be separated from the "classic" glutathione peroxidase and glutathione S-transferases and further purified by Sephacryl S-200 and Mono Q column chromatographies. The purified enzyme was found to be homogeneous on polyacrylamide gel electrophoresis under nondenaturing conditions as well as that in the presence of sodium dodecyl sulfate. The molecular weight of the enzyme as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 22,000, and that by gel filtration was comparable, indicating that the enzyme protein is a single polypeptide. The purified enzyme was found to catalyze the reduction of phosphatidylcholine dilinoleoyl hydroperoxides to the corresponding hydroxy derivatives. The isoelectric point of the enzyme was found at pH 6.2, and the optimum pH for the enzyme activity was 8.0. The enzyme was active toward cumene hydroperoxide, H2O2, and 1-monolinolein hydroperoxides in the absence of a detergent. The enzyme activity toward phospholipid hydroperoxides was minute in the absence of a detergent but was remarkably enhanced by the addition of a detergent. From these results, the presently purified enzyme is obviously different from the classic glutathione peroxidase and also from phospholipid hydroperoxide glutathione peroxidase purified from pig heart (Ursini, F., Maiorino, M., and Gregolin, C. (1985) Biochim. Biophys. Acta 839, 62-70), though considerably similar to the latter.  相似文献   

7.
Peroxynitrite resulted from the reaction of nitric oxide and superoxide anion has been implicated in the genesis of neurotoxicity. In this study, the oxidation of phospholipids in rat brain synaptosomes induced by peroxynitrite generated from 3-morpholinosydnonimine (SIN-1) was studied in vitro. The formation and accumulation of phospholipid hydroperoxides, including phosphatidylcholine hydroperoxide (PCOOH) and phosphatidyl-ethanolamine hydroperoxide (PEOOH) in rat brain synaptosomes induced by peroxynitrite, were observed. PEOOH and PCOOH were formed rapidly and SIN-1 concentration-dependently. The hydroperoxides formed in synaptosomes were unstable and it was suggested that phospholipase A2 played a role in degradation of the hydroperoxides. The endogenous alpha-tocopherol acted as a potent antioxidant. It was oxidized very rapidly and concentration-dependently by SIN-1 to alpha-tocopheryl quinone. Furthermore, uric acid was found to be an effective antioxidant in inhibiting oxidative damage to synaptosomal lipids induced by SIN-1. The results provide direct evidence to show that peroxynitrite can not only deplete alpha-tocopherol, but also cause production of phospholipid hydroperoxides resulting in disrupted brain tissue.  相似文献   

8.
A method to detect and determine phospholipid peroxidation products in a biological system was developed using reversed-phase high performance liquid chromatography and normal-phase HPLC. Reversed-phase HPLC could separate phosphatidylcholine (PC) hydroperoxides and phosphatidylethanolamine (PE) hydroperoxides of rat liver from the respective phospholipids. A linear relationship was observed between these hydroperoxides and their peak areas on the chromatogram. In the experiment with rats administered CCl4, reversed-phase HPLC gave prominent, large peaks attributable to the peroxidation of phospholipids, and the peroxide level of the liver phospholipids was tentatively determined. Normal-phase HPLC analysis confirmed that both PC and PE in the liver phospholipids were peroxidized after CCl4 treatment. Neither the thiobarbituric acid value of the liver homogenate nor the fatty acid composition of the liver phospholipid fraction showed any significant difference between CCl4-treated and control rats. It is concluded that normal-phase HPLC and reversed-phase HPLC can complement each other to serve as a direct and sensitive method for the determination of lipid peroxide levels in a biological source. However, it was difficult to distinguish phospholipid hydroperoxides from their hydroxy derivatives.  相似文献   

