首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in myosin and myosin light chain kinase during myogenesis   总被引:1,自引:0,他引:1  
Myosins and myosin light chain kinases have been isolated from a cloned line of myoblasts (L5/A10) as this cell line undergoes differentiation toward adult muscle. At least three myosin isozymes were obtained during this developmental process. Initially a nonmuscle type of myosin was found in the myoblasts. The molecular weights of the myoblast light chains were 20 000 and 15 000. Myosin isolated from early myotubes had light chains with molecular weights of 20 000 and 19 500. Myosin isolated from myotubes which contained sarcomeres had light chains with molecular weights of 23 000, 18 500, and 16 000. This last myosin was similar in light chain complement to adult rat thigh muscle. Two forms of the myosin light chain kinase activity were detected: a calcium-independent kinase in the myoblasts and a calcium-dependent kinase in the myotubes with sarcomeres. No myosin light chain kinase activity was detected in the early myotubes.  相似文献   

2.
D A Winkelmann  S Lowey  J L Press 《Cell》1983,34(1):295-306
Monoclonal antibodies were used to identify and localize by immunoelectron microscopy epitopes on myosin isozymes. An antibody that reacts with an amino-terminal fragment of the myosin heavy chain maps on the myosin head 140 A distal to the head-rod junction. It identifies an epitope that is shared on adult and embryonic myosin, and detects two transitions in myosin expression during avian pectoralis myogenesis. Another antibody maps to the carboxyl terminus of the myosin rod. It is specific for an adult fast myosin epitope that is not detected in early developing pectoralis muscle. In contrast, an epitope that is present throughout development is identified by an antibody that reacts with a myosin light chain. This light chain epitope is localized at the head-rod junction. These results demonstrate structural changes in widely separated regions of the myosin molecule accompanying the sequential expression of developmental myosin isozymes.  相似文献   

3.
Monoclonal antibodies (McAbs) against the myosin heavy chain (MHC) of adult chicken pectoralis muscle have been tested for reactivity with pectoralis myosin at selected stages of chick development in vivo and in vitro. Three such McAbs, MF 20 and MF 14, which bind to light meromyosin, and MF 30, which binds to myosin subfragment two (S2), were used to assay the appearance and accumulation of specific MHC epitopes with: (a) indirect, solid phase radioimmune assay (RIA), (b) immunoautoradiography, (c) immunofluorescence microscopy. McAb MF 20 bound strongly and equivalently to MHC at all stages of embryonic development in vivo. In contrast, the MF 30 epitope was barely detectable at 12 d of incubation but its concentration rose rapidly just before hatching. No detectable binding of MF 14 to pectoralis myosin could be measured during myogenesis in vivo until 1 wk after hatching. Immunofluorescence studies revealed that all three epitopes accumulate in the same myocytes of the developing pectoralis muscle. Since all three McAbs bound with high activity to native and denatured forms of myosin, it is unlikely that differential antibody reactivity can be explained by conformational changes in myosin during development in vivo. When myogenesis in vitro was monitored using the same McAbs, MF 20 bound to the MHC at all stages tested while reactivity of MF 30 and MF 14 with myosin from cultured muscle was never observed. Thus, this study demonstrates three different immunochemical states of the MHC during development in vivo of chick pectoralis muscle and the absence of later occurring immunochemical transitions in the MHC of cultured embryonic muscle.  相似文献   

4.
5.
The genetic control of skeletal muscle differentiation at the onset of myogenesis in the embryo is relatively well understood compared to the formation of muscle during the fetal period giving rise to the bulk of skeletal muscle fibers at birth. The Mlc1f/3f (Myl1) locus encodes two alkali myosin light chains, Mlc1f and Mlc3f, from two promoters that are differentially regulated during development. The Mlc1f promoter is active in embryonic, fetal and adult fast skeletal muscle whereas the Mlc3f promoter is upregulated during fetal development and remains on in adult fast skeletal muscle. Two enhancer elements have been identified at the mammalian Mlc1f/3f locus, a 3′ element active at all developmental stages and an intronic enhancer activated during fetal development. Here, using transgenesis, we demonstrate that these enhancers act combinatorially to confer the spatial, temporal and quantitative expression profile of the endogenous Mlc3f promoter. Using double reporter transgenes we demonstrate that each enhancer can activate both Mlc1f and Mlc3f promoters in vivo, revealing enhancer sharing rather than exclusive enhancer-promoter interactions. Finally, we demonstrate that the fetal activated enhancer contains critical E-box myogenic regulatory factor binding sites and that enhancer activation is impaired in vivo in the absence of myogenin but not in the absence of innervation. Together our observations provide insights into the regulation of fetal myogenesis and the mechanisms by which temporally distinct genetic programs are integrated at a single locus.  相似文献   

