首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most mistletoe–host ecophysiological studies have paid attention to the influence of parasites on host performance. This paper explored the impact of varying hosts on the photosynthesis of a single mistletoe species. Here, we studied an obligate xylem‐tapping tropical mistletoe (Dendrophthoe curvata (Blume) Miquel) parasitizing four different hosts (Acacia auriculiformis A. Cunn. Ex Benth, Andira inermis (W. Wright) DC., Mangifera indica L. and Vitex pinnata L.) in a homo geneous tropical heath forest patch in Brunei Darussalam. We compared photosynthetic capacity and photosynthesis‐related characteristics of the mistletoe on four different hosts to evaluate the overall impact of hosts on the parasite. Results showed that the mistletoe–host patterns of CO2 assimilation rates, transpiration rates and water use efficiency varied significantly based on the host. In the D. curvata–Vitex pinnata association, the mistletoe exhibited significantly lower CO2 assimilation rates but showed no significant variations in transpiration rates and water use efficiency when compared to the host. In D. curvata–Andira inermis and D. curvata–Mangifera indica associations, the mistletoe showed significantly higher photosynthetic rates than the hosts, whereas in the D. curvata–Acacia auriculiformis association, there was no significant difference in photosynthetic rates between the counterparts. Host specificity also significantly influenced some mistletoe photosynthetic parameters such as light saturated photosynthesis, specific leaf area, leaf chlorophyll content, CO2 assimilation rates, stomatal conductance, transpiration rates and water use efficiency. Different tree hosts intrinsically offer different resources to their obligate mistletoe parasites based on their physiology and environmental parameters. We argue that host‐specific responses have driven these intra‐specific variations in mistletoe physiology. This study provides background for future investigation on potential host‐regulated mechanisms that drive functional changes in host‐dependent mistletoes.  相似文献   

2.
Antagonistic interactions between host plants and mistletoes often form complex networks of interacting species. Adequate characterization of network organization requires a combination of qualitative and quantitative data. Therefore, we assessed the distribution of interactions between mistletoes and hosts in the Brazilian Pantanal and characterized the network structure in relation to nestedness and modularity. Interactions were highly asymmetric, with mistletoes presenting low host specificity (i.e., weak dependence) and with hosts being highly susceptible to mistletoe‐specific infections. We found a non‐nested and modular pattern of interactions, wherein each mistletoe species interacted with a particular set of host species. Psittacanthus spp. infected more species and individuals and also caused a high number of infections per individual, whereas the other mistletoes showed a more specialized pattern of infection. For this reason, Psittacanthus spp. were regarded as module hubs while the other mistletoe species showed a peripheral role. We hypothesize that this pattern is primarily the result of different seed dispersal systems. Although all mistletoe species in our study are bird dispersed, the frugivorous assemblage of Psittacanthus spp. is composed of a larger suite of birds, whereas Phoradendron are mainly dispersed by Euphonia species. The larger assemblage of bird species dispersing Psittacanthus seeds may also increase the number of hosts colonized and, consequently, its dominance in the study area. Nevertheless, other restrictions on the interactions among species, such as the differential capacity of mistletoe infections, defense strategies of hosts and habitat types, can also generate or enhance the observed pattern. Abstract in Portuguese is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