9.
The formation of phospholipid hydroperoxides was monitored in human red blood cell (RBC) membranes that had been peroxidized with an azo initiator. Peroxidation of RBC membranes caused a profound decrease in the amount of polyunsaturated fatty acids and concomitantly hydroperoxides, as primary products of peroxidation, appeared in the phospholipids. Hydroperoxides were predominantly generated in choline glycerophospholipid (CGP), while the extent of formation of ethanolamine glycerophospholipid (EGP) hydroperoxides was low and their presence was transient. Hydroxy and hydroperoxy moieties in CGP were identified as 9-hydroxy and 13-hydroxy octadecanoic acid, derived from linoleic acid, by gas chromatography-mass spectrometric analysis. No consistent generation of hydroperoxide from arachidonic acid was evident in CGP. The CGP-hydroperoxide accounted for approximately 76% of linoleic acid consumed during peroxidation of RBC membranes. The prominent generation of phospholipid hydroperoxides was observed in the linoleic acid-rich membranes from rabbit RBC, indicating that the level of linoleic acid in phospholipids determins, in part, the extent of formation of phospholipid hydroperoxides. Aldehydic phospholipids, as secondary products of peroxidation, were detected in oxidized membranes. EGP was the most prominent aldehydic phospholipid, while negligible amounts of aldehydic CGP were formed. This study indicates that the process of oxidation of individual phospholipids clearly differs among phospholipids and depends on the structure of each.  相似文献   

10.
This study investigated the enzymatic function of two putative plant GPXs, GPXle1 from Lycopersicon esculentum and GPXha2 from Helianthus annuus, which show sequence identities with the mammalian phospholipid hydroperoxide glutathione peroxidase (PHGPX). Both purified recombinant proteins expressed in Escherichia coli show PHGPX activity by reducing alkyl, fatty acid and phospholipid hydroperoxides but not hydrogen peroxide in the presence of glutathione. Interestingly, both recombinant GPXle1 and GPXha2 proteins also reduce alkyl, fatty acid and phospholipid hydroperoxides as well as hydrogen peroxide using thioredoxin as reducing substrate. Moreover, thioredoxin peroxidase (TPX) activities were found to be higher than PHGPX activities in terms of efficiency and substrate affinities, as revealed by their respective Vmax and Km values. We therefore conclude that these two plant GPX-like proteins are antioxidant enzymes showing PHGPX and TPX activities.  相似文献   

11.
E Kalb  F Paltauf    A Hermetter 《Biophysical journal》1989,56(6):1245-1253
Fluorescence lifetimes of 1-palmitoyl-2-diphenylhexatrienylpro-pionyl-phosphatidylc hol ine in vesicles of palmitoyloleoyl phosphatidylcholine (POPC) (1:300, mol/mol) in the liquid crystalline state were determined by multifrequency phase fluorometry. On the basis of statistic criteria (chi 2red) the measured phase angles and demodulation factors were equally well fitted to unimodal Lorentzian, Gaussian, or uniform lifetime distributions. No improvement in chi 2red could be observed if the experimental data were fitted to bimodal Lorentzian distributions or a double exponential decay. The unimodal Lorentzian lifetime distribution was characterized by a lifetime center of 6.87 ns and a full width at half maximum of 0.57 ns. Increasing amounts of cholesterol in the phospholipid vesicles (0-50 mol% relative to POPC) led to a slight increase of the lifetime center (7.58 ns at 50 mol% sterol) and reduced significantly the distributional width (0.14 ns at 50 mol% sterol). Lifetime distributions of POPC-cholesterol mixtures containing greater than 20 mol% sterol were within the resolution limit and could not be distinguished from monoexponential decays on the basis of chi 2red. Cholesterol stabilizes and rigidifies phospholipid bilayers in the fluid state. Considering its effect on lifetime distributions of fluorescent phospholipids it may also act as a membrane homogenizer.  相似文献   