6.
Myosin light and heavy chains from skeletal and cardiac muscles and from the electric organ of Electrophorus electricus (L.) were characterised using biochemical and immunological methods, and compared with myosin extracted from avian, reptilian, and mammalian skeletal and cardiac muscles. The results indicate that the electric tissue has a myosin light chain 1 (LC1) and a muscle-specific myosin heavy chain. We also show that monoclonal antibody F109-12A8 (against LC1 and LC2) recognizes LC1 of myosin from human skeletal and cardiac muscles as well as those of rabbit, lizard, chick, and electric eel. However, only cardiac muscles from humans and rabbits have LC2, which is recognized by antibody F109-16F4. The data presented confirm the muscle origin of the electric tissue of E. electricus. This electric tissue has a profile of LC1 protein expression that resembles the myosin from cardiac muscle of the eel more than that from eel skeletal muscle. This work raises an interesting question about the ontogenesis and differentiation of the electric tissue of E. electricus.  相似文献   

7.
Cloned cDNA probes were used to measure the accumulation of myosin heavy chain, myosin light chain 2, and actin mRNA during differentiation of rat skeletal muscle cell cultures. This was compared with the changes in the rate of synthesis of the corresponding proteins. Accumulation of those mRNA sequences was detectable a few hours before the onset of the phase of cell fusion; however, the main increase in hybridizable RNA occurred during the phase of rapid cell fusion. A close correlation was found between the amounts of mRNAs coding for these proteins and the rate of synthesis of the proteins. The results suggest that the activation of stored mRNA is not a major mechanism for controlling the time at which these proteins are synthesized.  相似文献   

8.
9.
10.
11.
Myosin light chain kinase purified from chicken white skeletal muscle (Mr = 150,000) was significantly larger than both rabbit skeletal (Mr = 87,000) and chicken gizzard smooth (Mr = 130,000) muscle myosin light chain kinases, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Km and Vmax values with rabbit or chicken skeletal, bovine cardiac, and chicken gizzard smooth muscle myosin P-light chains were very similar for the chicken and rabbit skeletal muscle myosin light chain kinases. In contrast, comparable Km and Vmax data for the chicken gizzard smooth muscle myosin light chain kinase showed that this enzyme was catalytically very different from the two skeletal muscle kinases. Affinity-purified antibodies to rabbit skeletal muscle myosin light chain kinase cross-reacted with chicken skeletal muscle myosin light chain kinase, but the titer of cross-reacting antibodies was approximately 20-fold less than the anti-rabbit skeletal muscle myosin light chain kinase titer. There was no detectable antibody cross-reactivity against chicken gizzard myosin light chain kinase. Proteolytic digestion followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis or high performance liquid chromatography showed that these enzymes are structurally very different with few, if any, overlapping peptides. These data suggest that, although chicken skeletal muscle myosin light chain kinase is catalytically very similar to rabbit skeletal muscle myosin light chain kinase, the two enzymes have different primary sequences. The two skeletal muscle myosin light chain kinases appear to be more similar to each other than either is to chicken gizzard smooth muscle myosin light chain kinase.  相似文献   

12.
13.
Structural changes in myosin power many types of cell motility including muscle contraction. Tilting of the myosin light chain domain (LCD) seems to be the final step in transducing the energy of ATP hydrolysis, amplifying small structural changes near the ATP binding site into nanometer-scale motions of the filaments. Here we used polarized fluorescence measurements from bifunctional rhodamine probes attached at known orientations in the LCD to describe the distribution of orientations of the LCD in active contraction and rigor. We applied rapid length steps to perturb the orientations of the population of myosin heads that are attached to actin, and thereby characterized the motions of these force-bearing myosin heads. During active contraction, this population is a small fraction of the total. When the filaments slide in the shortening direction in active contraction, the long axis of LCD tilts towards its nucleotide-free orientation with no significant twisting around this axis. In contrast, filament sliding in rigor produces coordinated tilting and twisting motions.  相似文献   

