首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyglutamated dihydrofolate, accumulated as a result of potent inhibition of dihydrofolate reductase (DHFR), has been postulated to directly inhibit the purine pathway at 5-aminoimidazole-4-carboxamide ribotide (AICAR) transformylase (reaction 9) in leukemia cells exposed to methotrexate (MTX). We have observed that 25 microM MTX or piritrexim, a "non-classical" antifolate, induce several-fold accumulations of AICAR and N-succino-AICAR to a combined cellular concentration of 89 microM in mouse L1210 leukemia cells after 2 h. By contrast, complete inhibition of reaction 4 by 25 microM azaserine results in accumulation of N-formyl-glycinamide ribotide (FGAR) polyphosphates to a combined cellular concentration of greater than 10 mM. MTX prevented azaserine-induced accumulation of FGAR polyphosphates. Hence, these antifolates induce primary inhibition of the de novo purine pathway at, or prior to, glycinamide ribotide transformylase (reaction 3).  相似文献   

2.
A rapid spectrophotometric assay for 5-amino-4-imidazolecar?amide ribotide transformylase has been devised. The assay consists of monitoring the tetrahydrofolate generated during the enzyme-catalyzed reaction which results in an increase in absorbance at 298 nm. The formation of tetrahydrofolate shows an absolute depedence on 5-amino-4-imidazolecar?amide ribotide, 10-formyltetrahydrofolate, and the enzyme.  相似文献   

3.
The folate compound 10-formyldihydrofolate (H2folate) has not been found as a component of intracellular folates in normal tissues but has been identified in the cytosol of methotrexate (MTX)-treated MCF-7 breast cancer cells and normal human myeloid precursor cells. Its identity was verified by coelution of this compound with a synthetic marker on high pressure liquid chromatography, its reduction to 10-formyltetrahydrofolate (H4folate) in the presence of dihydrofolate reductase, and its enzymatic deformylation to dihydrofolate in the presence of aminoimidazolecarboxamide ribonucleotide (AICAR) transformylase. Chemically synthesized monoglutamated or pentaglutamated 10-formyl-H2folate was examined for its interaction with three folate-dependent enzymes: AICAR transformylase, glucinamide ribotide (GAR) transformylase, and thymidylatesynthase. 10-Formyl-H2folate-Glu5 was a competitive inhibitor of thymidylate synthase (Ki = 0.16 microM with 5,10-methylene-H4folate-Glu1 as substrate and 1.6 microM with 5,10-methylene-H4folate-Glu5) and inhibited GAR transformylase (Ki = 2.0 microM). It acted as a substrate for AICAR transformylase (Km = 5.3 microM), and its efficiency was equal to that of the natural substrate 10-formyl-H4folate-Glu5. The inhibition of thymidylate synthase by 10-formyl-H2folate was highly dependent on the inhibitor's polyglutamation state, the -Glu5 derivative having a 52-85-fold greater affinity as compared to the affinity of -Glu1. Polyglutamation of 10-formyl-H2folate did not affect its inhibition of GAR transformylase. While the actual role of 10-formyl-H2folate contributing to the cytotoxicity of MTX has not been determined, this compound has the potential to enhance inhibition of GAR transformylase and thymidylate synthase, and at the same time provides additional substrate for AICAR transformylase. The MTX-induced intracellular accumulation of 10-formyl-H2folate and H2folate may play a role in the drug-related cytotoxicity through the contribution of these folates to the inhibition of thymidylate synthase and de novo purine synthesis.  相似文献   