12.
The present review deals with the chemical properties of selenium in relation to its antioxidant properties and its reactivity in biological systems. The interaction of selenite with thiols and glutathione and the reactivity of selenocompounds with hydroperoxides are described. After a short survey on distribution, metabolism and organification of selenium, the role of this element as a component of the two seleno-dependent glutathione peroxidases is described. The main features of glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are also reviewed. Both enzymes reduce different hydroperoxides to the corresponding alcohols and the major difference is the reduction of lipid hydroperoxides in membrane matrix catalyzed only by the phospholipid hydroperoxide glutathione peroxidase. However, in spite of the different specificity for the peroxidic substrates, the kinetic mechanism of both glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase seems identical and proceeds through a tert-uni ping pong mechanism. In the reaction cycle, indeed, as supported by the kinetic data, the oxidation of the ionized selenol by the hydroperoxide yields a selenenic acid that in turn is reduced back by two reactions with reduced glutathione. Special emphasis has been given to the role of selenium-dependent glutathione peroxidases in the prevention of membrane lipid peroxidation. While glutathione peroxidase is able to reduce hydrogen peroxide and other hydroperoxides possibly present in the soluble compartment of the cell, this enzyme fails to inhibit microsomal lipid peroxidation induced by NADPH or ascorbate and iron complexes. On the other hand, phospholipid hydroperoxide glutathione peroxidase, by reducing the phospholipid hydroperoxides in the membranes, actively prevents lipid peroxidation, provided a normal content of vitamin E is present in the membranes. In fact, by preventing the free radical generation from lipid hydroperoxides, phospholipid hydroperoxide glutathione peroxidase decreases the vitamin E requirement necessary to inhibit lipid peroxidation. Finally, the possible regulatory role of the selenoperoxidases on the arachidonic acid cascade enzymes (cyclooxygenase and lipoxygenase) is discussed.  相似文献   

13.
The susceptibility of photodynamically-generated lipid hydroperoxides to reductive inactivation by glutathione peroxidase (GPX) has been investigated, using hematoporphyrin derivative as a photosensitizing agent and the human erythrocyte ghost as a target membrane. Photoperoxidized ghosts were reactive in a glutathione peroxidase/reductase (GPX/GRD)-coupled assay only after phospholipid hydrolysis by phospholipase A2 (PLA2). However, enzymatically determined lipid hydroperoxide values were consistently approx. 40% lower than iodometrically determined values throughout the course of photooxidation. Moreover, when irradiated ghosts were analyzed iodometrically during PLA2/GSH/GPX treatment, a residual 30-40% of non-reactive lipid hydroperoxide was observed. The possibility that cholesterol product(s) account for the non-reactive lipid hydroperoxide was examined by tracking cholesterol hydroperoxides in [14C]cholesterol-labeled ghosts. The sum of cholesterol hydroperoxides and GPX/GRD-detectable lipid hydroperoxides was found to agree closely with iodometrically determined lipid hydroperoxide throughout the course of irradiation. Thin-layer chromatography of total lipid extracts indicated that cholesterol hydroperoxide was unaffected by PLA2/GSH/GPX treatment, whereas most of the phospholipid peroxides were completely hydrolyzed and the released fatty acid peroxides were reduced to alcohols. It appears, therefore, that the GPX-resistant lipid hydroperoxides in photooxidized ghosts were derived primarily from cholesterol. Ascorbate plus Fe3+ produced a burst of free-radical lipid peroxidation in photooxidized, PLA2-treated ghosts. As expected for fatty acid hydroperoxide inactivation, the lipid peroxidation was inhibited by GSH/GPX, but only partially so, suggesting that cholesterol hydroperoxide-derived radicals play a major role in the reaction.  相似文献   

14.
The selenoenzyme phospholipid hydroperoxide glutathione peroxidase   总被引:17,自引:0,他引:17  
The reduction of membrane-bound hydroperoxides is a major factor acting against lipid peroxidation in living systems. This paper presents the characterization of the previously described 'peroxidation-inhibiting protein' as a 'phospholipid hydroperoxide glutathione peroxidase'. The enzyme is a monomer of 23 kDa (SDS-polyacrylamide gel electrophoresis). It contains one gatom Se/22 000 g protein. Se is in the selenol form, as indicated by the inactivation experiments in the presence of iodoacetate under reducing conditions. The glutathione peroxidase activity is essentially the same on different phospholipids enzymatically hydroperoxidized by the use of soybean lipoxidase (EC 1.13.11.12) in the presence of deoxycholate. The kinetic data are compatible with a tert-uni ping-pong mechanism, as in the case of the 'classical' glutathione peroxidase (EC 1.11.1.9). The second-order rate constants (K1) for the reaction of the enzyme with the hydroperoxide substrates indicate that, while H2O2 is reduced faster by the glutathione peroxidase, linoleic acid hydroperoxide is reduced faster by the present enzyme. Moreover, the phospholipid hydroperoxides are reduced only by the latter. The dramatic stimulation exerted by Triton X-100 on the reduction of the phospholipid hydroperoxides suggests that this enzyme has an 'interfacial' character. The similarity of amino acid composition, Se content and kinetic mechanism, relative to the difference in substrate specificity, indicates that the two enzymes 'classical' glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are in some way related. The latter is apparently specialized for lipophylic, interfacial substrates.  相似文献   