3.
The carbon isotope ratio ('13C) of New Zealand mistletoes (-29.51ǂ.10‰) and their hosts (-28.89ǂ.12‰) is generally more negative, and shows less difference between mistletoes and their hosts, than found in previous studies. In 37% of the examined pairs, the '13C of mistletoes was less negative than that of their hosts. These reversals were not associated with the relative position (proximal or distal) of the host material with regard to the mistletoe. Differences between host and mistletoe tended to be greater on hosts with less negative '13C. Both nitrogen content and isotope ratio ('15N) of the mistletoe leaves were strongly correlated with those of their hosts. Nitrogen contents of mistletoe leaves were similar to those of their hosts at low nitrogen contents but proportionately less on hosts with a high nitrogen content, whereas '15N of mistletoes was consistently similar to that of their hosts. The '13C of mistletoes was related to both host nitrogen content and '15N, but '13C in host tissue was related to neither, suggesting that the mistletoes derived both nitrogen and carbon from their hosts. The '13C of both hosts and mistletoes were significantly related to leaf conductance and carbon dioxide concentration but relationships with transpiration and water use efficiency were not significant. In all cases there was no clear separation between the responses of hosts and mistletoes. This may be related to the similarity of stomatal conductance, transpiration and photosynthesis in the studied mistletoes and their hosts and is consistent with the small differences in '13C between mistletoes and hosts found in this study. Consequently, the estimation of mistletoe heterotrophy from carbon discrimination is confounded, as the small difference between host and mistletoe carbon discrimination could equally well result from either similarities in photosynthesis and water relations or heterotrophic assimilation of host-derived carbon. The differences between our study and previous studies (which are mostly from seasonally dry or semi-arid to arid environments) may be related to the temperate environment in which these mistletoes grow. Water is freely available so that the mistletoe is able to obtain sufficient water and dissolved nutrients without having to maintain the high transpiration rate and low water potentials that are needed to extract water from a water-stressed host. Similarly, mistletoe photosynthesis is less inhibited by water stress. The physiological similarities between mistletoe and hosts from a temperate environment are reflected in their similar '13C values.  相似文献   

4.
Summary In Australia, diurnal courses of leaf conductance and transpiration of hemiparasitic mistletoes (Loranthaceae) and their hosts were measured using steady-state porometers under conditions of partial drought and high evaporative demand. The sites spanned a diversity of climatic regions ranging from the subtropical arid zone with winter rainfall, through the subtropical arid zone with summer rainfall to the tropical summer rainfall zone. With one exception (Acacia farnesiana with deciduous leaves), the hosts were trees or shrubs with evergreen, sclerophyllous leaves or phyllodes.The measurements confirm previous observations that mistletoes transpire at higher rates than their hosts. For adult leaves from all of the 18 different host/mistletoe pairs investigated, the daily average leaf conductances were higher in the parasites than in their hosts. The ratios ranged from 1.5 to 7.9. In the most extreme case,Amyema maidenii had a daily rate of water loss 8.9 times higher than its hostAcacia cowleana. Hoever, the parasites did not exhibit unlimited transpiration. Despite high water loss rates, leaf conductance showed large and consistent changes during the course of the day, indicating definite stomatal regulation. The typical diurnal pattern of conductance in both mistletoes and hosts consisted of an early morning peak followed by a continuous decrease throughout the remainder of the day. There was no abrupt decrease in leaf conductance of the parasites that might be interpreted as a threshold response with respect to internal water potential. In most cases, the continuous stomatal closure occurred without substantial changes in leaf water potential over a time span of several hours. The decrease in leaf conductance was correlated with an increase in leaf-to-air water vapor difference, which was associated with increasing leaf temperatures. It seems probable that external humidity plays a major role in the stomatal response. Diurnal courses of leaf conductance of the host/parasite pairs usually showed similar general patterns, even when the absolute rates were quite different. Thus, mistletoes not only control their water loss by stomatal action but this regulation seems to occur in coordination with the stomatal response of their hosts.The integrated mistletoe/host system must also endure severe drought conditions. Controlled water use is necessary for long-term survival of the host. Assuming stomatal behavior in the host is well adapted to ensure its existence, then similar performance in the mistletoe would promote survival of both host and parasite.  相似文献   

5.

Background and Aims

Potassium, sulphur and zinc contents of mistletoe leaves are generally higher than in their hosts. This is attributed to the fact that chemical elements which are cycled between xylem and phloem in the process of phloem loading of sugars are trapped in the mistletoe, because these parasites do not feed their hosts. Here it is hypothesized that mutant albino shoots on otherwise green plants should behave similarly, because they lack photosynthesis and thus cannot recycle elements involved in sugar loading.

