首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nitrite reductase (cd1NIR) from Pseudomonas aeruginosa, which catalyses the reduction of nitrite to nitric oxide (NO), contains a c-heme as the electron acceptor and a d1-heme where catalysis occurs. Reduction involves binding of nitrite to the reduced d1-heme, followed by dehydration to yield NO; release of NO and re-reduction of the enzyme close the cycle. Since NO is a powerful inhibitor of ferrous hemeproteins, enzymatic turnover demands the release of NO. We recently discovered that NO dissociation from the ferrous d1-heme is fast, showing that cd1NIR behaves differently from other hemeproteins. Here we demonstrate for the first time that the physiological substrate nitrite displaces NO from the ferrous enzyme, which enters a new catalytic cycle; this reaction depends on the conserved His369 whose role in substrate stabilization is crucial for catalysis. Thus we suggest that also in vivo the activity of cd1NIR is controlled by nitrite.  相似文献   

2.
The periplasmic cytochrome cd1 nitrite reductase NirS occurring in denitrifying bacteria such as the human pathogen Pseudomonas aeruginosa contains the essential tetrapyrrole cofactors haem c and haem d1. Whereas the haem c is incorporated into NirS by the cytochrome c maturation system I, nothing is known about the insertion of the haem d1 into NirS. Here, we show by co-immunoprecipitation that NirS interacts with the potential haem d1 insertion protein NirN in vivo. This NirS–NirN interaction is dependent on the presence of the putative haem d1 biosynthesis enzyme NirF. Further, we show by affinity co-purification that NirS also directly interacts with NirF. Additionally, NirF is shown to be a membrane anchored lipoprotein in P. aeruginosa. Finally, the analysis by UV–visible absorption spectroscopy of the periplasmic protein fractions prepared from the P. aeruginosa WT (wild-type) and a P. aeruginosa ΔnirN mutant shows that the cofactor content of NirS is altered in the absence of NirN. Based on our results, we propose a potential model for the maturation of NirS in which the three proteins NirS, NirN and NirF form a transient, membrane-associated complex in order to achieve the last step of haem d1 biosynthesis and insertion of the cofactor into NirS.  相似文献   

3.
The reduction of nitrite into nitric oxide (NO) in denitrifying bacteria is catalyzed by nitrite reductase. In several species, this enzyme is a heme-containing protein with one c heme and one d1 heme per monomer (cd1NiR), encoded by the nirS gene.  相似文献   

4.
Type I cytochrome c3 is a key protein in the bioenergetic metabolism of Desulfovibrio spp., mediating electron transfer between periplasmic hydrogenase and multihaem cytochromes associated with membrane bound complexes, such as type II cytochrome c3. This work presents the NMR assignment of the haem substituents in type I cytochrome c3 isolated from Desulfovibrio africanus and the thermodynamic and kinetic characterisation of type I and type II cytochromes c3 belonging to the same organism. It is shown that the redox properties of the two proteins allow electrons to be transferred between them in the physiologically relevant direction with the release of energised protons close to the membrane where they can be used by the ATP synthase.  相似文献   

5.
Oligochitosan has been proved to trigger plant cell death. To gain some insights into the mechanisms of oligochitosan-induced cell death, the nature of oligochitosan-induced cell death and the role of calcium (Ca2+), nitric oxide (NO) and hydrogen peroxide (H2O2) were studied in tobacco suspension cells. Oligochitosan-induced cell death occurred in cytoplasmic shrinkage, phosphatidylserine externalization, chromatin condensation, TUNEL-positive nuclei, cytochrome c release and induction of programmed cell death (PCD)-related gene hsr203J, suggesting the activation of PCD pathway. Pretreatment cells with cyclosporin A, resulted in reducing oligochitosan-induced cytochrome c release and cell death, indicating oligochitosan-induced PCD was mediated by cytochrome c. In the early stage, cells undergoing PCD showed an immediate burst in free cytosolic Ca2+ ([Ca2+]cyt) elevation, NO and H2O2 production. Further study showed that these three signals were involved in oligochitosan-induced PCD, while Ca2+ and NO played a negative role in this process by modulating cytochrome c release.  相似文献   

