首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to evaluate the degree of carbon autonomy for fruit development, the carbon source-sink relationship in fruit-bearing branchlets of mature deciduous forest trees was manipulated in situ. The tests included half and complete defoliation, girdling or the combination of both treatments, which were applied on fruiting branchlets by using a canopy crane. Concentrations of non-structural carbohydrates (NSC) were analysed in different branchlet tissues and fruits, to identify situations of carbon imbalances induced by the treatments. NSC concentrations of branchlets were generally lower under treatments resulting in decreased fruit growth. All three investigated species (Carpinus betulus, Fagus sylvatica and Tilia platyphyllos) exhibited complete carbon autonomy of fruiting at the level of whole, undisturbed branchlets, since neither a decrease of total infructescence biomass, nor of individual fruit mass occurred on girdled, un-defoliated branchlets. On girdled, 100% defoliated branchlets, fruit biomass relative to controls decreased by approximately 50% in Carpinus and Tilia, but by almost 80% in Fagus, which can be explained by different proportions of photosynthetically active infructescence tissues among the species. In contrast to the other two species, Tilia branchlets did not import carbon to compensate for assimilate loss after defoliation.  相似文献   

2.
Summary Patterns of spatial variation in leaf herbivory and the effects of this variation on seed production and twig growth were studied in striped maple, Acer pensylvanicum (Aceraceae). Experimental removal of 25% of the leaf area from each of four leaves directly subtending a developing infructescence significantly reduced seed number in that infructescence. When leaf area was removed from leaves neighboring to, but not directly subtending developing infructescences, no reduction in seed production occurred. Together, these results suggest that only photosynthate from leaves directly subtending infructescences contributes to seed production in nearby infructescences. Effects of the experimental removal of leaf area did not persist the second year, suggesting that mobilization of storage products the following spring occurred independent of prior treatment. There was probably little negative impact of leaf herbivores on this plant species during the study year due to (1) low occurrence of localized damage within the crowns of censused trees and (2) delay of leaf area loss until completion of fruit development.  相似文献   

3.
Effects of defoliation and girdling on fruit production in Ilex aquifolium   总被引:1,自引:0,他引:1  
1. The effects of defoliation and girdling on fruit production in European holly Ilex aquifolium were studied in a northern Spanish population. Three defoliation treatments (control, 50% and 100% leaf removal) were applied at branch level in 10 trees. Six branches were used per treatment in each tree and half of these branches were girdled (a ring of bark and cambium was removed from the branch base).
2. Leaf removal from ungirdled branches had little effect on fruit set, fruit production and reproductive allocation at branch level. However, these variables decreased as the extent of defoliation increased on girdled branches.
3. Fruit production in undefoliated branches did not differ between girdled and ungirdled branches, showing that girdled branches were autonomous for fruit production when undamaged. Mean fruit mass of girdled-100% defoliated branches averaged 8% of fruit mass produced by control branches.
4. Fruit production of ungirdled-100% defoliated branches did not differ from control branches, showing the importance of resource importation from other branches. Hence the branches may be regarded as only partially autonomous for fruit production.
5. Fruit production of girdled-50% defoliated branches was 42% of fruit production of control branches, while ungirdled-50% defoliated branches amounted to 70% of controls. These results also demonstrated resource importation but did not support the existence of photosynthetic compensatory mechanisms.
6. The ability of resource importation developed by fruiting branches might be a mechanism to reduce the effect of reproductive costs in this species.  相似文献   

4.
Mature trees have already experienced substantial increases in CO2 concentrations during their lifetimes, and will experience continuing increases in the future. Small open-top chambers were used to enclose branchlets that were at a height of between 20 and 25 m in the canopy of the tree species Luehea seemannii Tr. & Planch. in a tropical forest in Panamá. Elevated concentrations of CO2 increased the rate of photosynthetic carbon fixation and decreased stomatal conductance of leaves, but did not influence the growth of leaf area per chamber, the production of flower buds and fruit nor the concentration of nonstructural carbohydrates within leaves. The production of flower buds was highly correlated with the leaf area produced in the second flush of leaves, indicating that the branchlets of mature trees of Luehea seemannii are autonomous to a considerable extent. Elevated levels of CO2 did increase the concentration of nonstructural carbohydrates in woody stem tissue. Elevated CO2 concentration also they increased the ratio of leaf area to total biomass of branchlets, and tended to reduce individual fruit weight. These data suggest that the biomass allocation patterns of mature trees may change under future elevated levels of CO2. Although there were no effects on growth during the experiment, the possibility of increased growth in the season following CO2 enrichment due to increased carbohydrate concentrations in woody tissue cannot be excluded.  相似文献   