Methods

The mineral nutrition of the mistletoe Scurrula elata was compared with that of albino shoots on Citrus sinensis and Nerium oleander. The potential for selective nutrient uptake by the mistletoe was studied by comparing element contents of host leaves on infected and uninfected branches and by manipulation of the haustorium–shoot ratio in mistletoes. Phloem anatomy of albino leaves was compared with that of green leaves.

Key Results

Both mistletoes and albino leaves had higher contents of potassium, sulphur and zinc than hosts or green leaves, respectively. Hypothetical discrimination of nutrient elements during the uptake by the haustorium is not supported by our data. Anatomical studies of albino leaves showed characteristics of release phloem.

Conclusions

Both albino shoots and mistletoes are traps for elements normally recycled between xylem and phloem, because retranslocation of phloem mobile elements into the mother plant or the host is low or absent. It can be assumed that the lack of photosynthetic activity in albino shoots and thus of sugars needed in phloem loading is responsible for the accumulation of elements. The absence of phloem loading is reflected in phloem anatomy of these abnormal shoots. In mistletoes the evolution of a parasitic lifestyle has obviously eliminated substantial feeding of the host with photosynthates produced by the mistletoe.  相似文献   

6.
Tissue mineral concentrations of calcium, copper, iron, magnesium, manganese, nitrogen, phosphorus, potassium, sodium, and zinc, and long-term water-use efficiency (as estimated by δ13C±) were measured in the mistletoe Phoradendron leucarpum and its hosts to investigate the relationship between nutrient concentrations and water economies of the parasite and hosts. The mistletoe had mineral concentrations 0.97 to 2.88 times greater than the hosts. Mean long-term mistletoe water-use efficiency (-27.89±) was comparable to mean long-term host water-use efficiency (-27.69±) and generally greater than the water-use efficiency reported for most mistletoe species. Differences between mistletoe and host water-use efficiency ranged from +0.65 to -0.75± and were more similar to mistletoes found growing on nitrogen-fixing host species as reported in other studies. Mistletoe nutrient concentrations, in particular nitrogen, were not related to changes in mistletoe water-use efficiencies. Nutrient: calcium ratios indicated that mistletoes acquire nutrients in excess of that which can be delivered by the host xylem. These data are discussed relative to the passive vs. active theories of nutrient uptake.  相似文献   

7.
Summary The impact of the xylem-tapping mistletoe Phoradendron juniperinum on the nitrogen and water relations of its host Juniperus osteosperma was investigated under natural field conditions. Leaf conductance, leaf water potential, and leaf Kjeldahl nitrogen contents were followed through the growing season on mistletoes, infected junipers (separating infected from uninfected stems) and uninfected junipers. Infected trees experienced lower leaf water potentials than uninfected trees and also had lower leaf conductances and lower leaf nitrogen contents. Infected juniper stems had higher conductances than uninfected stems. Mistletoes had higher leaf nitrogen contents than their hosts and much of this nitrogen appeared as arginine, a potential nitrogen storage compound. Photosynthetic rates (per unit leaf area) were significantly higher in junipers than in the mistletoe, and higher in the uninfected than infected junipers. Water use efficiencies as estimated by carbon isotope ratios were significantly lower in mistletoes than in their hosts. Increased mistletoe infestation appeared to increase absolute water use efficiency of both host and mistletoe.Dedicated to Professors D. Wiens (Salt Lake City) and H. Ziegler (München) for initiating our curiosity in mistletoes  相似文献   