6.
Tetrapyrroles are essential molecules in living organisms and perform a multitude of functions in all kingdoms. Their synthesis is achieved in cells via a complex biosynthetic machinery which is unlikely to be maintained, if unnecessary. Here we propose that ancient hemes, such as the d1-heme of cd1 nitrite reductase or the siroheme of bacterial and plant nitrite and sulphite reductases, are molecular fossils which have survived the evolutionary pressure because their role is strategic for the organism where they are found today. The peculiar NO-releasing propensity of the d1-heme of P. aeruginosa NIR, recently shown by our group is, in our opinion, an example of this strategy. The hypothesis is that the d1-heme structure might be a pre-requisite for the fast rate of NO dissociation from the ferrous form, a property which is crucial to enzymatic activity and cannot be achieved with a more common b-type heme.Key words: d1-heme, porphyrin, siroheme, nitrite reductase, sulphite reductase, nitric oxide, evolutionPseudomonas aeruginosa is a Gram-negative bacterium commonly found in soil and water, well known for its metabolic versatility; under anaerobic conditions it can use nitrate and nitrite to produce energy via the denitrification pathway. In natural environments, denitrification is the part of the biological nitrogen cycle in which nitrate is transformed into nitrogen gas; reduction of nitrate occurs in four stages each catalyzed by a specific metalloenzyme.1,2 P. aeruginosa is also an opportunistic pathogen, capable of causing serious infections in several hosts, such as humans and plants3,4; pathogenesis, NO metabolism and denitrification are strictly related.5,6The conversion of nitrite (NO2-) to nitric oxide (NO) is catalyzed in denitrifying bacteria by the periplasmic nitrite reductases (NIR).7 In P. aeruginosa NIR is a heme-containing enzyme (cd1NIR) which produces NO in the active site where the unique d1-heme cofactor (Fig. 1) is bound. This peculiar heme is synthesized from iron-protoporphyrin IX and belongs to the isobacteriochlorines subgroup;1 it is exclusively found in this type of bacterial NIR.Open in a separate windowFigure 1Chemical structure of the d1-heme.Reduction of nitrite involves binding of this molecule to the reduced d1-heme, followed by dehydration to yield NO; release of NO and re-reduction of the enzyme close the cycle. An high affinity for nitrite (and anions) of the ferrous d1-heme is a peculiar feature of cd1NIR.7 However since the product NO is a powerful inhibitor of ferrous hemeproteins, enzymatic turnover demands the quick release of NO. In our recent paper8 we have shown that NO dissociates rapidly from the reduced form of the specialized d1-heme of P. aeruginosa cd1NIR. This unexpected result indicates that cd1NIR behaves differently from other hemeproteins, since the rate of NO dissociation is by far faster (more than 100-fold) than that measured for any other heme in the ferrous state.811Our hypothesis is that the d1-heme structure might be a prerequisite for the fast rate of NO dissociation from the ferrous form, a property which cannot be achieved with a standard b-type heme.A major consequence of our finding is that this property of the d1-heme is essential to avoid quasi-irreversible binding of NO to the reduced heme, which would jeopardize the physiological function of the enzyme evolved to scavenge nitrite, the toxic product of nitrate reduction. From the bioenergetic view-point, the main energy-generating step in denitrification is nitrate reduction (with a net H+ traslocation of 2H+/2e-); thus, although a complex electron transfer chain is often present, the major biological role of the reductive steps downstream of nitrate reduction is likely to be nitrite scavenging.2 If the complex of NO with reduced cd1NIR was very long lived it would hamper further reaction cycles thus resulting in the accumulation of nitrite which is toxic for the bacterium. In line with this interpretation, we have also shown very recently12 that nitrite is able to displace NO from the ferrous enzyme; thus substrate availability is the key factor that controls the enzyme turnover.From the standpoint of molecular evolution it is accepted that bacterial denitrification is an ancient metabolic pathway which existed even before oxygen became abundant in the athmosphere. Several reports pointed out that the enzymes involved in aerobic respiration derive from those involved in the denitrification pathway. Primitive denitrifying bacteria (similar to the extant Paracoccus denitrificans) can be considered as a common ancestral symbiotic prototype of the eukaryotic mitochondrion. Indeed there is compelling evidence that modern eukaryotic oxidases evolved from bacterial NO-reductase once oxygen became available as a major oxidant.13,14In microrganisms, other “ancient” metabolisms are represented by sulphite and nitrite reduction pathways, which were well suited for a prebiotic photoreducing environment.15 Also in these pathways several enzymes are heme-containing proteins in which modified hemes, such as siroheme, are used as cofactors.16 Interestingly also in plants siroheme is a relevant porphyrin group,17 being the cofactor of plant nitrite and sulphite reductases, required for the assimilation of inorganic nitrogen and sulphur from the environment.Tetrapyrroles are essential molecules in living organisms and perform a multitude of functions in all kingdoms. Their biosynthesis is achieved in cells via branched pathways which are expensive in terms of energy consumption.1618 The single pathways are tightly regulated and often activated only “on demand” when the specific heme group is required. Therefore, parsimony suggests that a complex biosynthetic machinery is unlikely to be maintained, if unnecessary.We thus propose that these ancient hemes (such as the d1-heme or the siroheme) are molecular fossils which have survived the evolutionary pressure because their role is strategic only for the organism where they are found today. The peculiar NO-releasing propensity of the d1-heme of P. aeruginosa NIR shown by our group could be, in our opinion, an example of this strategy. A major challenge for the future is to unveil other uncommon features of these hemes.  相似文献   