4.
Methenyltetrahydrofolate synthetase (EC 6.3.3.2) catalyzes the irreversible ATP and Mg2+-dependent transformation of 5-formyltetrahydrofolate (N5-HCO-H4-pteroylglutamic acid (PteGlu] to 5,10-methenyltetrahydrofolate. The physiological function of this reaction remains unknown even though it is potentially involved in the intracellular metabolism of the large doses of N5-HCO-H4-PteGlu (leucovorin) administered to cancer patients. We have tried to elucidate methenyltetrahydrofolate synthetase's physiological role by examining the consequences of its inhibition in MCF-7 human breast cancer cells by the folate analog 5-formyltetrahydrohomofolate (fTHHF), a potent competitive inhibitor with a Ki of 1.4 microM. fTHHF inhibited MCF-7 cell growth with an IC50 of 2.0 microM during 72-h exposures, and this effect was fully reversible by hypoxanthine but not thymidine, indicating specific inhibition of de novo purine synthesis. A correlation was observed between increases in intracellular N5-HCO-H4-PteGlu concentrations following fTHHF and cell growth inhibition. De novo purine synthesis was inhibited at the second folate-dependent enzyme, phosphoribosyl aminoimidazole-carboxamide formyltransferase (AICAR transferase; EC 2.1.2.3), as determined by aminoimidazole carboxamide rescue and azaserine inhibition studies. N5-HCO-H4-PteGlu pentaglutamate was a potent inhibitor of purified MCF-7 cell AICAR transferase with a Ki of 3.0 microM while the monoglutamate was not an inhibitor up to 10 microM and fTHHF was only weakly inhibitory with a Ki of 16 microM. These findings suggest that methenyltetrahydrofolate synthetase activity is needed to prevent de novo purine synthesis inhibition by N5-HCO-H4-PteGlu polyglutamates.  相似文献   

5.
Wall M  Shim JH  Benkovic SJ 《Biochemistry》2000,39(37):11303-11311
We have prepared 4-substituted analogues of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) to investigate the specificity and mechanism of AICAR transformylase (AICAR Tfase). Of the nine analogues of AICAR studied, only one analogue, 5-aminoimidazole-4-thiocarboxamide ribonucleotide, was a substrate, and it was converted to 6-mercaptopurine ribonucleotide. The other analogues either did not bind or were competitive inhibitors, the most potent being 5-amino-4-nitroimidazole ribonucleotide with a K(i) of 0.7 +/- 0.5 microM. The results show that the 4-carboxamide of AICAR is essential for catalysis, and it is proposed to assist in mediating proton transfer, catalyzing the reaction by trapping of the addition compound. AICAR analogues where the nitrogen of the 4-carboxamide was derivatized with a methyl or an allylic group did not bind AICAR Tfase, as determined by pre-steady-state burst kinetics; however, these compounds were potent inhibitors of IMP cyclohydrolase (IMP CHase), a second activity of the bifunctional mammalian enzyme (K(i) = 0.05 +/- 0.02 microM for 4-N-allyl-AlCAR). It is proposed that the conformation of the carboxamide moiety required for binding to AICAR Tfase is different than the conformation required for binding to IMP CHase, which is supported by inhibition studies of purine ribonucleotides. It is shown that 5-formyl-AICAR (FAICAR) is a product inhibitor of AICAR Tfase with K(i) of 0.4 +/- 0.1 microM. We have determined the equilibrium constant of the transformylase reaction to be 0.024 +/- 0.001, showing that the reaction strongly favors AICAR and the 10-formyl-folate cofactor. The coupling of the AICAR Tfase and IMP CHase activities on a single polypeptide allows the overall conversion of AICAR to IMP to be favorable by coupling the unfavorable formation of FAICAR with the highly favorable cyclization reaction. The current kinetic studies have also indicated that the release of FAICAR is the rate-limiting step, under steady-state conditions, in the bifunctional enzyme and channeling is not observed between AICAR Tfase and IMP CHase.  相似文献   

6.
1. The adenosine deaminase (ADA) activities of chicken erythrocyte and heart cytosols had pH optima of 6.5. The temperature optima for erythrocyte and heart ADA were 30 and 35 degrees C, respectively. 2. The deoxyadenosine/adenosine deamination ratios ranged from 0.75 to 0.84 for both ADA activities. 3. For erythrocyte ADA, Km values were 8.9-12.9 microM adenosine (range) and 8.3 microM 2'-deoxyadenosine. For heart ADA, Km values were 6.7-12.0 microM adenosine (range) and 5.3 microM 2'-deoxyadenosine. 4. Inosine was a competitive inhibitor of both erythrocyte (Ki = 73 microM) and heart (Ki = 109 microM) ADA.  相似文献   