8.
What processes and factors are responsible for species distribution are long-standing questions in ecology and a key element for conservation and management. Mistletoes provide the opportunity to study a forest species whose occurrence is expected to be constrained by multiple factors as a consequence of their life form. We studied the mistletoe Tristerix corymbosus (Loranthaceae) on its most common hosts species in northwest Patagonia. The seeds of this mistletoe are almost exclusively dispersed by the small arboreal and endemic marsupial Dromiciops gliroides (Microbiotheridae). We assessed the underlying causes of plant spatial patterns through point pattern analysis and we used different variables that characterize the neighborhood around each host to analyze the relative effect of host availability, potential for disperser movement and canopy light conditions. We found that potential hosts were strongly aggregated and that the three most common host species were distributed independent of each other. Considering all host species together, infected and non-infected host were individually aggregated but segregated from each other. The aggregated pattern of infected hosts could be explained in part by the template of potential hosts distribution, but was subsequently modulated by the activity of the mistletoe disperser. Potential for disperser movement, the proximity to reproductive mistletoes and habitat complexity, increased mistletoe infection probability. However, neighboring host availability decreased mistletoe infection probability, and tree DBH (used as surrogate for light conditions) had no detectable effect. Our results suggested that the distribution of mistletoe infection was determined by the structure of potential host populations and by the marsupial disperser activity. Compared to bird dispersed mistletoes, the scale of the infection was smaller and the proximity to reproductive mistletoes and habitat complexity were important for seed arrival and infection. The interplay between landscape structure and disperser activity determine the spatial structure of mistletoe future generations.  相似文献   

9.
Abstract For 150 years mistletoe host-resemblance has been an unsolved puzzle. Mimicry, camouflage, host protection and shape modification by the host tree have all been advanced as possible solutions. No extended examination of herbivory of host-parasite pairs has ever been done, however, to put these explanations to the test. The study was carried out in northeastern Australia from March to July 1994. Rates of leaf herbivory were estimated for seven individuals of Amyema biniflora Barlow (a cryptic mistletoe species), Dendrophthoe glabrescens (Blakely) Barlow (a non-cryptic mistletoe species) and their host trees (Eucalyptus tessellaris F. Muell. and Eucalyptus platyphylla F. Muell., respectively). In addition three measures of leaf palatability–nitrogen content, moisture content and toughness–were also assessed. Variability in mistletoe leaf shape was quantified by measuring the leaf widths of mistletoes on a variety of host tree species. Mistletoes sustained greater levels of herbivory compared to their host trees, but herbivory did not differ between mistletoe species. The non-cryptic mistletoe had lower levels of nitrogen compared to its host tree, but there was no difference in nitrogen levels between the cryptic mistletoe and its host. The moisture content of mistletoe leaves was greater than that of their hosts but not between mistletoe or host species. The mistletoe species had tougher leaves than their host trees. Leaf shape was different for one species of mistletoe growing on different host trees, but constant for another species of mistletoe. The results contradict, in some crucial aspect, all of the mimicry hypotheses currently on offer.  相似文献   

10.
Most mistletoe species that live in savanna patches are subjected to frequent fires. Although having similar habits, even congener species may parasitize very different host species and show different degrees of specialization that may differentially affect their resistance to fire. We studied three congener mistletoe species with a diverse degree of specificity to their hosts: Psittacanthus biternatus, Psittacanthus eucalyptifolius and Psittacanthus plagiophyllus, the first being the most generalist species, and the last the most specialist. We investigated their prevalence (proportion of hosts infected) in 35 plots of an Amazonian savanna, with different fire histories. Our aim was to understand if they respond similarly to fire frequency and the abundance of their hosts. Additionally, we experimentally applied fire to individuals of the three species using a portable propane flamethrower to test for the influence of mistletoe species, plant size and quantity of heat pulses (single or double burn) on mistletoe survivorship. Prevalence varied greatly among species: 1.5 percent for P. biternatus, 4.8 percent for P. eucalyptifolius and 20 percent for P. plagiophyllus. Prevalence of P. plagiophyllus was negatively related to fire frequency, while for the other two species it was not. Psittacanthus biternatus had a higher probability of survival compared with the other two species, and larger plants were more likely to survive under single burn treatment and to regenerate through sprouting. Our results suggest that, due to complex interactions between fire, hosts and mistletoes, even sympatric species may respond differently to fire frequency and host abundance. Abstract in Portuguese is available in the online version of this article.  相似文献   