7.

Background

In the membrane-bound enzyme cytochrome c oxidase, electron transfer from cytochrome c to O2 is linked to proton uptake from solution to form H2O, resulting in a charge separation across the membrane. In addition, the reaction drives pumping of protons across the membrane.

Methods

In this study we have measured voltage changes as a function of pH during reaction of the four-electron reduced cytochrome c oxidase from Rhodobacter sphaeroides with O2. These electrogenic events were measured across membranes containing purified enzyme reconstituted into lipid vesicles.

Results

The results show that the pH dependence of voltage changes (primarily associated with proton transfer) during O2 reduction does not match that of the previously studied absorbance changes (primarily associated with electron transfer). Furthermore, the voltage changes decrease with increasing pH.

Conclusions

The data indicate that cytochrome c oxidase does not pump protons at high pH (10.5) (or protons are taken from the “wrong” side of the membrane) and that at this pH the net proton-uptake stoichiometry is ∼ 1/2 of that at pH 8. Furthermore, the results provide a basis for interpretation of results from studies of mutant forms of the enzyme.

General significance

These results provide new insights into the function of cytochrome c oxidase.  相似文献   

8.
Lu BH  Jiang Y  Cai LL  Liu N  Zhang SH  Li W 《Bioresource technology》2011,102(17):7707-7712
A mixed absorbent had been proposed to enhance the chemical absorption-biological reduction process for NOx removal from flue gas. The mole ratio of the absorbent of Fe(II)Cit to Fe(II)EDTA was selected to be 3. After the biofilm was formed adequately, some influential factors, such as the concentration of NO, O2, SO2 and EBRT were investigated. During the long-term running, the system could keep on a steady NO removal efficiency (up to 90%) and had a flexibility in the sudden changes of operating conditions when the simulated flue gas contained 100-500 ppm NO, 100-800 ppm SO2, 1-5% (v/v) O2, and 15% (v/v) CO2. However, high NO concentration (>800 ppm) and relative short EBRT (<100 s) had significant negative effect on NO removal. The results indicate that the new system by using mixed-absorbent can reduce operating costs in comparison with the single Fe(II)EDTA system and possesses great potential for scale-up to industrial applications.  相似文献   

