首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Twenty-four 12-mer DNA duplexes, each containing a chiral phosphorothioate group successively replacing one of the internucleotide phosphate groups either in the EcoRII recognition site (5'CCA/TGG) or near to it, were obtained for studying the interaction of the restriction endonuclease EcoRII with internucleotide DNA phosphates. Twelve of the 12-mer oligonucleotides were synthesized as Rp and Sp diastereomeric mixtures. Six of them were separated by reversed-phase HPLC using various buffers. Homogeneous diastereomers of the other oligonucleotides were obtained by enzymatic ligation of the Rp and Sp diastereomers of 5- to 7-mer oligonucleotides preliminarily separated by HPLC with the corresponding short oligonucleotides on a complementary DNA template. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2003, vol. 29, no. 6; see also http://www.maik.ru.  相似文献   

2.
In site-directed spin labeling (SDSL), a nitroxide moiety containing a stable, unpaired electron is covalently attached to a specific site within a macromolecule, and structural and dynamic information at the labeling site is obtained via electron paramagnetic resonance (EPR) spectroscopy. Successful SDSL requires efficient site-specific incorporation of nitroxides. Work reported here presents a new method for facile nitroxide labeling at the 5' terminus of nucleic acids of arbitrary sizes. T4-polynucleotide kinase was used to enzymatically substitute a phosphorothioate group at the 5' terminus of a nucleic acid, and the resulting phosphorothioate was then reacted with an iodomethyl derivative of a nitroxide. The method was successfully demonstrated on both chemically synthesized and naturally occurring nucleic acids. The attached nitroxides reported duplex formation as well as tertiary folding of nucleic acids, indicating that they serve as a valid probe in nucleic acid studies.  相似文献   

3.
In site-directed spin labeling (SDSL), a nitroxide moiety containing a stable, unpaired electron is covalently attached to a specific site within a macromolecule, and structural and dynamic information at the labeling site is obtained via electron paramagnetic resonance (EPR) spectroscopy. Successful SDSL requires efficient site-specific incorporation of nitroxides. Work reported here presents a new method for facile nitroxide labeling at the 5′ terminus of nucleic acids of arbitrary sizes. T4-polynucleotide kinase was used to enzymatically substitute a phosphorothioate group at the 5′ terminus of a nucleic acid, and the resulting phosphorothioate was then reacted with an iodomethyl derivative of a nitroxide. The method was successfully demonstrated on both chemically synthesized and naturally occurring nucleic acids. The attached nitroxides reported duplex formation as well as tertiary folding of nucleic acids, indicating that they serve as a valid probe in nucleic acid studies.  相似文献   

4.
The method of site-directed spin labeling (SDSL) utilizes a stable nitroxide radical to obtain structural and dynamic information on biomolecules. Measuring dipolar interactions between pairs of nitroxides yields internitroxide distances, from which quantitative structural information can be derived. This study evaluates SDSL distance measurements in RNA using a nitroxide probe, designated as R5, which is attached in an efficient and cost-effective manner to backbone phosphorothioate sites that are chemically substituted in arbitrary sequences. It is shown that R5 does not perturb the global structure of the A-form RNA helix. Six sets of internitroxide distances, ranging from 20 to 50 A, were measured on an RNA duplex with a known X-ray crystal structure. The measured distances strongly correlate (R(2) = 0.97) with those predicted using an efficient algorithm for determining the expected internitroxide distances from the parent RNA structure. The results enable future studies of global RNA structures for which high-resolution structural data are absent.  相似文献   

5.
D Yee  V W Armstrong  F Eckstein 《Biochemistry》1979,18(19):4116-4120
The diastereomers of adenosine 5'-O-(1-thiotriphosphate) (ATP alpha S) and adenosine 5'-O-(2-thiotriphosphate) (ATP beta S) can replace adenosine triphosphate (ATP) in the initiation reaction catalyzed by deoxyribonucleic acid (DNA) dependent ribonucleic acid (RNA) polymerase from Escherichia coli. In both cases, the Sp diastereomer is a better initiator than the Rp isomer. The diasteromers of 3'-uridyl 5'-adenosyl ,O-phosphorothioate [Up(S)A] can replace UpA in the primed initiation reaction catalyzed by RNA polymerase; however, the Rp diastereomer is a better initiator than the Sp isomer. By using ATP or CpA as initiator and UTP alpha S, isomer A, as substrate, we determined the stereochemical courses of both the initiation and primed initiation reactions, respectively, with T7 DNA template and found them to proceed with inversion of configuration. Determination of the stereochemical course of the pyrophosphate exchange reaction catalyzed by RNA polymerase provides evidence that this reaction is the reverse of the phosphodiester bond-forming reaction.  相似文献   