11.
Network analysis provides a unified framework for investigating different types of species interactions at the community level. Network analysis is typically based on null models that test for specific patterns in network topology. Here we use a novel predictive approach to investigate the topology of a mistletoe–host network. It has been hypothesised that Australian mistletoes mimic the phenotype of their preferred hosts to avoid herbivory. We developed a deterministic model based on phenotypic similarity to predict the topology of a quantitative network between Lauranthaceaous mistletoes and their hosts. We quantified mistletoe–host interactions in a semi‐arid woodland central Australia, along with the size, shape and colour of leaves produced by both players in the interaction. Traditional null model analyses showed support for negative co‐occurrence patterns, web specialisation and strong links between species pairs. However, our deterministic model showed that the observed network topology could not be predicted by phenotypic similarity, suggesting that Australian mistletoes do not mimic their hosts.  相似文献   

12.
Mistletoes are parasitic plants, the spatial distributions of which are poorly understood on macroecological scales. Because of their highly unusual life history, investigating mistletoe macroecology may provide new insight into broad‐scale patterns in species distributions. We collated data on the spatial distribution and host use of 65 species of Loranthaceous mistletoes across the continent of Australia, and tested two predictions. First, we predicted mistletoe diversity would be unrelated to productivity (i.e. evapotranspiration and precipitation), as the parasitic lifestyle might relax environmental constraints on their distributions. Second, we predicted that mistletoe host ranges (number of infected host species) would increase in areas with more potential host species. The basis of this prediction is that greater host generality is likely to evolve in regions with greater host diversity because of greater unpredictability in encounter rates with particular host species. Conversely, in regions with fewer potential hosts, randomly dispersing mistletoe propagules are likely to repeatedly encounter particular host species, thus favouring the evolution of host specialization. The results were generally consistent with these predictions. Mistletoe diversity across Australia was weakly associated with environmental conditions, whereas mistletoe host ranges increased significantly with total plant diversity. Macroecological patterns in mistletoes are unusual. In contrast to non‐parasitic plants, mistletoe diversity is poorly correlated with productivity. Host ranges varied predictably across Australia, providing the first quantitative support for the hypothesis that mistletoes in diverse regions tend to be host generalists, whereas mistletoes in depauperate regions tend to be host specialists. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 459–468.  相似文献   

13.
Summary Leaves from many misletoe species in Australia strongly resemble those of their hosts. This cryptic mimicry has been hypothesized to be a means of reducing the likelihood of mistletoe herbivory by vertebrates. Leaf Kjeldahl nitrogen contents (a measure of reduced nitrogen and thus amines, amino acids and protein levels) of mistletoes and their hosts were measured on 48 mimetic and nonmimetic host-parasite pairs to evaluate hypotheses concerning the significance of crysis versus noncrypsis. The hypothesis that mistletoes mimicking host leaves should have higher leaf nitrogen levels than their hosts is supported; they may be gaining a selective advantage through crypsis (reduced herbivory). The second hypothesis that mistletoes which do not mimic their hosts should have lower leaf nitrogen levels than their hosts is also supported; they may be gaining a selective advantage through noncrypsis (reduced herbivory resulting from visual advertisement of their reduced nutritional status).  相似文献   