15.
An automatic method for the determination of hydroperoxides of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) is reported. Sample plasma was deproteinized with a fourfold volume of methanol. After centrifugation, the supernatant was injected directly into an HPLC system without further treatment. The hydroperoxides of PC and PE were concentrated and washed on an ODS column followed by introduction into two analytical columns, a silica gel and an aminopropylsilica gel column, which were connected in series, by column switching. After the separation, they were detected by postcolumn detection with diphenyl-1-pyrenylphosphine. The compounds were determined at picomole levels within 30 min with good reproducibilities. By using only a silica gel column as an analytical column, PC hydroperoxides were determined within 20 min, and samples could be injected into it at 15-min intervals. Those methods made it possible to inject a sample of up to 2 ml at one time and up to 8 ml by repeated injections and to determine phospholipid hydroperoxides in human plasma at picomole levels.  相似文献   

16.
The effect of phase behaviour (hexagonal II phase and lamellar phase) on the peroxidation of membrane phospholipids has been investigated in dilinoleoyl phosphatidylcholine (DLPC)/dilinoleoyl phosphatidylethanolamine (DLPE) aqueous dispersions. Peroxidation was initiated with a water-soluble radical inducer 2,2'-azobis (2-amidino-propane) dihydrochloride (AAPN). The phospholipid morphology was monitored by 31P-nuclear magnetic resonance (NMR). Phospholipid hydroperoxides (PCOOH and PEOOH) were determined by chemiluminescence high-performance liquid chromatography (CL-HPLC). In pH-induced phase transition systems, DLPE in the bilayer state was much less oxidized than in the hexagonal II state. In composition-induced phase transition systems, the formation of total hydroperoxides and the consumption of alpha-tocopherol in the hexagonal II phase were greater than in the bilayer phase. These data suggest that the hexagonal II phase is more sensitive to hydroperoxidation than the bilayer phase in phospholipid aqueous dispersions.  相似文献   

17.
Lipid hydroperoxides (LOOHs) in various lipid assemblies are shown to be efficiently reduced and deactivated by phospholipid hydroperoxide glutathione peroxidase (PHGPX), the second selenoperoxidase to be identified and characterized. Coupled spectrophotometric analyses in the presence of NADPH, glutathione (GSH), glutathione reductase and Triton X-100 indicated that photochemically generated LOOHs in small unilamellar liposomes are substrates for PHGPX, but not for the classical glutathione peroxidase (GPX). PHGPX was found to be reactive with cholesterol hydroperoxides as well as phospholipid hydroperoxides. Kinetic iodometric analyses during GSH/PHGPX treatment of photoperoxidized liposomes indicated a rapid decay of total LOOH to a residual level of 35-40%; addition of Triton X-100 allowed the reaction to go to completion. The non-reactive LOOHs in intact liposomes were shown to be inaccessible groups on the inner membrane face. In the presence of iron and ascorbate, photoperoxidized liposomes underwent a burst of thiobarbituric acid-detectable lipid peroxidation which could be inhibited by prior GSH/PHGPX treatment, but not by GSH/GPX treatment. Additional experiments indicated that hydroperoxides of phosphatidylcholine, cholesterol and cholesteryl esters in low-density lipoprotein are also good substrates for PHGPX. An important role of PHGPX in cellular detoxification of a wide variety of LOOHs in membranes and internalized lipoproteins is suggested from these findings.  相似文献   