6.
Abstract

ABSTRACT: In order to design an oligodeoxynucleoside phosphorothioate as an antisense molecule, it is important to establish the structure of the S-oligo with a strong affinity to the target RNA. In these molecules, internucleotide thiophosphate linkages produce diastereomers, the number of which increases in proportion to 2n (n: number of thiophosphate). To estimate the effect of this linkage on the duplex stability by UV melting curves, oligodeoxynucleotides having a single thiophosphate (referred to Soligo), dGCNsN'CG (s: thiophosphate, N, N′ = A or T), were prepared and their diastereomers isolated by HPLC. As demonstrated previously, the melting temperatures (Tm) for the Sp isomers were higher than those of the Rp when DNA was a target. On the other hand, it was found that for RNA as a target, the Rp isomers of dGCTsTCG and dGCAsTCG had higher stability than the Sp, and that the difference in the Tm values between the diastereomers was smaller than when DNA was a target. With dGCsTsACG, which has two thiophosphates, it was also found that the Tm values decreased with an increase in the number of thiophosphate linkages, and that the difference in Tm between the diastereomers was smaller when RNA was a target. Consequently, in practical clinical applications where RNA is a target, the influence of thiophosphate chirality on the duplex structure is almost negligible and Rp/Sp separation of an S-oligo may be of no major concern.  相似文献   

7.
In site-directed spin labeling (SDSL), local structural and dynamic information is obtained via electron paramagnetic resonance (EPR) spectroscopy of a stable nitroxide radical attached site-specifically to a macromolecule. Analysis of electron spin dipolar interactions between pairs of nitroxides yields the inter-nitroxide distance, which provides quantitative structural information. The development of pulse EPR methods has enabled such distance measurements up to 70Å in bio-molecules, thus opening up the possibility of SDSL global structural mapping. This study evaluates SDSL distance measurement using a nitroxide (designated as R5) that can be attached, in an efficient and cost-effective manner, to a phosphorothioate backbone position at arbitrary DNA or RNA sequences. R5 pairs were attached to selected positions of a dodecamer DNA duplex with a known NMR structure, and eight distances, ranging from 20 to 40Å, were measured using double electron-electron resonance (DEER). The measured distances correlated strongly (R2 = 0.98) with the predicted values calculated based on a search of sterically allowable R5 conformations in the NMR structure, thus demonstrating accurate distance measurements using R5. Furthermore, distance measurement in a 42 kD DNA was demonstrated. The results establish R5 as a sequence-independent probe for global structural mapping of DNA and DNA–protein complexes.  相似文献   

8.
Polynucleotide phosphorylase catalyzes the formation of polynucleotides from the Sp diastereomer of adenosine 5'-O-(l-thiodiphosphate) ADPalphaS), whereas the Rp diastereomer is a competitive inhibitor. The absolute configuration of the phosphorothioate diester bond in the polymer was determined by copolymerizing ADPalpha S, Sp isomer with UDP and degrading the resulting copolymer with R Nase A and spleen phosphodiesterase to give, inter alia, uridine 2',-3'-cyclic phosphorothioate. The latter product was shown to be the endo isomer by high-performance liquid chromatography. No evidence for the presence of the exo isomer was obtained. It can thus be concluded that the Sp diastereomer of ADPalphaS polymerizes with inversion of configuration at phosphorus without racemization to give a phosphorothioate diester bond with the Rp configuration.  相似文献   

9.
10.
The stereochemical course of hydrolysis catalyzed by the cyclic GMP phosphodiesterase from bovine retinal rod outer segments was determined. The Sp diastereomer of guanosine 3',5'-cyclic monophosphorothioate was hydrolyzed by cyclic GMP phosphodiesterase in H2(18)O to give [16O,18O]guanosine 5'-monophosphorothioate. This isotopomer was reacted with diphenyl phosphorochloridate to form the two diastereomers of P1-(5'-guanosyl) P2-(diphenyl) 1-thiodiphosphate. The 31P NMR spectrum of this mixture of diastereomers was identical to that obtained from [16O,18O]guanosine 5'-monophosphorothioate resulting from the hydrolysis of the Rp diastereomer of guanosine 5'-p-nitrophenyl phosphorothioate by snake venom phosphodiesterase. This finding indicates that the 18O is bridging in the Rp diastereomer of the P1-(5'-guanosyl) P2-(diphenyl) 1-thiodiphosphate and nonbridging in the Sp diastereomer. As the snake venom phosphodiesterase reaction is known to proceed with retention of configuration, it follows that hydrolysis by retinal rod cyclic GMP phosphodiesterase proceeds with inversion of configuration at the phosphorus atom.  相似文献   