14.
In order to test the hypothesis that mistletoes (Phoradendron tomentosum) are differentially adapted for the host species that they occur on, mistletoe seeds from the three most common hosts in central Texas (hackberry, Celtis occidentalis, elm, Ulmus crassifolia, and mesquite, Prosopsis glandulosa) were planted onto different individuals of each of the three hosts. Germination of seeds and formation of haustorial disks by seedlings were followed in the subsequent 17 months. Germination of seeds was very high for all nine combinations of maternal (source) and seed (experimental) hosts (range 82%–98%). There were no significant differences in seed germination between the two groups when source and experimental hosts were the same species and when they were different species. In contrast, development of haustorial disks when source and experimental hosts were the same species was significantly greater than when experimental host and source host species were different. The data suggest that populations of mistletoes are genetically differentiated such that early seedling development is greatest when there is correspondence between maternal and seedling host species.  相似文献   

15.
Summary The gas exchange and water relations of the hemiparasite Pthirusa maritima and two its mangrove host species, Conocarpus erectus and Coccoloba uvifera, were studied in an intertidal zone of the Venezuelan coast. Carbon uptake and transpiration, leaf osmotic and total water potential, as well as nutrient content in the xylem sap and leaves of mistletoes and hosts were followed through the dry and wet season. In addition, carbon isotope ratios of leaf tissue were measured to further evaluate water use efficiency. Under similar light and humidity conditions, mistletoes had higher transpiration rates, lower leaf water potentials, and lower water use efficiencies than their hosts. Potassium content was much higher in mistletoes than in host leaves, but mineral nutrient content in the xylem sap of mistletoes was relatively low. The resistance of the liquid pathway from the soil to the leaf surface of mistletoes was larger than the total liquid flow resistance of host plants. Differences in the daily cycles of osmotic potential of the xylem sap also indicate the existence of a high resistance pathway along the vascular connection between the parasite pathway along the vascular connection between the parasite and its host. P. maritima mistletoes adjust to the different physiological characteristics of the host species which it parasitizes, thus ensuring an adequate water and carbon balance.  相似文献   

16.
The present study explores the xylem‐tapping parasitism by mistletoe (Tapinanthus oleifolius) on native tree species along the Kalahari Transect (KT) using the stable isotopes of carbon and nitrogen. Mistletoe‐host pairs were collected at three geographical locations along the KT rainfall gradient in the 2005 and 2006 wet seasons. Foliar total carbon, total nitrogen and their stable isotope compositions (δ13C and δ15N) were measured. Heterotrophy (H) was calculated using foliar δ13C values of mistletoes and their hosts as an indicator of proportion of carbon in the mistletoes derived from host photosynthate. Based on the mistletoe H‐value and relationship between the mistletoe foliar δ15N and their host foliar δ15N, the results showed that mistletoes along the KT derived both nitrogen and carbon from their hosts. Mistletoes may regulate water use in relation to nitrogen supply. The proportion of carbon in the mistletoes derived from host photosynthate was between 35% and 78%, and the degree of heterotrophy was species‐specific with only limited annual variation. The study emphasizes the importance of incorporating parasitic associations in future studies on studying carbon, water and nutrient cycling along the Kalahari.  相似文献   

17.
Xylem-tapping mistletoes are known to have normally a higher rate of transpiration and lower water-use efficiency than their hosts. The relationships between water relations, nutrients and growth were investigated for Phoradendron juniperinum growing on Juniperus osteosperma (a non-nitrogen-fixing tree) and for Phoradendron californicum growing on Acacia greggii (a nitrogen-fixing tree). Xylem sap nitrogen contents were approximately 3.5 times higher in the nitrogen-fixing host than in the non-nitrogen-fixing host. The results of the present study show that mistletoe growth rates were sevenfold greater on a nitrogen-fixing host. At the same time, however, the differences in water-use efficiency between mistletoes and their hosts, which were observed on the non-nitrogen-fixing host did not exist when mistletoes were grown on hosts with higher nitrogen contents in their xylem sap. Growth rates and the accumulation of N, P, K, and Ca as well as values for carbon-isotope ratios of mistletoe tissues support the hypothesis that the higher transpiration rates of mistletoes represent a nitrogen-gathering mechanism.Abbreviation 13C carbon-isotope ratio Dedicated to Professor Dr. Hubert Ziegler on the occasion of his 60th birthday  相似文献   

