首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GABPalpha regulates Oct-3/4 expression in mouse embryonic stem cells   总被引:1,自引:0,他引:1  
There is a dire need for novel therapeutics to treat the virulent malarial parasite, Plasmodium falciparum. Recently, the X-ray crystal structure of enoyl-acyl carrier protein reductase (ENR) in complex with triclosan has been determined and provides an opportunity for the rational design of novel inhibitors targeting the active site of ENR. Here, we report the discovery of several compounds by virtual screening and their experimental validation as high potency PfENR inhibitors.  相似文献   

2.
3.
4.
In this study we examined the role of the cAMP/protein kinase A (PKA) pathway in affecting IOUD2 ES cell self-renewal and differentiation, Oct4 expression, and cell proliferation. Forskolin, the adenylate cyclase agonist, alone had no effect on ES cell self-renewal. However, when cells were treated with the differentiation-inducing agent retinoic acid, forskolin significantly promoted ES cell self-renewal. Effectively, forskolin rescued cells from a pathway of differentiation. Culturing ES cells in the presence of the phosphodiesterase inhibitor IBMX had no effect on ES cell self-renewal but did increase cell proliferation. In the presence of 100 μM IBMX without LIF, 10 μM forskolin significantly increased ES cell self-renewal. The cell permeable cAMP analog 8-Br-cAMP (1 and 5 mM) promoted ES cell differentiation in the presence of LIF, while in the absence of LIF, it promoted ES cell self-renewal. The effect of the PKA specific inhibitors H89 and KT5720 on Oct4 expression was, again, LIF-dependent. In the presence of LIF, these inhibitors decreased Oct4 expression, while they increased Oct4 expression in the absence of LIF. In general, ES cells maintained on a self-renewal pathway through the presence of LIF show little effect from altered cAMP signaling except at higher levels. However, in strict contrast, when ES cell are on a differentiation pathway through exposure to retinoic acid or the removal of LIF, altering cAMP levels can rescue the self-renewal process promoting Oct4 expression. This study clearly shows that the cAMP/PKA pathway plays a role in ES cell self-renewal pathways. This work was partly funded by the Millennium Research Fund National University of Ireland Galway.  相似文献   

5.
MicroRNAs (miRNAs) have emerged as critical regulators of gene expression. These small, non-coding RNAs are believed to regulate more than a third of all protein coding genes, and they have been implicated in the control of virtually all biological processes, including the biology of stem cells. The essential roles of miRNAs in the control of pluripotent stem cells were clearly established by the finding that embryonic stem (ES) cells lacking proteins required for miRNA biogenesis exhibit defects in proliferation and differentiation. Subsequently, the function of numerous miRNAs has been shown to control the fate of ES cells and to directly influence critical gene regulatory networks controlled by pluripotency factors Sox2, Oct4, and Nanog. Moreover, a growing list of tissue-specific miRNAs, which are silenced or not processed fully in ES cells, has been found to promote differentiation upon their expression and proper processing. The importance of miRNAs for ES cells is further indicated by the exciting discovery that specific miRNA mimics or miRNA inhibitors promote the reprogramming of somatic cells into induced pluripotent stem (iPS) cells. Although some progress has been made during the past two years in our understanding of the contribution of specific miRNAs during reprogramming, further progress is needed since it is highly likely that miRNAs play even wider roles in the generation of iPS cells than currently appreciated. This review examines recent developments related to the roles of miRNAs in the biology of pluripotent stem cells. In addition, we posit that more than a dozen additional miRNAs are excellent candidates for influencing the generation of iPS cells as well as for providing new insights into the process of reprogramming.  相似文献   

6.
It is well known that mouse embryonic stem (ES) cells can be maintained by the presence of leukemia inhibitory factor (LIF). Recent studies have revealed that Wnt also exhibits activity similar to LIF. The molecular mechanism behind the maintenance of ES cells by these factors, however, is not fully understood. In this study, we found that LIF enhances level of nuclear beta-catenin, a component of the Wnt signaling pathway. Expression of an activated mutant of beta-catenin led to the long-term proliferation of ES cells, even in the absence of LIF. Furthermore, it was found that beta-catenin up-regulates Nanog in an Oct-3/4-dependent manner and that beta-catenin physically associates with Oct-3/4. These results suggest that up-regulating Nanog through interaction with Oct-3/4 involves beta-catenin in the LIF- and Wnt-mediated maintenance of ES cell self-renewal.  相似文献   