18.
Phospholipids are complex and varied biomolecules that are susceptible to lipid peroxidation after attack by free radicals or electrophilic oxidants and can yield a large number of different oxidation products. There are many available methods for detecting phospholipid oxidation products, but also various limitations and problems. Electrospray ionization mass spectrometry allows the simultaneous but specific analysis of multiple species with good sensitivity and has a further advantage that it can be coupled to liquid chromatography for separation of oxidation products. Here, we explain the principles of oxidized phospholipid analysis by electrospray mass spectrometry and describe fragmentation routines for surveying the structural properties of the analytes, in particular precursor ion and neutral loss scanning. These allow targeted detection of phospholipid headgroups and identification of phospholipids containing hydroperoxides and chlorine, as well as the detection of some individual oxidation products by their specific fragmentation patterns. We describe instrument protocols for carrying out these survey routines on a QTrap5500 mass spectrometer and also for interfacing with reverse-phase liquid chromatography. The article highlights critical aspects of the analysis as well as some limitations of the methodology.  相似文献   

19.
TNFα generates reactive oxygen species (ROS) at the cell surface that induce cell death, but how ROS communicate to mitochondria and their specific apoptotic action(s) are both undefined. ROS oxidize phospholipids to hydroperoxides that are friable and fragment adjacent to the (hydro)peroxide function, forming truncated phospholipids, such as azelaoyl phosphatidylcholine (Az-PC). Az-PC is relatively soluble, and exogenous Az-PC rapidly enters cells to damage mitochondrial integrity and initiate intrinsic apoptosis. We determined whether this toxic phospholipid is formed within cells during TNFα stimulation in sufficient quantities to induce apoptosis and if they are essential in TNFα-induced cytotoxicity. We found that TNFα induced ROS formation and phospholipid peroxidation in Jurkat cells, and either chemical interference with NADPH oxidase activity or siRNA suppression of the NADPH oxidase-4 subunit blocked ROS accumulation and phospholipid peroxidation. Mass spectrometry showed that phospholipid peroxides and then Az-PC increased after TNFα exposure, whereas ROS inhibition abolished Az-PC accumulation and TNFα-induced cell death. Glutathione peroxidase-4 (GPx4), which specifically metabolizes lipid hydroperoxides, fell in TNFα-stimulated cells prior to death. Ectopic GPx4 overcame this, reduced peroxidized phospholipid accumulation, blocked Az-PC accumulation, and prevented death. Conversely, GPx4 siRNA knockdown enhanced phospholipid peroxidation, increasing TNFα-stimulated Az-PC formation and apoptosis. Truncated phospholipids were essential elements of TNFα-induced apoptosis because overexpression of PAFAH2 (a phospholipase A(2) that selectively hydrolyzes truncated phospholipids) blocked TNFα-induced Az-PC accumulation without affecting phospholipid peroxidation. PAFAH2 also abolished apoptosis. Thus, phospholipid oxidation and truncation to apoptotic phospholipids comprise an essential element connecting TNFα receptor signaling to mitochondrial damage and apoptotic death.  相似文献   

20.
The yeast Saccharomyces cerevisiae contains two glutaredoxins, encoded by GRX1 and GRX2, which are active as glutathione-dependent oxidoreductases. Our studies show that changes in the levels of glutaredoxins affect the resistance of yeast cells to oxidative stress induced by hydroperoxides. Elevating the gene dosage of GRX1 or GRX2 increases resistance to hydroperoxides including hydrogen peroxide, tert-butyl hydroperoxide and cumene hydroperoxide. The glutaredoxin-mediated resistance to hydroperoxides is dependent on the presence of an intact glutathione system, but does not require the activity of phospholipid hydroperoxide glutathione peroxidases (GPX1-3). Rather, the mechanism appears to be mediated via glutathione conjugation and removal from the cell because it is absent in strains lacking glutathione-S-transferases (GTT1, GTT2) or the GS-X pump (YCF1). We show that the yeast glutaredoxins can directly reduce hydroperoxides in a catalytic manner, using reducing power provided by NADPH, GSH, and glutathione reductase. With cumene hydroperoxide, high pressure liquid chromatography analysis confirmed the formation of the corresponding cumyl alcohol. We propose a model in which the glutathione peroxidase activity of glutaredoxins converts hydroperoxides to their corresponding alcohols; these can then be conjugated to GSH by glutathione-S-transferases and transported into the vacuole by Ycf1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号