18.
Summary Carbon isotope ratios, photosynthesis, and transpiration were measured on a xylem-tapping mistletoe (Phoradendron juniperinum) and its host (Juniperus osteosperma) in southern Utah, USA. For host tissues, the carbon isotope ratios agreed with theoretical values predicted from gas exchange observations. However, for mistletoe tissues, carbon isotope ratios deviated significantly from values predicted by gas exchange observations. This apparent discrepancy in mistletoe carbon isotope ratios can be resolved if one assumes that organic carbon dissolved in host xylem water was assimilated by the parasite. The mistletoes' high transpiration rates and low photosynthetic rates contributed to their heavy dependence on host xylem carbon. Two lines of evidence suggest that 62±2% of the carbon in the Utah mistletoe is derivated from the host and not from mistletoe autotrophic activities. Whereas xylem-tapping mistletoes have previously been characterized as wholly autotrophic parasites, we suggest that they may instead derive significant amounts of carbon from their hosts.  相似文献   

19.
Parasites are among the most diverse groups of life on Earth, yet complex natural histories often preclude studies of their speciation processes. The biology of parasitic plants facilitates in situ collection of data on both genetic structure and the mechanisms responsible for that structure. Here, we studied the role of mating, dispersal and establishment in host race formation of a parasitic plant. We investigated the population genetics of a vector‐borne desert mistletoe (Phoradendron californicum) across two legume host tree species (Senegalia greggii and Prosopis velutina) in the Sonoran desert using microsatellites. Consistent with host race formation, we found strong host‐associated genetic structure in sympatry, little genetic variation due to geographic site and weak isolation by distance. We hypothesize that genetic differentiation results from differences in the timing of mistletoe flowering by host species, as we found initial flowering date of individual mistletoes correlated with genetic ancestry. Hybrids with intermediate ancestry were detected genetically. Individuals likely resulting from recent, successful establishment events following dispersal between the host species were detected at frequencies similar to hybrids between host races. Therefore, barriers to gene flow between the host races may have been stronger at mating than at dispersal. We also found higher inbreeding and within‐host individual relatedness values for mistletoes on the more rare and isolated host species (S. greggii). Our study spanned spatial scales to address how interactions with both vectors and hosts influence parasitic plant structure with implications for parasite virulence evolution and speciation.  相似文献   

20.
Both nutrient cycling and nutrient relationships between mistletoe and host have been widely studied; yet it is unclear whether high nutrient concentrations commonly found in mistletoes affect rates of nutrient cycling. To address this question, we assessed 13 elements in the leaf litter of a temperate eucalypt forest in southern New South Wales, comparing concentrations from trees (Eucalyptus blakelyi, E. dwyeri, and E. dealbata) with and without the hemiparasitic mistletoe Amyema miquelii. Results were in accord with previous research on fresh leaves showing that concentrations of many elements were higher in the mistletoe than the host. This was not the case for all elements; most notably for N, where concentrations were significantly lower in the mistletoe. However, the return of all elements increased with mistletoe infection because of the combined effect of enrichment in mistletoe tissues and high rates of mistletoe litterfall. Annual returns of N and P in leaf litter increased by a factor of 1.65 and 3 respectively, with the greatest increase being for K by a factor of 43 in spring. These increased element returns were not significantly influenced by any changes in host leaf litter quality, as mistletoe infection was not found to affect host element concentrations. Mistletoe infection also altered the spatial and temporal distribution of element returns because of the patchy occurrence of mistletoes and extended period of mistletoe litterfall compared with the host. These findings provide a mechanistic explanation for the role of mistletoes as a keystone resource and, together with comparable results from root‐parasitic plants in boreal tundra and cool‐temperate grasslands, suggest that enhancing nutrient return rates may be a generalized property of parasitic plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号