5.
The shrub Pistacia terebinthus produces crowded infructescences with up to several hundred fruits, which are bright red when unripe and turn green when ripe. Most fruits contain an empty seed and never reach maturity. More ripe fruits were removed by birds from experimental bicolored fruit displays (consisting of infructescences with ten ripe fruits and stripped of unripe fruits, paired with infructescences with only unripe fruits) than from monocolored ones (single infructescences with ten ripe fruits and stripped of unripe fruits). Thus, the presence of unripe fruits seems to increase the conspicuousness or attractiveness of fruit displays to fruit-eating birds. A second experiment compared ripe fruit removal from experimental infructescences having only ripe fruits, with that from control infructescences containing both ripe fruits and natural numbers of unripe fruits, all on P. terebinthus plants. Unlike the first experiment, each bicolored display in this case consisted of a single infructescence with both unripe and ripe fruits. A higher proportion of ripe fruits was removed by birds from infructescences free of unripe fruits. This result suggests that the presence of unripe fruits reduces the accessibility of ripe fruits for fruit-eating birds. This is further supported by field observations of bird foraging behavior.  相似文献   

6.
Stem photosynthesis can contribute significantly to woody plant carbon balance, particularly in times when leaves are absent or in ‘open’ crowns with sufficient light penetration. We explored the significance of woody tissue (stem) photosynthesis for the carbon income in three California native plant species via measurements of chlorophyll concentrations, radial stem growth, bud biomass and stable carbon isotope composition of sugars in different plant organs. Young plants of Prunus ilicifolia, Umbellularia californica and Arctostaphylos manzanita were measured and subjected to manipulations at two levels: trunk light exclusion (100 and 50%) and complete defoliation. We found that long‐term light exclusion resulted in a reduction in chlorophyll concentration and radial growth, demonstrating that trunk assimilates contributed to trunk carbon income. In addition, bud biomass was lower in covered plants compared to uncovered plants. Excluding 100% of the ambient light from trunks on defoliated plants led to an enrichment in 13C of trunk phloem sugars. We attributed this effect to a reduction in photosynthetic carbon isotope discrimination against 13C that in turn resulted in an enrichment in 13C of bud sugars. Taken together our results reveal that stem photosynthesis contributes to the total carbon income of all species including the buds in defoliated plants.  相似文献   

7.
The carbon isotopic compositions of leaves and stems of woody legumes growing in coastal mediterranean and inland desert sites in California were compared. The overall goal was to determine what factors were most associated with the carbon isotope composition of photosynthetic stems in these habitats. The carbon isotope signature (d13C) of photosynthetic stems was less negative than that of leaves on the same plants by an average of 1.51 ± 0.42 ;pp. The d13C of bark (cortical chlorenchyma and epidermis) was more negative than that of wood (vascular tissue and pith) from the same plant for all species studied on all dates. Desert woody legumes had a higher d13C (less negative) and a lower intercellular CO2 concentration (Ci ) (for both photosynthetic tissues) than that of woody legumes from mediterranean climate sites. Differences in the d13C of stems among sites could be entirely accounted for by differences among site air temperatures. Thus, the d13C composition of stems did not indicate a difference in whole-plant integrated water use efficiency (WUE) among sites. In contrast, stems on all plants had a lower stem Ci and a higher d13C than leaves on the same plant, indicating that photosynthetic stems improve long-term, whole-plant water use efficiency in a diversity of species.  相似文献   

8.
 A hypothesized relationship between seed weight and leaf size was investigated for 58 diverse British (semi-)woody species. Interspecific variation in leaf size of adult plants corresponded allometrically with interspecific variation in the weight of an infructescence (seed-bearing inflorescence). The relationship between seed size and leaf size of adult plants was triangular. The corners of the triangle were interpreted in terms of ecological strategy. Medium-sized infructescences, small seeds and large leaves were seen among medium-sized, fast-growing, earlier-successional, mostly deciduous shrubs and trees; small infructescences, small seeds and small leaves mostly among low, slow-growing evergreens from stress-prone, proclimax habitats; and large infructescences, large seeds and large leaves among slow-growing, later-successional trees of potential competitive vigour. The hypothesis that the combination of large seeds and small leaves is allometrically unlikely was supported by the data. The roles of ontogeny and taxonomic relatedness in the seed size-leaf size relationship were examined by correlative and taxonomic analyses of seed, plant and leaf size during the unfolding of the life history from seed through two seedling phases to adulthood. Deciduous versus evergreen leaf habit was a source of deviation from the otherwise linear allometric relationships during ontogenetic development, none of which were, individually, confounded significantly with taxonomy. Received: 2 March 1998 / Accepted: 15 October 1998  相似文献   