9.
Heme d1 plays an important role in denitrification as the essential cofactor of the cytochrome cd1 nitrite reductase NirS. At present, the biosynthesis of heme d1 is only partially understood. The last step of heme d1 biosynthesis requires a so far unknown enzyme that catalyzes the introduction of a double bond into one of the propionate side chains of the tetrapyrrole yielding the corresponding acrylate side chain. In this study, we show that a Pseudomonas aeruginosa PAO1 strain lacking the NirN protein does not produce heme d1. Instead, the NirS purified from this strain contains the heme d1 precursor dihydro-heme d1 lacking the acrylic double bond, as indicated by UV-visible absorption spectroscopy and resonance Raman spectroscopy. Furthermore, the dihydro-heme d1 was extracted from purified NirS and characterized by UV-visible absorption spectroscopy and finally identified by high-resolution electrospray ionization mass spectrometry. Moreover, we show that purified NirN from P. aeruginosa binds the dihydro-heme d1 and catalyzes the introduction of the acrylic double bond in vitro. Strikingly, NirN uses an electron bifurcation mechanism for the two-electron oxidation reaction, during which one electron ends up on its heme c cofactor and the second electron reduces the substrate/product from the ferric to the ferrous state. On the basis of our results, we propose novel roles for the proteins NirN and NirF during the biosynthesis of heme d1.  相似文献   

10.
Boris K. Semin  Michael Seibert 《BBA》2006,1757(3):189-197
The role of carboxylic residues at the high-affinity, Mn-binding site in the ligation of iron cations blocking the site [Biochemistry 41 (2000) 5854] was studied, using a method developed to extract the iron cations blocking the site. We found that specifically bound Fe(III) cations can be extracted with citrate buffer at pH 3.0. Furthermore, citrate can also prevent the photooxidation of Fe(II) cations by YZ. Participation of a COOH group(s) in the ligation of Fe(III) at the high-affinity site was investigated using 1-ethyl-3-[(3-dimethylamino)propyl] carbodiimide (EDC), a chemical modifier of carboxylic amino acid residues. Modification of the COOH groups inhibits the light-induced oxidation of exogenous Mn(II) cations by Mn-depleted photosystem II (PSII[−Mn]) membranes. The rate of Mn(II) oxidation saturates at ≥10 μM in PSII(−Mn) membranes and ≥500 μM in EDC-treated PSII (−Mn) samples. Intact PSII(−Mn) membranes have only one site for Mn(II) oxidation via YZ (dissociation constant, Kd = 0.64 μM), while EDC-treated PSII(−Mn) samples have two sites (Kd = 1.52 and 22 μM; the latter is the low-affinity site). When PSII(−Mn) membranes were incubated with Fe(II) before modifier treatment (to block the high-affinity site) and the blocking iron cations were extracted with citrate (pH 3.0) after modification, the membranes contained only one site (Kd = 2.3 μM) for exogenous Mn(II) oxidation by YZ radical. In this case, the rate of electron donation via YZ saturated at a Mn(II) concentration ≥15 μM. These results indicate that the carboxylic residue participating in Mn(II) coordination and the binding of oxidized manganese cations at the HAZ site is protected from the action of the modifier by the iron cations blocking the HAZ site. We concluded that the carboxylic residue (D1 Asp-170) participating in the coordination of the manganese cation at the HAZ site (Mn4 in the tetranuclear manganese cluster [Science 303 (2004) 1831]) is also involved in the ligation of the Fe cation(s) blocking the high-affinity Mn-binding site.  相似文献   