11.
A procedure is described for the synthesis of the title compounds via phosphotriester intermediates. The 2-cyanoethyl group is used to protect the P-SH function during the course of the synthesis. Resolution of the phosphorus diastereomers is accomplished at the phosphotriester stage. Removal of the 2-cyanoethyl group without racemization, followed by removal of the other protective groups, affords the optically pure diastereomers of 5'-O-adenosyl 3'-O-uridyl phosphorothioate. Their designation as Rp and Sp follows from the stereospecificity in the hydrolysis catalyzed by RNase A. These diastereomers are useful for the investigation of the stereospecificity as well as of the stereochemical course of action of nucleases. Snake venom exonuclease hydrolyses only the Rp diastereomer, whereas both diastereomers are substrates for RNases A and T2. The results with the latter indicate that RNase T2 also operates by an in-line mechanism.  相似文献   

12.
Abstract

The emergence of antisense and antigene oligonucleotides as potential sequenceselective inhibitors of gene expression is evidenced by the growing number of ongoing clinicals trials against a variety of diseases. First generation antisense therapeutics utilize a uniformly modified oligodeoxyribonucleotide phosphorothioate where one non-bridging oxygen atom is formally replaced by sulfur, because natural DNA is unstable towards extra- and intracellular enzymes. Phosphoramidite chemistry has been widely used for the synthesis of phosphorothioate oligonucleotides because of its potential for automation, high coupling efficiency, ease of site-specific thioate linkage incorporation, and ready scalability. The large scale solid-supported synthesis of phosphorothioates is presently carried out by initial formation of the internucleotidic phosphite linkage followed by sulfurization of the phosphite triester to phosphorothioate using the Beaucage reagent. The resulting O,O-linked phosphorothioate diester linkage in the oligonucleotide is a chiral functional group. For a typical 20-mer there are 524,288 (219) possible diastereoisomers. Separation and individual quantification of this number of diastereomers is currently not feasible. In addition, the best reported methods for stereocontrolled synthesis of phosphorothioate oligomers are not presently useful for drug synthesis; that is, since net 100% enantiomeric excess is not achieved in the coupling step, the oligomeric product still consists of the same mixture of Sp and Rp diastereomers, except that the levels of all but one isomer are reduced to low individual levels. As a result, even a small change in the and Sp phosphorothioate diesters, due to racemization during coupling, indicating that the overall synthetic process is stereo reproducible and under inherent process control.  相似文献   

13.
The diastereomers of adenosine 5'-O-(1-thiotriphosphate) (ATP alpha S), adenosine 5'-O-(2-thiotriphosphate) (ATP beta S), and adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) could act as substrates for phosphomevalonate kinase in the presence of Mg2+ and Cd2+ as activating divalent metal cations. The Sp diastereomer of ATP alpha S was the preferred substrate regardless of the metal ion used, consistent with the metal ion not binding to the alpha-phosphate. With ATP beta S, the Sp diastereomer was the preferred substrate with Mg2+, and the Rp diastereomer was the preferred substrate with Cd2+. The reversal of specificity establishes that the metal is chelated through the beta-phosphate in the active site of the phosphomevalonate kinase reaction. A comparison of the Vmax values as a function of substitution of oxygen by sulfur showed the order for Mg2+ to be: ATP greater than ATP alpha S(Sp) greater than ATP alpha S(Rp) greater than ATP beta S(Sp) greater than ATP gamma S greater than ATP beta S(Rp). With Cd2+ as the activating metal ion, the order was: ATP greater than ATP alpha S(Sp) greater than ATP alpha S(Rp) greater than ATP beta S(Rp) greater than ATP gamma S greater than ATP beta S(Sp). It is concluded that the chelate structure of metal ATP substrate in the phosphomevalonate kinase reaction is the delta, beta, gamma-bidentate complex. 31P NMR measurements and radioassay with [2-14C] phosphomevalonate were used to measure the equilibrium of the reaction catalyzed by phosphomevalonate kinase with ATP and phosphorothioate analogues of ATP as the phosphoryl group donor. The order as a phosphate donor as determined by both methods in the phosphomevalonate kinase reaction is ATP beta S greater than ATP alpha S greater than ATP greater than ATP gamma S. Except for ATP gamma S, the equilibrium is shifted in the direction of formation of ADP alpha S and ADP beta S relative to ADP formation. Thus, ATP beta S rather than ATP would be effective for the synthesis of diphosphomevalonate. The phosphomevalonate kinase reaction could also be used to synthesize mevalonate 5-(2-thiodiphosphate) using ATP gamma S as the phosphoryl group donor.  相似文献   