7.
Kinetic and thermodynamic studies have been made on the effect of acetaminophen on the activity and structure of adenosine deaminase in 50 mM sodium phosphate buffer pH 7.5, at two temperatures of 27 and 37 degrees C using UV spectrophotometry, circular dichroism (CD) and fluorescence spectroscopy. Acetaminophen acts as a competitive inhibitor at 27 degrees C (Ki = 126 microM) and an uncompetitive inhibitor at 37 degrees C (Ki = 214 microM). Circular dichroism studies do not show any considerable effect on the secondary structure of adenosine deaminase by increasing the temperature from 27 to 37 degrees C. However, the secondary structure of the protein becomes more compact at 37 degrees C in the presence of acetaminophen. Fluorescence spectroscopy studies show considerable change in the tertiary structure of the protein by increasing the temperature from 27 to 37 degrees C. Also, the fluorescence spectrum of the protein incubated with different concentrations of acetaminophen show different inhibition behaviors by the effector at the two temperatures.  相似文献   

8.
The Saccharomyces cerevisiae ADE16 and ADE17 genes encode 5-aminoimidazole-4-carboxamide ribonucleotide transformylase isozymes that catalyze the penultimate step of the de novo purine biosynthesis pathway. Disruption of these two chromosomal genes results in adenine auxotrophy, whereas expression of either gene alone is sufficient to support growth without adenine. In this work, we show that an ade16 ade17 double disruption also leads to histidine auxotrophy, similar to the adenine/histidine auxotrophy of ade3 mutant yeast strains. We also report the purification and characterization of the ADE16 and ADE17 gene products (Ade16p and Ade17p). Like their counterparts in other organisms, the yeast isozymes are bifunctional, containing both 5-aminoimidazole-4-carboxamide ribonucleotide transformylase and inosine monophosphate cyclohydrolase activities, and exist as homodimers based on cross-linking studies. Both isozymes are localized to the cytosol, as shown by subcellular fractionation experiments and immunofluorescent staining. Epitope-tagged constructs were used to study expression of the two isozymes. The expression of Ade17p is repressed by the addition of adenine to the media, whereas Ade16p expression is not affected by adenine. Ade16p was observed to be more abundant in cells grown on nonfermentable carbon sources than in glucose-grown cells, suggesting a role for this isozyme in respiration or sporulation.  相似文献   

9.
Aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/IMP cyclohydrolase (ATIC) is a bifunctional enzyme with folate-dependent AICAR transformylase and IMP cyclohydrolase activities that catalyzes the last two steps of purine biosynthesis. The AICAR transformylase inhibitors BW1540 and BW2315 are sulfamido-bridged 5,8-dideazafolate analogs with remarkably potent K(i) values of 8 and 6 nm, respectively, compared with most other antifolates. Crystal structures of ATIC at 2.55 and 2.60 A with each inhibitor, in the presence of substrate AICAR, revealed that the sulfonyl groups dominate inhibitor binding and orientation through interaction with the proposed oxyanion hole. These agents then appear to mimic the anionic transition state and now implicate Asn(431') in the reaction mechanism along with previously identified key catalytic residues Lys(266) and His(267). Potent and selective inhibition of the AICAR transformylase active site, compared with other folate-dependent enzymes, should therefore be pursued by further design of sulfonyl-containing antifolates.  相似文献   