11.
Cytochrome a 1 c 1 was highly purified from Nitrobacter agilis. The cytochrome contained heme a and heme c of equimolar amount, and its reduced form showed absorption peaks at 587, 550, 521, 434 and 416 nm. Molecular weight per heme a of the cytochrome was estimated to be approx. 100,000–130,000 from the amino acid composition. A similar value was obtained by determining the protein content per heme a. The cytochrome molecule was composed of three subunits with molecular weights of 55,000, 29,000 and 19,000, respectively. The 29 kd subunit had heme c.Hemes a and c of cytochrome a 1 c 1 were reduced on addition of nitrite, and the reduced cytochrome was hardly autoxidizable. Exogenously added horse heart cytochrome c was reduced by nitrite in the presence of cytochrome a 1 c 1; K m values of cytochrome a 1 c 1 for nitrite and N. agilis cytochrome c were 0.5 mM and and 6 M, respectively. V max was 1.7 mol ferricytochrome c reduced/min·mol of cytochrome a 1 c 1 The pH optimum of the reaction was about 8. The nitrite-cytochrome c reduction catalyzed by cytochrome a 1 c 1 was 61% and 88% inhibited by 44M azide and cyanide, respectively. In the presence of 4.4 mM nitrate, the reaction was 89% inhibited. The nitrite-cytochrome c reduction catalysed by cytochrome a 1 c 1 was 2.5-fold stimulated by 4.5 mM manganous chloride. An activating factor which was present in the crude enzyme preparation stimulated the reaction by 2.8-fold, and presence of both the factor and manganous ion activated the reaction by 7-fold.Cytochrome a 1 c 1 showed also cytochrome c-nitrate reductase activity. The pH optimum of the reaction was about 6. The nitrate reductase activity was also stimulated by manganous ions and the activating factor.  相似文献   

12.
The cd1 nitrite reductases, which catalyze the reduction of nitrite to nitric oxide, are homodimers of 60 kDa subunits, each containing one heme-c and one heme-d1. Heme-c is the electron entry site, whereas heme-d1 constitutes the catalytic center. The 3D structure of Pseudomonas aeruginosa nitrite reductase has been determined in both fully oxidized and reduced states. Intramolecular electron transfer (ET), between c and d1 hemes is an essential step in the catalytic cycle. In earlier studies of the Pseudomonas stutzeri enzyme, we observed that a marked negative cooperativity is controlling this internal ET step. In this study we have investigated the internal ET in the wild-type and His369Ala mutant of P. aeruginosa nitrite reductases and have observed similar cooperativity to that of the Pseudomonas stutzeri enzyme. Heme-c was initially reduced, in an essentially diffusion-controlled bimolecular process, followed by unimolecular electron equilibration between the c and d1 hemes (kET = 4.3 s−1 and K = 1.4 at 298K, pH 7.0). In the case of the mutant, the latter ET rate was faster by almost one order of magnitude. Moreover, the internal ET rate dropped (by ∼30-fold) as the level of reduction increased in both the WT and the His mutant. Equilibrium standard enthalpy and entropy changes and activation parameters of this ET process were determined. We concluded that negative cooperativity is a common feature among the cd1 nitrite reductases, and we discuss this control based on the available 3D structure of the wild-type and the H369A mutant, in the reduced and oxidized states.  相似文献   

13.
The transient electron transfer (ET) interactions between cytochrome c1 of the bc1-complex from Paracoccus denitrificans and its physiological redox partners cytochrome c552 and cytochrome c550 have been characterized functionally by stopped-flow spectroscopy. Two different soluble fragments of cytochrome c1 were generated and used together with a soluble cytochrome c552 module as a model system for interprotein ET reactions. Both c1 fragments lack the membrane anchor; the c1 core fragment (c1CF) consists of only the hydrophilic heme-carrying domain, whereas the c1 acidic fragment (c1AF) additionally contains the acidic domain unique to P. denitrificans. In order to determine the ionic strength dependencies of the ET rate constants, an optimized stopped-flow protocol was developed to overcome problems of spectral overlap, heme autoxidation and the prevalent non-pseudo first order conditions. Cytochrome c1 reveals fast bimolecular rate constants (107 to 108 M− 1 s− 1) for the ET reaction with its physiological substrates c552 and c550, thus approaching the limit of a diffusion-controlled process, with 2 to 3 effective charges of opposite sign contributing to these interactions. No direct involvement of the N-terminal acidic c1-domain in electrostatically attracting its substrates could be detected. However, a slight preference for cytochrome c550 over c552 reacting with cyochrome c1 was found and attributed to the different functions of both cytochromes in the respiratory chain of P. denitrificans.  相似文献   