14.
Popova AM  Qin PZ 《Biophysical journal》2010,99(7):2180-2189
In this report, stereospecific structural and dynamic features in DNA are studied using the site-directed spin labeling technique. A stable nitroxide radical, 1-oxyl-4-bromo-2,2,5,5-tetramethylpyrroline (R5a), was attached postsynthetically to phosphorothioates that were chemically introduced, one at a time, at five sites of a DNA duplex. The two phosphorothioate diastereomers (Rp or Sp) were separated, and nitroxide rotational motions were monitored using electron paramagnetic resonance spectroscopy. The resulting spectra vary according to diastereomer identity and location of the labeling site, with Rp-R5a spectra effectively reporting on local DNA structural features and Sp-R5a spectra sensing variations in local DNA motions. This establishes Rp- and Sp-R5a as unique probes for investigating nucleic acids in a site- and stereospecific manner, which may aid studies of stereospecific DNA/protein interactions. In addition, weighted averages of individual Rp and Sp spectra match those of R5a attached to mixed diastereomers. This suggests that R5a linked to mixed diastereomers reports on the composite behaviors of Rp- and Sp-R5a and is useful in initial probing of the DNA local environment. This work advances understanding of R5a/DNA coupling, and is a key step forward in developing a nucleotide-independent spectroscopic probe for studying nucleic acids.  相似文献   

15.
Synthesis of Sp and Rp diastereomers of Ap4A alpha S has been characterized in two enzymatic systems, the lysyl-tRNA synthetase from Escherichia coli and the Ap4A alpha, beta-phosphorylase from Saccharomyces cerevisiae. The synthetase was able to use both (Sp)ATP alpha S and (Rp)ATP alpha S as acceptors of adenylate thus yielding corresponding monothioanalogues of Ap4A,(Sp) Ap4A alpha S and (Rp)Ap4A alpha S. No dithiophosphate analogue was formed. Relative synthetase velocities of the formation of Ap4A,(Sp) Ap4A alpha S and (Rp)Ap4A alpha S were 1:0.38:0.15, and the computed Km values for (Sp)ATP alpha S and (Rp)ATP alpha S were 0.48 and 1.34 mM, respectively. The yeast Ap4A phosphorylase synthesized (Sp)Ap4A alpha S and (Rp)Ap4A alpha S using adenosine 5'-phosphosulfate (APS) as source of adenylate. The adenylate was accepted by corresponding thioanalogues of ATP. In that system, relative velocities of Ap4A, (Sp)Ap4A alpha S and (Rp)Ap4A alpha S formation were 1:0.15:0.60. The two isomeric phosphorothioate analogues of Ap4A were tested as substrates for the following specific Ap4A-degrading enzymes: (asymmetrical) Ap4A hydrolase (EC 3.6.1.17) from yellow lupin (Lupinus luteus) seeds hydrolyzed each of the analogues to AMP and the corresponding isomer of ATP alpha S; (symmetrical) Ap4A hydrolase (EC 3.6.1.41) from E. coli produced ADP and the corresponding diastereomer of ADP alpha S; and Ap4A phosphorylase (EC 2.7.7.53) from S. cerevisiae cleaved the Rp isomer only at the unmodified end yielding ADP and (Rp)ATP alpha S whereas the Sp isomer was degraded non-specifically yielding a mixture of ADP, (Sp)ADP alpha S, ATP and (Sp)ATP alpha S. For all the Ap4A-degrading enzymes, the Rp isomer of Ap4A alpha S appeared to be a better substrate than its Sp counterpart; stereoselectivity of the three enzymes for the Ap4A alpha S diastereomers is 51, 6 and 2.5, respectively. Basic kinetic parameters of the degradation reactions are presented and structural requirements of the Ap4A-metabolizing enzymes with respect to the potential substrates modified at the Ap4A-P alpha are discussed.  相似文献   