10.
The pathway for de novo biosynthesis of purine nucleotides contains two one-carbon transfer reactions catalyzed by glycinamide ribotide (GAR) and 5-aminoimidazole-4-carboxamide ribotide (AICAR) transformylases in which N10-formyltetrahydrofolate is the one-carbon donor. We have found that the antifolates methotrexate (MTX) and piritrexim (PTX) completely block the de novo purine pathway in mouse L1210 leukemia cells growing in culture but with only minor accumulations of GAR and AICAR to less than 5% of the polyphosphate derivatives of N-formylglycinamide ribotide (FGAR) which accumulate when the pathway is blocked completely by azaserine. This azaserine-induced accumulation of FGAR polyphosphates is completely abolished by MTX, indicating that inhibition of the pathway is at or before GAR transformylase (reaction 3; Lyons, S. D., and Christopherson, R. I. (1991) Biochem. Int. 24, 187-197). Three h after the addition of MTX (0.1 microM), cellular 5-phosphoribosyl-1-pyrophosphate has accumulated 3.4-fold while 6-methyl-mercaptopurine riboside (25 microM) induces a 6.3-fold accumulation. These data suggest that amido phosphoribosyltransferase catalyzing reaction 1 of the pathway is the primary site of inhibition. In support of this conclusion, we have found that dihydrofolate-Glu5, which accumulates in MTX-treated cells, is a noncompetitive inhibitor of amido phosphoribosyltransferase with a dissociation constant of 3.41 +/- 0.08 microM for interaction with the enzyme-glutamine complex in vitro. Folate-Glu5, MTX-Glu5, PTX, dihydrotriazine benzenesulfonyl fluoride, and AICAR also inhibit amido phosphoribosyltransferase.  相似文献   

11.
A number of antagonists of nucleotide metabolism with anti-cancer activity affect the de novo purine pathway. To determine the biochemical mechanisms of cytotoxicity of these drugs, assay procedures have been developed for measurement of the levels of intermediates proximal to IMP in the pathway for de novo purine biosynthesis in mouse L1210 leukemia cells. Purine precursors have been synthesized in vitro from [14C]glycine using enzymes from chicken liver. These 14C-labeled intermediates have been used as marker compounds to define retention times for metabolites of leukemia cells separated by HPLC and the chromatographic mobilities of these intermediates after two-dimensional thin-layer chromatography. These new chromatographic procedures have been used in combination to determine the steady-state concentrations for purine precursors in mouse L1210 leukemia cells in the exponential phase of growth: N-formylglycineamide ribotide (16 microM); N-formylglycineamidine ribotide (4.7 microM); 5-aminoimidazole ribotide (4.0 microM); 4-carboxy-5-aminoimidazole ribotide (0.46 microM); N-succino-5-aminoimidazole-4-carboxamide ribotide (11 microM); 5-aminoimidazole-4-carboxamide ribotide (16 microM); 5-formamidoimidazole-4-carboxamide ribotide (2.7 microM); and IMP (57 microM). The metabolic effects of tiazofurin (25 microM) upon mouse L1210 leukemia cells growing in culture define a "metabolic crossover point" at the reaction catalyzed by IMP dehydrogenase (EC 1.1.1.205) which confirms previous reports of inhibition of this enzyme.  相似文献   

12.
The effects of the purine precursor 5-aminoimidazole-4-carboxamide riboside (AICAriboside) on the release of purines from cerebral cortices of normoxic and hypoxic/hypotensive rats was studied with the cortical cup technique. AICAriboside was administered either intravascularly (50 mg/kg) or intraperitoneally (500 mg/kg) to ascertain whether this agent can be used to enhance adenosine levels in the cerebral cortical interstitial fluid. Following its intraperitoneal administration AICAriboside appeared rapidly in the cortical superfusates at concentrations of up to 9 μM and remained at this level for a 90 min period. After intravascular administration, AICAriboside levels peaked at 2 μM, and then declined rapidly. No increases in basal (normoxic) or hypoxia-elicited adenosine levels in the cortical superfusates were observed. Increases did occur in the basal and hypoxia-evoked levels of hypoxanthine, xanthine and, especially, of uric acid. AICAriboside administration appears to have caused an increase in adenosine metabolite, rather than in adenosine, levels in the cerebral interstitial fluid and it may therefore be of little benefit as a precursor for adenosine formation and release in the treatment of cerebral ischemic damage.  相似文献   