7.
8.
9.
10.
李令杰  金颖 《生命科学》2009,(5):631-638
胚胎干细胞(embryonic stem cells,ES细胞)具有自我更新和发育多能性的特点,在再生医学研究中有着广泛的应用前景。ES细胞多能性和自我更新的维持受到复杂的调控,涉及到转录调控、信号转导以及表观遗传调控等多个方面。转录因子Oct4、Sox2、Nanog在其中扮演着非常重要的角色,对干细胞特性的维持必不可少。本文着重讨论了这些关键转录因子的研究进展。这些研究促进了对ES细胞自我更新机制的深入理解,并为进一步的临床研究提供了理论基础。  相似文献   

11.
Despite the broad literature on embryonic stem cells (ESCs), their derivation process remains enigmatic. This may be because of the lack of experimental systems that can monitor this prolonged cellular process. Here we applied a live-cell imaging technique to monitor the process of ESC derivation over 10 days from morula to outgrowth phase using an Oct4/eGFP reporter system. Our imaging reflects the ‘natural’ state of ESC derivation, as the ESCs established after the imaging were both competent in chimeric mice formation and germ-line transmission. Using this technique, ESC derivation in conventional conditions was imaged. After the blastocoel was formed, the intensity of Oct4 signals attenuated in the trophoblast cells but was maintained in the inner cell mass (ICM). Thereafter, the Oct4-positive cells scattered and their number decreased along with apoptosis of the other Oct4-nagative cells likely corresponds to trophoblast and hypoblast cells, and then only the surviving Oct4-positive cells proliferated and formed the colony. All embryos without exception passed through this cell death phase. Importantly, the addition of caspase inhibitor Z-VAD-FMK to the medium dramatically suppressed the loss of Oct4-positive cells and also other embryo-derived cells, suggesting that the cell deaths was induced by a caspase-dependent apoptotic pathway. Next we imaged the ESC derivation in 3i medium, which consists of chemical compounds that can suppress differentiation. The most significant difference between the conventional and 3i methods was that there was no obvious cell death in 3i, so that the colony formation was rapid and all of the Oct4-positive cells contributed to the formation of the outgrown colony. These data indicate that the prevention of cell death in epiblast cells is one of the important events for the successful establishment of ESCs. Thus, our imaging technique can advance the understanding of the time-dependent cellular changes during ESC derivation.  相似文献   

12.
13.
14.
Tannic acid (TA), a naturally occurring polyphenol, is a potent anti‐oxidant with anti‐proliferative effects on multiple cancers. However, its ability to modulate gene‐specific expression of tumour suppressor genes and oncogenes has not been assessed. This work investigates the mechanism of TA to regulate canonical and non‐canonical STAT pathways to impose the gene‐specific induction of G1‐arrest and apoptosis. Regardless of the p53 status and membrane receptors, TA induced G1‐arrest and apoptosis in breast cancer cells. Tannic acid distinctly modulated both canonical and non‐canonical STAT pathways, each with a specific role in TA‐induced anti‐cancer effects. Tannic acid enhanced STAT1 ser727 phosphorylation via upstream serine kinase p38. This STAT1 ser727 phosphorylation enhanced the DNA‐binding activity of STAT1 and in turn enhanced expression of p21Waf1/Cip1. However, TA binds to EGF‐R and inhibits the tyrosine phosphorylation of both STAT1 and STAT3. This inhibition leads to the inhibition of STAT3/BCL‐2 DNA‐binding activity. As a result, the expression and mitochondrial localization of BCl‐2 are declined. This altered expression and localization of mitochondrial anti‐pore factors resulted in the release of cytochrome c and the activation of intrinsic apoptosis cascade involving caspases. Taken together, our results suggest that TA modulates EGF‐R/Jak2/STAT1/3 and P38/STAT1/p21Waf1/Cip1 pathways and induce G1‐arrest and intrinsic apoptosis in breast carcinomas.  相似文献   