9.
We investigated the role of photosynthesis by reproductive organs in meeting the carbon costs of sexual reproduction in the snow-buttercup, Ranunculus adoneus. The exposed green carpels of snow-buttercup flowers have 1–2 stomata each. Net carbon assimilation rates of flowers are negative during bud expansion, but rise to zero at maturity, and become positive during early fruit growth. Experimental removal of separate whorls of flower parts demonstrated that the showy, nectary-housing petals account for most of the respiration cost of flower presentation. Conversely, photosynthesis by female organs contributes to a flower's carbon balance. Dipteran pollinators of R. adoneus are most active in sunny mid-morning to mid-afternoon intervals. At this time of day, rates of carpel photosynthesis (Amax) meet respiratory costs of pollinator attraction in fully expanded flowers. Achenes remain photosynthetically active until dispersal, and positive net carbon assimilation rates characterize infructescences throughout fruit maturation. Photosynthetic rates of achenes are positively correlated with infructescence growth rates. We tested the causal basis of this relationship by experimentally shading developing infructescences. Mature achenes from shaded infructescences were 16–18% smaller than those from unshaded controls. Leaf photosynthetic rates did not differ between plants bearing shaded and unshaded seed heads. Since female reproductive organs are only 8% more costly in terms of caloric investment than male ones and contribute to their own carbon balance, it is plausible that the energy cost of male function equals or exceeds that of female function in this hermaphroditic species.  相似文献   

10.
In four field and glasshouse experiments designed to alter the supply of resources through manipulation of nutrients, root tissue, leaf area and fruit number in Alliaria petiolata (Brassicaceae), more than 99% of ovules per plant showed signs of fertilization, suggesting that seed production in this plant was not pollen limited. However, in all treatments a significant proportion of fruits and seeds did not develop to maturity. Total fruit and seed production did not differ significantly from controls when plants were given nutrient supplements at flowering. Removal of 50–75% of the root tissue in 1-yr-old plants significantly reduced fruit set, but had no effect on individual seed development. Removal of cauline leaves significantly reduced most measures of fruit and seed production, suggesting that current photosynthate is critical for fruit and seed filling. Seed maturation was significantly affected by both fruit position within an infructescence and ovule position within a fruit. Basally located fruits and ovules (within fruits) developed more mature seeds than distally positioned fruits and ovules. Plants responded to removal of basal fruits by re-allocating resources to distal fruits that would normally have aborted. Our results suggest that fruits and seeds act as reproductive sinks competing for parental photosynthate. Patterns of resource allocation within infructescences and fruits were also modified by our experiments.  相似文献   

11.
N. Greig 《Oecologia》1993,93(3):412-420
Absolute number of seeds lost to predispersal seed predators and proportion of total seeds lost per infructescence were compared among five Costa Rican Piper species of different annual fecundities. Mean seed number and mean seed size in the five species were negatively correlated. The impact of predation on these species was inversely related to the number of seeds they produced. The two early successional species had very high fecundities, a combination of many seeds per infructescence, many infructescences per plant, and, in one species, year-round reproduction. Although seed predators destroyed as many or more seeds of these early successional species than they did of the less fecund, late successional species, this loss accounted for a relatively minor proportion (9 and 12%) of the seeds of the early successional species. In contrast, late successional species produced fewer, larger seeds in a smaller number of infructescences and were not continually in fruit. One of these species, which produced intermediate numbers of intermediately sized seeds, lost 30% of the seeds in each infructescence on average. Seed predators destroyed a larger proportion (65 and 76%) of the seeds per infructescence in the two species with fewest seeds per infructescence. High levels of insect damage in these late successional species caused many of their infructescences to abort prematurely. Taken together these factors resulted in annual fecundities several orders of magnitude smaller in shade-tolerant Piper species than the annual fecundities of shade-intolerant, early successional species. Seedlings of the two early successional species were common in large gaps and other sunny clearings and seedlings of the species with 30% seed loss were occasional, whereas no seedlings were seen of the two species with the highest proportional seed loss, suggesting that seed predation on the latter species may limit seedling recruitment.  相似文献   