13.
Aminoimidazole-4-carboxamide ribonucleotide transformylase (AICAR Tfase), one of the two folate-dependent enzymes in the de novo purine biosynthesis pathway, is a promising target for anti-neoplastic chemotherapy. Although classic antifolates, such as methotrexate, have been developed as anticancer agents, their general toxicity and drug resistance are major issues associated with their clinical use and future development. Identification of inhibitors with novel scaffolds could be an attractive alternative. We present here the crystal structure of avian AICAR Tfase complexed with the first non-folate based inhibitor identified through virtual ligand screening of the National Cancer Institute Diversity Set. The inhibitor 326203-A (2-[5-hydroxy-3-methyl-1-(2-methyl-4-sulfophenyl)-1H-pyrazol-4-ylazo]-4-sulfo-benzoic acid) displayed competitive inhibition against the natural cofactor, 10-formyl-tetrahydrofolate, with a K(i) of 7.1 mum. The crystal structure of AICAR Tfase with 326203-A at 1.8 A resolution revealed a unique binding mode compared with antifolate inhibitors. The inhibitor also accessed an additional binding pocket that is not occupied by antifolates. The sulfonate group of 326203-A appears to form the dominant interaction of the inhibitor with the proposed oxyanion hole through interaction with a helix dipole and Lys(267). An aromatic interaction with Phe(316) also likely contributes to favorable binding. Based on these structural insights, several inhibitors with improved potency were subsequently identified in the National Cancer Institute Compound Library and the Available Chemical Directory by similarity search and molecular modeling methods. These results provide further support for our combined virtual ligand screening rational design approach for the discovery of novel, non-folate-based inhibitors of AICAR Tfase.  相似文献   

14.
The synthesis and evaluation of analogues and key derivatives of 10-CF3CO-DDACTHF as inhibitors of glycinamide ribonucleotide transformylase (GAR Tfase) and aminoimidazole carboxamide transformylase (AICAR Tfase) are reported. Polyglutamate analogues of 1 were evaluated as inhibitors of Escherichia coli and recombinant human (rh) GAR Tfase, and AICAR Tfase. Although the pentaglutamate 6 was found to be the most active inhibitor of the series tested against rhGAR Tfase (Ki=0.004 microM), little distinction between the mono-pentaglutamate derivatives was observed (Ki=0.02-0.004 microM), suggesting that the principal role of the required polyglutamation of 1 is intracellular retention. In contrast, 1 and its defined polyglutamates 3-6 were much less inactive when tested against rhAICAR Tfase (Ki=65-0.120 microM) and very selective (> or =100-fold) for rh versus E. coli GAR Tfase. Additional key analogues of 1 were examined (7 and 8) and found to be much less active (1000-fold) highlighting the exceptional characteristics of 1.  相似文献   

15.
16.
We searched for non-nucleoside inhibitors of adenosine deaminase by rational structure-based de novo design and succeeded in the discovery of 1-(1-hydroxy-4-phenyl-2-butyl)imidazole-4-carboxamide (FR221647: K(i)=5.9 microM to human ADA) as a novel inhibitor with moderate activity and good pharmacokinetics compared with the known inhibitors pentostatin and EHNA.  相似文献   

17.
An isolation procedure for phosphoribosyl succinocarboxamideaminoimidazole synthetase (SAICAR synthetase) (EC 6.3.2.6) has been developed. Pure SAICAR synthetase was found to be a monomeric protein with the apparent molecular weight of 36 kDa. The Michaelis constant for the three substrates of the reaction are 1.6 microM for CAIR, 14 microM for ATP and 960 microM for aspartic acid. The structural analogs of CAIR, 5-aminoimidazole ribotide and 5-aminoimidazole-4-carboxamide ribotide, act as competitive inhibitors of SAICAR synthetase. GTP and 2'-dATP can substitute for ATP in the reaction, while CTP and UTP inhibit the enzyme. No structural analogs of the aspartic acid were found to have affinity for SAICAR synthetase. The optimal reaction conditions for the enzyme were established to be at pH 8.0 and magnesium chloride concentration around 5 mM.  相似文献   

