首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphatases are recognized to have important functions in the initiation of skeletal mineralization. Tissue-nonspecific alkaline phosphatase (TNAP) and PHOSPHO1 are indispensable for bone and cartilage mineralization but their functional relationship in the mineralization process remains unclear. In this study, we have used osteoblast and ex-vivo metatarsal cultures to obtain biochemical evidence for co-operativity and cross-talk between PHOSPHO1 and TNAP in the initiation of mineralization. Clones 14 and 24 of the MC3T3-E1 cell line were used in the initial studies. Clone 14 cells expressed high levels of PHOSPHO1 and low levels of TNAP and in the presence of β-glycerol phosphate (βGP) or phosphocholine (P-Cho) as substrates and they mineralized their matrix strongly. In contrast clone 24 cells expressed high levels of TNAP and low levels of PHOSPHO1 and mineralized their matrix poorly. Lentiviral Phospho1 overexpression in clone 24 cells resulted in higher PHOSPHO1 and TNAP protein expression and increased levels of matrix mineralization. To uncouple the roles of PHOSPHO1 and TNAP in promoting matrix mineralization we used PHOSPHO1 (MLS-0263839) and TNAP (MLS-0038949) specific inhibitors, which individually reduced mineralization levels of Phospho1 overexpressing C24 cells, whereas the simultaneous addition of both inhibitors essentially abolished matrix mineralization (85%; P<0.001). Using metatarsals from E15 mice as a physiological ex vivo model of mineralization, the response to both TNAP and PHOSPHO1 inhibitors appeared to be substrate dependent. Nevertheless, in the presence of βGP, mineralization was reduced by the TNAP inhibitor alone and almost completely eliminated by the co-incubation of both inhibitors. These data suggest critical non-redundant roles for PHOSPHO1 and TNAP during the initiation of osteoblast and chondrocyte mineralization.  相似文献   

2.
3.
We report the discovery and characterization of a series of benzoisothiazolone inhibitors of PHOSPHO1, a newly identified soluble phosphatase implicated in skeletal mineralization and soft tissue ossification abnormalities. High-throughput screening (HTS) of a small molecule library led to the identification of benzoisothiazolones as potent and selective inhibitors of PHOSPHO1. Critical structural requirements for activity were determined, and the compounds were subsequently derivatized and measured for in vitro activity and ADME parameters including metabolic stability and permeability. On the basis of its overall profile the benzoisothiazolone analogue 2q was selected as MLPCN probe ML086.  相似文献   

4.
5.
6.
7.
8.
9.
10.
PHOSPHO1 is a recently identified phosphatase whose expression is upregulated in mineralizing cells and is implicated in the generation of inorganic phosphate for matrix mineralization, a process central to skeletal development. The enzyme is a member of the haloacid dehalogenase (HAD) superfamily of magnesium-dependent hydrolases. However, the natural substrate(s) is as yet unidentified and to date no structural information is known. We have identified homologous proteins in a number of species and have modelled human PHOSPHO1 based upon the crystal structure of phosphoserine phosphatase (PSP) from Methanococcus jannaschii. The model includes the catalytic Mg(2+) atom bound via three conserved Asp residues (Asp32, Asp34 and Asp203); O-ligands are also provided by a phosphate anion and two water molecules. Additional residues involved in PSP-catalysed hydrolysis are conserved and are located nearby, suggesting both enzymes share a similar reaction mechanism. In PHOSPHO1, none of the PSP residues that confer the enzyme's substrate specificity (Arg56, Glu20, Met43 and Phe49) are conserved. Instead, we propose that two fully conserved Asp residues (Asp43 and Asp123), not present in PSPs contribute to substrate specificity in PHOSPHO1. Our findings show that PHOSPHO1 is not a member of the subfamily of PSPs but belongs to a novel, closely related enzyme group within the HAD superfamily.  相似文献   

11.
Alternative splicing of glucokinase mRNA in rat liver.   总被引:3,自引:0,他引:3       下载免费PDF全文
The sequences of two near full-length cDNAs encoding rat liver glucokinase are reported. One of the cDNAs is essentially identical to the cDNA cloned by Andreone, Printz, Pilkis, Magnuson & Granner. [(1989) J. Biol. Chem. 264, 363-369]. The other cDNA contains a 151 bp insertion and a downstream 52 bp deletion. The inserted block of bases has been shown to originate from an optional cassette exon, termed 2A, between the previously described exons 1 and 2. The conceptual translation product from the variant mRNA is identical to the original glucokinase protein for the first 15 amino acids. Next there is a novel polypeptide sequence of 87 residues, comprising 50 residues encoded by the cassette exon and 37 residues specified by an altered reading frame in exon 2. Due to the 52 bp deletion, 17 amino acids of the reference sequence are then missing, after which the sequence reverts to the original. Northern blot analysis with oligonucleotide probes has shown that alternatively spliced mRNA represents about 5% of total glucokinase mRNA. Alternative splicing of glucokinase mRNA in liver may explain earlier findings of minor isoforms of hepatic glucokinase.  相似文献   

12.
13.
14.
15.
We characterized thioredoxin reductase 1 (TrxR1) from Chironomus riparius (CrTrxR1) and studied its expression under oxidative stress. The full-length cDNA is 1820 bp long and contains an open reading frame (ORF) of 1488 bp. The deduced CrTrxR1 protein has 495 amino acids and a calculated molecular mass of 54.41 kDa and an isoelectric point of 6.15. There was a 71 bp 5’ and a 261 bp 3' untranslated region with a polyadenylation signal site (AATAAA). Homologous alignments showed the presence of conserved catalytic domain Cys-Val-Asn-Val-Gly-Cys (CVNVGC), the C-terminal amino acids ‘CCS’ and conserved amino acids required in catalysis. The expression of CrTrxR1 is measured using quantitative real-time PCR after exposure to 50 and 100 mg/L of paraquat (PQ) and 2, 10 and 20 mg/L of cadmium chloride (Cd). CrTrxR1 mRNA was upregulated after PQ exposure at all conditions tested. The highest level of CrTrxR1 expression was observed after exposure to 10 mg/L of Cd for 24 h followed by 20 mg/L for 48 h. Significant downregulation of CrTrxR1 was observed after exposure to 10 and 20 mg/L of Cd for 72 h. This study shows that the CrTrxR1 could be potentially used as a biomarker of oxidative stress inducing environmental contaminants.  相似文献   

16.
17.
18.
19.
20.
An infant with a clinical phenotype of early onset hypoaldosteronism has been screened for mutation analysis of the Cyp11b2 gene encoding aldosterone synthase enzyme. We have described a novel nonsense mutation in exon 3 (c.508 C > T) that gave rise to a shorter protein (Q170X) and two known concurrent missense mutations (c.594A > C in exon 3 and c.1157 T > C in exon 7) that led to substitution of glutamic acid for aspartic acid at amino acid position 198 (E198D) and of valine for alanine at amino acid position 386 (V386A). The father, who carried E198D plus V386A mutations, showed a fractional sodium excretion of 1.25% that was unmodified by dietary salt restriction, suggesting a mild haploinsufficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号