14.
Kristina Faxén 《BBA》2007,1767(5):381-386
Cytochrome c oxidase is the terminal enzyme in the respiratory chains of mitochondria and many bacteria where it translocates protons across a membrane thereby maintaining an electrochemical proton gradient. Results from earlier studies on detergent-solubilized cytochrome c oxidase have shown that individual reaction steps associated with proton pumping display pH-dependent kinetics. Here, we investigated the effect of pH on the kinetics of these reaction steps with membrane-reconstituted cytochrome c oxidase such that the pH was adjusted to different values on the inside and outside of the membrane. The results show that the pH on the inside of the membrane fully determines the kinetics of internal electron transfers that are linked to proton pumping. Thus, even though proton release is rate limiting for these reaction steps (Salomonsson et al., Proc. Natl. Acad. Sci. USA, 2005, 102, 17624), the transition kinetics is insensitive to the outside pH (in the range 6-9.5).  相似文献   

15.
Exogenous oxidative stress induces cell death, but the upstream molecular mechanisms involved of the process remain relatively unknown. We determined the instant dynamic reactions of intracellular reactive oxygen species (ROS, including hydrogen peroxide (H2O2), superoxide radical (O2), and nitric oxide (NO)) in cells exposed to exogenous oxidative stress by using a confocal laser scanning microscope. Stimulation with extracellular H2O2 significantly increased the production of intracellular H2O2, O2, and NO (P < 0.01) through certain mechanisms. Increased levels of intracellular ROS resulted in mitochondrial dysfunction, involving the impairment of mitochondrial activity and the depolarization of mitochondrial membrane potential. Mitochondrial dysfunction significantly inhibited the proliferation of human hepatoblastoma G2 (HepG2) cells and resulted in mitochondrial cytochrome c (cyt c) release. The results indicate that upstream ROS signals play a potential role in exogenous oxidative stress-induced cell death through mitochondrial dysfunction and cyt c release.  相似文献   

16.
Cytochrome cd(1) is a respiratory enzyme that catalyzes the physiological one-electron reduction of nitrite to nitric oxide. The enzyme is a dimer, each monomer containing one c-type cytochrome center and one active site d(1) heme. We present stopped-flow Fourier transform infrared data showing the formation of a stable ferric heme d(1)-NO complex (formally d(1)Fe(II)-NO(+)) as a product of the reaction between fully reduced Paracoccus pantotrophus cytochrome cd(1) and nitrite, in the absence of excess reductant. The Fe-(14)NO nu(NO) stretching mode is observed at 1913 cm(-1) with the corresponding Fe-(15)NO band at 1876 cm(-1). This d(1) heme-NO complex is still readily observed after 15 min. EPR and visible absorption spectroscopic data show that within 4 ms of the initiation of the reaction, nitrite is reduced at the d(1) heme, and a cFe(III) d(1)Fe(II)-NO complex is formed. Over the next 100 ms there is an electron redistribution within the enzyme to give a mixed species, 55% cFe(III) d(1)Fe(II)-NO and 45% cFe(II) d(1)Fe(II)-NO(+). No kinetically competent release of NO could be detected, indicating that at least one additional factor is required for product release by the enzyme. Implications for the mechanism of P. pantotrophus cytochrome cd(1) are discussed.  相似文献   

17.
The crystal structures of copper-containing nitrite reductase (CuNiR) from the thermophilic Gram-positive bacterium Geobacillus kaustophilus HTA426 and the amino (N)-terminal 68 residue-deleted mutant were determined at resolutions of 1.3 Å and 1.8 Å, respectively. Both structures show a striking resemblance with the overall structure of the well-known CuNiRs composed of two Greek key β-barrel domains; however, a remarkable structural difference was found in the N-terminal region. The unique region has one β-strand and one α-helix extended to the northern surface of the type-1 copper site. The superposition of the Geobacillus CuNiR model on the electron-transfer complex structure of CuNiR with the redox partner cytochrome c551 in other denitrifier system led us to infer that this region contributes to the transient binding with the partner protein during the interprotein electron transfer reaction in the Geobacillus system. Furthermore, electron-transfer kinetics experiments using N-terminal residue-deleted mutant and the redox partner, Geobacillus cytochrome c551, were carried out. These structural and kinetics studies demonstrate that the region is directly involved in the specific partner recognition.  相似文献   