14.
15.
Myosin subfragment-1 (S-1) which contains the LC2 light chain has been labelled with fluorine to allow an 19F-NMR study of the coupling and energetics of structural changes in the myosin head. Two fluorine-containing reagents, N-4-(trifluoromethyl)phenyl iodoacetamide and N-3,5-di(trifluoromethyl)phenyl iodoacetamide, have been used to label the myosin heavy chain at the unusually reactive sulfhydryl-1 (SH1) position. The chemical shift of both reagents on S-1 is sensitive to a structural transition in the region of SH1 which occurs upon increasing the temperature from 0 degrees C to 35 degrees C. The midpoint of the transition in both papain and chymotryptic S-1 is at approximately 11 degrees C at pH 7 (0.1 M CKl). The temperature dependence of the chemical shift may be fit assuming a two-state equilibrium where delta G degree' (T) = 101-110T +0.386 T2 (where T is the temperature in Kelvin). Both delta H degree' (T) and delta S degree' (T) have a small temperature dependence from 0 to 35 degrees C: at 20 degrees C, delta H degree' (T) = -33 kcal/mol. delta S degree' (T) = -116 e.u. and delta Cp = -226 cal/mol per deg (pH 7.0, 0.1 M KCl). The NMR data indicate that the presence of the LC2 light chain in papain S-1 does not modify the structure of S-1 in the vicinity of SH1, nor does it modify the energetics of the structural transition from that seen in its absence with chymotryptic S-1. The presence of calcium which is bound by the LC2 of papain S-1 also does not alter the energetics of the transition. Thus it would appear that the LC2 light chain (on myosin S-1) does not participate in the two-state transition, nor does it interact strongly with regions of the heavy chain which participate in the transition.  相似文献   

16.
Three naturally occurring variants of myosin light chain 1, type I, II, and III from avian fast-twitch muscle, have been analyzed by reverse-phase HPLC peptide mapping and amino acid sequencing. Difference peptides were absent from accompanying digests of the related protein, myosin light chain 3, indicating that the heterogeneity was located in the N-terminal 50 residues unique to light chain 1. The type II variant possessed the previous published sequence for the protein [Nabeshima Y., Fujii-Kuriyama, Y., Muramatsu, M., & Ogata, K. (1984) Nature (London) 308, 333-338]. The type I variant, which migrates faster than the type II on SDS gene electrophoresis, contained a Pro----Ala substitution at residue 15, turning the Lys-Pro-(Ala)5(Pro-Ala)7 stretch in this region into Lys-Pro-(Ala)7(Pro-Ala)6. The type III variant, which migrates just faster than the type I, had an (Ala)2 deletion in the (Ala)5 run, yielding Lys-Pro-(Ala)3-(Pro-Ala)7. As indicated by the SDS gel migration rates, the type I and III variants are significantly shorter in length than the type II. The benign nature of the changes is consistent with a flexible arm function for the N-terminal region of light chain 1, with the structural changes in the variants occurring in the spacer region of the arm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
Smooth muscle cells express isoforms of actin and myosin heavy chains (MHC). In early postnatal animals the nonmuscle (NM) actin and MHC isoforms in vascular (aorta) smooth muscle were present in relatively high percentages. More than 30% of the MHC and 40% of the actin isoforms were NM. The relative percentage of the NM isoforms decreased significantly as the animals reached maturity, with NM MHC less than 10% and NM actin less than 30% of the totals. Concurrent with this decrease in NM isoforms was an increase in the smooth muscle (SM) isoforms. The relative changes and time frame in which these changes occurred were very similar for the actin and MHC isoforms. In arterial tissue there were species differences for changes with development in the two SM MHC isoforms (SM1 and SM2). The ratio of SM1:SM2 in young rat aorta was approximately 0.5, while this same ratio was approximately 3 in young swine carotid. Both adult rats and swine had a SM1:SM2 MHC ratio of approximately 1.2. Rat bladder smooth muscle showed no significant change in NM vs SM ratio between young and old rats, while the SM1:SM2 ratio decreased from 2.7 to 1.7 between these age groups. The shifts in alpha and beta actin were similar to those in the vascular tissue, but of much smaller magnitude.  相似文献   

19.
Recently we have found evidence that the human embryonic myosin alkali light chain (MLC1 emb) gene has two functional promoters and that its mRNAs exhibit heterogeneity in their 3'untranslated regions (UTR). To study this more in detail we have isolated and characterized the human MLC1emb gene. We focussed in particular on 2 kilobases of 5'flanking region and the alternative 3'UTRs. RNA primer extension and S1 mapping analyses revealed that the MLC1emb gene can indeed be driven either by a proximal or a distal promoter, both in fetal and adult cardiac tissue. These MLC1emb RNAs can contain either the proximal or distal 3'UTR. In contrast to this, in fetal as well as adult masseter muscle MLC1emb mRNA is predominantly transcribed from the proximal promoter and contains mainly the distal 3'UTR. These results explain the known heterogeneity of MLC1emb mRNAs. Finally, we present evidence that the murine MLC1emb gene also contains a functional distal promoter element which has hitherto been undetected.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号