18.
A liquid chromatography/tandem mass spectrometry (LC-MS/MS) method was established for the determination of 5-aminoimidazole-4-carboxamide (AICA) in human plasma. The method included a solvent extraction of AICA as an ion pair with 1-pentanesulfonate ion and a separation on a Hypersil ODS2 column with the mobile phase of methanol-water (68:32, v/v). Determination was performed using an electrospray ionization source in positive ion mode (ESI(+)). Multiple reaction monitoring (MRM) was utilized for the detection monitoring m/z at 127-->110 for AICA, and 172-->128 for IS. The calibration curve was linear within a range from 20 to 2000 ng/mL and the limit of quantity for AICA in plasma was 20 ng/mL. RSD of intra-assay and inter-assay were no more than 5.90% and 5.65%.  相似文献   

19.
The enzymes responsible for the phosphorylation of deoxyadenosine and nucleoside analogs are important in the pathogenesis of adenosine deaminase deficiency and in the activation of specific anticancer and antiviral drugs. We examined the role of adenosine kinase in catalyzing these reactions using an enzyme purified 4000-fold (2.1 mumol/min/mg) from human placenta. The Km values of deoxyadenosine and ATP are 135 and 4 microM, respectively. Potassium and magnesium are absolute requirements for deoxyadenosine phosphorylation, and 150 mM potassium and 5 mM MgCl2 are critical for linear kinetics. With only 0.4 mM MgCl2 in excess of ATP levels, the Km for deoxyadenosine is increased 10-fold. ADP is a competitive inhibitor with a Ki of 13 microM with variable MgATP2-, while it is a mixed inhibitor with a Ki and Ki' of 600 and 92 microM, respectively, when deoxyadenosine is variable. AMP is a mixed inhibitor with Ki and Ki' of 177 and 15 microM, respectively, with variable deoxyadenosine; it is a non-competitive inhibitor with a Ki of 17 microM and Ki' of 27 microM with variable ATP. Adenosine kinase phosphorylates adenine arabinoside with an apparent Km of 1 mM using deoxyadenosine kinase assay conditions. The Km values for 6-methylmercaptopurine riboside and 5-iodotubercidin, substrates for adenosine kinase, are estimated to be 4.5 microM and 2.6 nM, respectively. Other nucleoside analogs are potent inhibitors of deoxyadenosine phosphorylation, but their status as substrates remains unknown. These data indicate that deoxyadenosine phosphorylation by adenosine kinase is primarily regulated by its Km and the concentrations of Mg2+, ADP, and AMP. The high Km values for phosphorylation of deoxyadenosine and adenine arabinoside suggest that adenosine kinase may be less likely to phosphorylate these nucleosides in vivo than other enzymes with lower Km values. Adenosine kinase appears to be important for adenosine analog phosphorylation where the Michaelis constant is in the low micromolar range.  相似文献   

20.
We tested the hypothesis that activation of AMP-activated protein kinase (AMPK) promotes myocardial glycogenolysis by decreasing glycogen synthase (GS) and/or increasing glycogen phosphorylase (GP) activities. Isolated working hearts from halothane-anesthetized male Sprague-Dawley rats perfused in the absence or presence of 0.8 or 1.2 mM 5-aminoimidazole-4-carboxamide 1-beta-d-ribofuranoside (AICAR), an adenosine analog and cell-permeable activator of AMPK, were studied. Glycogen degradation was increased by AICAR, while glycogen synthesis was not affected. AICAR increased myocardial 5-aminoimidazole-4-carboxamide 1-beta-d-ribofuranotide (ZMP), the active intracellular form of AICAR, but did not alter the activity of GS and GP measured in tissue homogenates or the content of glucose-6-phosphate and adenine nucleotides in freeze-clamped tissue. Importantly, the calculated intracellular concentration of ZMP achieved in this study was similar to the K(m) value of ZMP for GP determined in homogenates of myocardial tissue. We conclude that the data are consistent with allosteric activation of GP by ZMP being responsible for the glycogenolysis caused by AICAR in the intact rat heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号