12.
紫茎泽兰的CO2交换特性   总被引:14,自引:5,他引:9  
紫茎泽兰是一种外来入侵有害植物,从CO2交换特性角度研究其入侵特性的报道较少。对其生殖器官(花和果)和营养器官(茎杆和根系和不同生长条件下的叶片)气体交换特性进行了测定,并与8种本地种和已报到的世界主要草本和木本植物的光合速率、呼吸速率进行了对比。在结果中观察到,不同叶片的净光合能力和呼吸速率差异较大,同一茎杆不同叶片、不同年龄株丛和同一株丛不同年龄分株上叶片、不同生境内嫩叶、成叶和老叶、不同长度节间上生长叶片以及基生叶和顶生叶光合能力都受到气孔限制和非气孔限制(羧化能力)的影响,但不同叶片所受的限制程度不同。综合来看,最大叶片净光合速率为17.6μmol·m-2s-1,分布最集中的区域为11~15μmol·m-2s-1,占所有观测值的50%,而叶片暗呼吸速率70%以上的观测结果在1~3μmol·m-2s-1之间,分布最集中的区域在1.5~2.0μmol·m-2s-1,占所有测定值的40%。生殖器官具有较高的代谢机能,其中幼嫩花蕾的呼吸速率高达37μmol·kg-1DWs-1,其呼吸速率平均比茎杆和根系高出4倍。而且,花蕾、成花和幼果都具有较高的光合能力(毛光合速率分别约为40,16μmol·kg-1DWs-1和11μmol·kg-1DWs-1,是对应呼吸速率的110%,68%和74%),对照同一时期(早春:旱季生殖生长季)的叶片光合能力仅为营养生长季节(夏季)的1/3,生殖器官这种光合作用是对叶片光合能力不足的一种补充。茎杆和根系呼吸速率与直径的关系相似,即直径越小,呼吸速率越高。直径小于0.5mm的根系和茎杆的呼吸速率都在11μmol·kg-1DWs-1以上。与其他植物比较,在温度和根系大小相当的情况下,紫茎泽兰与其它根系呼吸比较并没有明显区别。与已报道的草本植物和木本植物光合呼吸范围来看,紫茎泽兰叶片光合速率介于草本植物系统的中等偏下,位于木本植物系统的中等偏上,而其呼吸速率和草本植物相当但明显高于木本植物。与本地其他伴生植物比较,紫茎泽兰光合能力与本地常绿阔叶树种、落叶阔叶树种相当,而明显高于常绿针叶树种,但与同一时期的草本植物光合能力相当甚至偏低。其呼吸速率与本地草本和木本植物相差不明显。因此,不同生境下和不同生长状态的紫茎泽兰的光合和呼吸速率都具有较强的可塑性,这种可塑性可能有利于其定居不同的生境,即在适宜生境保持最高的光合能力和呼吸代谢水平,利于快速入侵,而在胁迫生境下以避免消亡为主,待机爆发。但是,仅通过比较紫茎泽兰与其它植物的叶片光合速率和呼吸速率不容易判断这一植物的强入侵能力。  相似文献   

13.
McCarthy  Brian C.  Quinn  James A. 《Oecologia》1992,91(1):30-38
Summary Fruit survival patterns, from fertilization to maturation, were examined for Carya ovata and C. tomentosa in a New Jersey USA forest. We observed fruiting and shoot growth characteristics over a 3-yr period to determine: (1) the patterns of fruit survivorship (from initiation to maturity) within and among years, (2) the relationships between shoot growth, fruit initiation, and fruit survival to maturity, and (3) the influence of phytophagous insects on fruit survival. We found that within years, smaller infructescences (1–2 fruits) exhibited greater relative survivorship than larger ones (3–4 fruits); however, absolute nut production was greatest for mid-sized infructescences (2–3 fruits). Among years, fruit survivorship varied considerably within populations. Across the 3-yr period we observed average fruit survivorship to be convex, linear, and concave, respectively. Likewise, shoot characteristics (length, width, number of leaves) varied concomitantly (decreasing fruit survivorship was accompanied by decreasing shoot length and number of leaves). Within years, we found no strong relationship between shoot characteristics and infructescence size and survival. The patterns of tree-to-tree variation suggested a strong genetic basis to shoot growth and fruit maturation. However, patterns of variation within and among years also indicated a strong environmental influence on these traits as well. Natural phytophagy by insects was observed to be low (<5%); however, shoot defoliations of 10–25% were not uncommon. Experimental defoliations (ambient, 10–15%, 20–40%, and 75–100%) did not result in reduced survival to maturity. Collectively, the data suggest that year-to-year variability in shoot growth has a greater influence on fruit maturation patterns than within year fruit-shoot relations.  相似文献   