18.
Respiratory nitrite reductase (NIR) has been purified from the soluble extract of denitrifying cells of Alcaligenes eutrophus strain H16 to apparent electrophoretic homogeneity. The enzyme was induced under anoxic conditions in the presence of nitrite. Purified NIR showed typical features of a cytochrome cd 1-type nitrite reductase. It appeared to be a dimer of 60 kDa subunits, its activity was only weakly inhibited by the copper chelator diethyldithiocarbamate, and spectral analysis revealed absorption maxima which were characteristic for the presence of heme c and heme d 1. The isoelectric point of 8.6 was considerably higher than the pI determined for cd 1 nitrite reductases from pseudomonads. Eighteen amino acids at the N-terminus of the A. eutrophus NIR, obtained by protein sequencing, showed no significant homology to the N-terminal region of nitrite reductases from Pseudomonas stutzeri and Pseudomonas aeruginosa.  相似文献   

19.
PMA-induced respiratory burst neutrophils were exposed to exogenous nitric oxide (NO) donor sodium nitroprusside (SNP) to study the effect of NO on calcium signaling. A sharp rise of cytosolic calcium concentration ([Ca2+]c) was triggered by 1 mM SNP with and without external calcium. We found that GF 109203X, a specific inhibitor of protein kinase C, DPI, a putative inhibitor of the respiratory burst-generating NADPH oxidase, and 2-DG, a non-metabolizable analog of glucose, completely inhibited the SNP-induced rise of [Ca2+]c in PMA-activated respiratory burst neutrophils. Meanwhile, 2-APB and TMB-8, two potent IP3 receptor inhibitors, prevented calcium increase respectively. Furthermore, N-ethylmaleimide (NEM), a specific cysteine alkylating agent, evidently abolished the [Ca2+]c elevation. In contrast, the sGC inhibitor NS2028 had little effect on the rise of [Ca2+]c. Taken together, these results indicated that exogenous NO induced the release of calcium from intracellular IP3 receptor-sensitive stores of neutrophils via S-nitrosylation in a respiratory burst-dependent manner.  相似文献   

20.
Cytochrome bd is a terminal quinol:O2 oxidoreductase of respiratory chains of many bacteria. It contains three hemes, b558, b595, and d. The role of heme b595 remains obscure. A CO photolysis/recombination study of the membranes of Escherichia coli containing either wild type cytochrome bd or inactive E445A mutant was performed using nanosecond absorption spectroscopy. We compared photoinduced changes of heme d-CO complex in one-electron-reduced, two-electron-reduced, and fully reduced states of cytochromes bd. The line shape of spectra of photodissociation of one-electron-reduced and two-electron-reduced enzymes is strikingly different from that of the fully reduced enzyme. The difference demonstrates that in the fully reduced enzyme photolysis of CO from heme d perturbs ferrous heme b595 causing loss of an absorption band centered at 435 nm, thus supporting interactions between heme b595 and heme d in the di-heme oxygen-reducing site, in agreement with previous works. Photolyzed CO recombines with the fully reduced enzyme monoexponentially with τ ∼ 12 μs, whereas recombination of CO with one-electron-reduced cytochrome bd shows three kinetic phases, with τ ∼ 14 ns, 14 μs, and 280 μs. The spectra of the absorption changes associated with these components are different in line shape. The 14 ns phase, absent in the fully reduced enzyme, reflects geminate recombination of CO with part of heme d. The 14-μs component reflects bimolecular recombination of CO with heme d and electron backflow from heme d to hemes b in ∼ 4% of the enzyme population. The final, 280-μs component, reflects return of the electron from hemes b to heme d and bimolecular recombination of CO in that population. The fact that even in the two-electron-reduced enzyme, a nanosecond geminate recombination is observed, suggests that namely the redox state of heme b595, and not that of heme b558, controls the pathway(s) by which CO migrates between heme d and the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号