15.
Embryonic stem cells (ESC) have the developmental potential to form every adult cell type, even after prolonged culture. Reproducibly culturing pluripotent populations and directing differentiation has proven technically challenging yet will underpin the provision of stem cells for both screening and therapeutic applications. This study investigated whether the variations inherent in manual handling procedures cause inconsistent proliferation and phenotypic variability. Two mouse ESC green fluorescent protein (GFP) reporter cells lines, Oct4-GiP and 46C, were used to assess Oct4 expression during expansion and Sox1 expression during directed neuroectoderm differentiation. High inoculation cell densities (ICD) had a negative impact on Oct4-GFP expression. Similarly, increasing ICD caused a drop in Sox1-GFP expression in differentiating cultures. The expansion process had an optimum ICD of 31,800 cells cm(-2) whilst the highest yield of Sox1-GFP positive cells were found at an ICD of 16,400 cells cm(-2). These results implicate variable cell density as a major cause of interindividual variability. Passaging exposes cells to dynamic and repeated changes in their micro-environment. This was associated with a rapid drop in temperature and rise in pH. Extended exposure of 1, 2 and 3 h to ambient conditions resulted in the inhibition of ESC proliferation and Oct4-GFP expression. Dissociation subjects cells to fluid flow and centrifugal forces. Repeated exposure to fluid flow in capillaries prior to cultivation reduced the proliferative capacity of undifferentiated ESCs and caused a significant drop in differentiated neuroectoderm yield. Excessive centrifugal forces up to 1,000g caused shifts in phenotype and proliferation during expansion and differentiation. These studies highlight the need for automated cultivation systems which reproducibly control cell density, fluid flow, centrifugal forces, pH and temperature for the dissociation and inoculation of ESC processes.  相似文献   

16.
17.
18.
Summary In this study we examined the interplay between serum, leukemia inhibitory factor (LIF), retinoic acid, and dibutyrl cyclic adenosine monophosphate (dbcAMP) in affecting IOUD2 embryonic stem cell self-renewal and differentiation as assessed by Oct4 expression, and cell proliferation as measured by total cell protein. Removal of LIF, reduced levels of fetal calf serum (FCS), and addition of retinoic acid all induced embryonic stem cell differentiation as measured by reduced Oct4 expression. Lower levels of retinoic acid (0.1–10 nM) promoted the formation of epithelial-like cells, whereas higher levels (100–10,000 nM) favored differentiation into fibroblastic-like cells. The effects of dbcAMP varied with the presence or absence of FCS and LIF and the concentration of dbcAMP. In FCS-containing media, a low level of dbcAMP (100 μM) increased self-renewal in the absence of LIF, but it had no effect in its presence. In contrast, at higher concentrations (1000 μM dbcAMP), regardless of LIF, differentiation was promoted. A similar effect of dbcAMP was seen in the presence of retinoic acid. In media without FCS but with serum replacement supplements, there was no effect of dbcAMP. This study shows that the Oct4 expression system of IOUD2 cells provides a novel, simple method for quantifying cellular differentiation.  相似文献   

19.
Persistently activated STAT3 contributes to cell survival in many different human cancers. Cancer cell secretion of IL-6 is a frequent basis for persistent STAT3 activation; we show that antibodies against IL-6 or gp-130, the signaling unit of the IL-6 receptor, can abruptly remove persistently activated STAT3 causing prompt disappearance of cysteine proteases of serpin B3/B4 mRNAs, known as squamous cell carcinoma antigens 1 and 2. STAT3 occupies the promoter of serpin B3/B4 before removal and siRNA removal of B3/B4 mRNA caused cell death in HN13 head and neck cancer cells. Thus persistently activated STAT3 is a required part of the continuous activation of B3/B4 genes, which protects tumor cells from dying.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号