14.
对缙云山草珊瑚8个天然居群结实特征的20项表型性状的变异性进行了研究,结果表明:各表型性状在居群内与居群间都存在很大的变异性,其中种实产量、果序数和果序分枝的变异程度较高,而果实和种子的特征指数变异程度较低,同类性状果实的变异程度要大于种子;平均变异系数最大的性状是四分枝果序百分比(1.477),最小的是种子长宽比(0.041);变异程度最大的居群是居群6(0.564),最小的是居群4(0.292);各居群间除果序分枝总数差异不显著、果序数和二分枝果序百分比差异显著外,其它17项表型指标均达到极显著水平,表明缙云山草珊瑚各居群间已经发生了明显的形态分化;居群内和居群间变异分别占总变异的60.7%和39.3%,说明居群内变异是表型变异主要来源,但居群间变异也不容忽视;欧氏距离聚类将所有居群划归为两大类群,主要与居群的群落类型与干扰程度有关;表型性状的Pearson相关性聚类显示草珊瑚同类性状在表型分化过程中具有很强的相关性。  相似文献   

15.
Merremia boisiana (Gagnep) van Ooststr. is a noxious fast growing woody vine and is able to grow overtop other plants, causing the death of plants underneath and forming monospecies stands. To formulate management responses, we assessed its seed and vegetative reproduction efficacy through indoor and field experiments. The number of flowers counted from bagged infructescences in Guangzhou ranged from 25 to 172, with an average of 80.80. Counting the seeds of bagged infructescences had shown that there were only 1.58 hard testa seeds in each infructescence. Seed vitality tests using red ink indicated that only 68.6% of hard testa and filled seeds were viable. The emergence rate of scarified hard testa seeds in the sand bed was 31.96%. Under imitated natural conditions, 8% of hard testa seeds could germinate, and 9% still retained their germination potential in one year. Thus, seedlings should be monitored and removed in a timely fashion after any attempt of clearing. Moving soil or transplanting plant from infested patches should be strictly prohibited at least for several years. All considered, an infructescence contributed 0.3 seedlings. The investigation in the field found no seedlings either inside or at the perimeter of the patch, suggesting scant expansion by means of seed dispersal. Therefore, the elimination effort could be focused on a relatively restricted scale of patches. Of 630 cuttings of young shoots, old shoots and old lying shoots with or without growth regulators, there were only four (or 0.63%) established individuals. Air-layering shoots all died in two months. Poor cuttings and air-layering reproduction indicated that regeneration from fragments of removed stems or accidentally dropped ones was quite unlikely, and thus mechanical removal was safe.  相似文献   

16.
黄山安徽小檗一些分类学性状的变异式样研究   总被引:1,自引:0,他引:1  
在安徽黄山以安徽小檗(Berberis anhweiensis Ahrendt)为例,对中国小檗属重要分类学性状的变异式样进行了研究.结果表明:在25株安徽小檗各10个果序中,每个果序的果实数目为3~18个,平均为10.12±3.26 个,不同植株之间差异极显著(P<0.01).成熟果实形状为椭圆形或长圆形,并未见到原始文献描述的倒卵形.在总计2 529个果实中,果实内种子数为1~2个,其中含2粒种子与含1粒种子的果实数分别为1 575个和954个.各果序中含2粒种子果实及含1粒种子果实所占的比例均为0~100%,平均值分别为55.96%±22.94%和40.04%±22.94%,差异极显著(P<0.01).在25株安徽小檗各2个1年生枝条上,共有427个叶刺,其中单刺所占的比例为76.35%,并且都位于枝条的顶端,2叉刺占5.39%,3叉刺占18.27%,3种类型叶刺在数目上差异极显著(P<0.01).  相似文献   

17.
Anatomically preserved infructescences of Sarbaicarpa shilinii gen. et sp. nov. are described from the Cenomanian-Turonian of Kazakhstan and assigned to the Hamamelidales on the basis of their microstructure. The infructescence consists of about 30 free broadly cuneate fruits. The fruits are monocarpellate, without stylode, and basally with hairs. The seed is solitary and anatropic. Two types of sterile elements are present: (1) semispherical structures that are comparable in size to the fruits and densely covered with rounded trichomes and (2) narrow linear structures reaching more than a half of the fruit length. The new genus is characterized by a mosaic of platanaceous and hamamelidaceous characters. The plant remains are found associating with fossil leaves of the typically Platanus aspect.  相似文献   

18.
Summary The importance of non-flying mammals as pollinators of Banksia integrifolia and B. spinulosa was analysed by examining the effect of pollinator exclusions on fruit-set. Visitation by potential pollinators was also measured by observation and by indirect methods. Nonflying mammals were frequent visitors to inflorescences of both Banksia species. The aluminium sleeves used to exclude non-flying mammals from B. integrifolia trees were associated with a reduction in both the number of infructescences produced and the number of fruit per infructescence, indicating that non-flying mammals were important pollinators. Bird-nets over trees also significantly reduced the number of fruit per infructescence, but had no significant effect on the number of infructescences produced. The results of exclusion experiments using single inflorescences were inconclusive due to low fruitset. No conclusions could be drawn from these experiments with B. spinulosa. However, results for B. integrifolia support the conclusions of whole-tree experiments. Analysis of the genotype frequencies in seed from B. integrifolia provided no support for the hypothesis that the relatively limited mobility of non-flying mammal pollinators would cause inbreeding.  相似文献   

19.
The effects of defoliation treatments on plant growth in sunflower (Helianthus annuus) were studied in the field. Four defoliation treatments, 0 (control), 37.4, 56.1 and 93.4% of the total leaf dry weight, were applied to plants that had small third leaves. Decreased leaf weight/whole plant weight (F/W) ratios in defoliated plants rapidly recovered to almost the same ratio as that observed in the control within 12 to 16 days after defoliation according to the degree of defoliation. The mechanism involved in the recovery of the F/W ratio in defoliated plants mainly consisted of three parameters: enhancement of (1) carbon distribution ratios in the leaves, (2) photosynthetic activity in the remaining leaves, and (3) retranslocation of carbon from the stem and/or roots to leaves. Inhibitive effects of defoliation on relative growth rate and net assimilation rate were seen at an early stage, but subsequently both rates became larger in defoliated plants than in controls. Defoliated plants tended to show rapid development and expansion of new leaves, and to show increased specific leaf area and protein synthesis in individual leaves. The sugar content of leaves in defoliated plants was higher than that in controls, while the content in both stem and roots was lower. These responses seem to be advantageous for development of the photosynthetic system. Heights of defoliated plants were clearly depressed according to the degree of defoliation, and this was attributed largely to differences in the elongation rates of the internodes resulting from defoliation.  相似文献   

20.
Summary In a series of field experiments using Costa Rican rain forest plants, we examined the effect of accessibility on fruit removal rates. We compared the effects of fruit placement in terminal and axillary infructescences on diurnal and nocturnal removal rates, visitation rates, and incidence of fruit damage. We used three different species of berries (Phytolacca rivinoides, Psychotria brachiata, and Psychotria pitteri) and worked in three different habitats (fallow fields, treefall gaps, and forest understory) and in two different seasons (July–September, a season of fruit abundance and December–January, a season of fruit scarcity.)We found that in oldfields especially, diurnal removal rates by birds were significantly greater from axillary than from terminal infructescences. Nocturnal removal from axillary infructescences-presumably by rodents-is also occassionally significant. From these data, from observations on climbing ability and fruit use in captive rodents, and from reports in the literature, we suggest that rodents are significant sources of fruit and seed loss in tropical shrubs. We hypothesize that placement of the infructescence on the plant affects fruit removal by both seed-dispersing birds and by the less agile, often seed-destroying rodents. The balance between the two rates is an important component of a plant's dispersal success.Diurnal fruit removal rates were higher during the season of fruit scarcity than during the season of fruit abundance and higher in old fields than in forest gaps or understory. Fruit damage rates-probably due to orthopterans-were slightly greater in gaps and understory than in old fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号