16.
We have synthesized diastereomerically pure diadenosine 3',5'-boranophosphates (Ap(b)A) by using the boranophosphotriester method from ribonucleosides protected with the 2'-hydroxy protecting group 2-cyanoethoxymethyl (CEM). Melting curves of the triple-helical complex of the dimer Ap(b)A and 2poly(U) at high ionic strength revealed that presumptive (Sp)-Ap(b)A had a much higher affinity and presumptive (Rp)-Ap(b)A a much lower affinity for poly(U) than the natural dimer ApA did. In contrast, the affinities of these dimers for poly(dT) were similar. Both the (Rp)- and the (Sp)-boranophosphate diastereomers showed much higher resistance to digestion by snake venom phosphodiesterase and nuclease P1 than ApA did. They have potential for use as synthons to be incorporated into boranophosphate oligonucleotides. In particular, because oligonucleotides containing Sp boranophosphate nucleotides are expected to bind more strongly and specifically to RNA than natural oligoribonucleotides do, they may find application in the isolation and detection of functional RNA in basic research and diagnostics.  相似文献   

17.
In RNA site-directed spin labeling (SDSL) studies, structural and dynamic information at the individual RNA nucleotide level is derived from the observed electron paramagnetic resonance spectrum of a covalently attached nitroxide. A systematic approach for RNA SDSL is to establish a library that categorizes observed spectral lineshapes based on known RNA structures, thus enabling lineshape-based structure identification at any RNA site. To establish the first RNA SDSL library, selective secondary structure elements have been systematically engineered into a model RNA. Nitroxide lineshapes reporting features specific to each element were obtained utilizing a new avidin-tethering scheme for suppressing spectral effects due to uniform RNA tumbling. The data demonstrated two key features required for a SDSL library with a predicting power: (i) spectral divergence--distinctive lineshape for different elements; and (ii) spectral convergence--similar lineshape for the same element in different contexts. This sets the foundation for further RNA SDSL library development.  相似文献   

18.
The structure of both the mono- and the divalent metal nucleotide complexes active in the myosin subfragment 1 ATPase has been determined using the phosphorothioate analogs of ATP in the presence of various cations. Both the Sp and the Rp diastereomers of adenosine 5'-O-(1-thiotriphosphate) (ATP alpha S) were substrates in the presence of Mg2+, Ca2+, Mn2+, Co2+, Zn2+, and Cd2+ as well as with NH4+ and T1+. The Sp/Rp activity ratios obtained were largely independent of the cation. The simplest explanation of these results is that both mono- and divalent cations do not coordinate to the alpha-phosphate group. With adenosine 5'-O-(2-thiotriphosphate) (ATP beta S), essentially only the Sp diastereomer was active with Mg2+ with Sp/Rp ratio of greater 3000. As the divalent metal ion was varied in the series given above, this ratio was progressively lowered to the value of 0.2 found with Cd2+. Similar changes in stereoselectivity were seen with monovalent cations. Thus, with NH4+, an Sp/Rp ratio of 8 was observed, whereas with T1+, this figure was reduced to 0.04. These data indicate that both mono- and divalent cations coordinate to the beta-phosphate group of the nucleoside triphosphate substrate. These results obtained with ATP alpha S and ATP beta S suggest that myosin uses the mono- or divalent cation delta, beta, gamma-bidentate nucleotide chelate as substrate.  相似文献   

19.
A series DNA helices of twenty-four base pairs has been prepared for the study of fluorescence resonance energy transfer. Each of the DNA helices contains two phosphorothioate diesters (one in each strand) at pre-selected sites for introduction of the desired donor and acceptor fluorophores. The phosphorothioate-containing oligodeoxynucleotides have been prepared as pure Rp or Sp derivatives or as deastereomeric mixtures. Fluorescein and eosin are employed as the respective donor and acceptor fluorophores. A series of donor-acceptor pairs was generated by labeling of the appropriate phosphorothioate diester with the desired fluorophore and annealing the two complementary DNA strands (one containing the acceptor and one containing the donor fluorophore) to form the double-stranded helix. The 24-mer helices containing two covalently attached fluorophores exhibited some thermal destabilization and the extent of this destabilization was dependent upon the stereochemical orientation of the fluorophore. The Sp derivatives direct the fluorophore out, away from the the DNA helix, while the Rp derivatives direct the fluorophore toward the major groove. As expected, the Sp labeled duplexes were more stable than the corresponding Rp labeled sequences. However, all of the duplex structures formed were stable under the conditions used to measure energy transfer. Energy transfer could be observed with these complexes from the quenching of the donor fluorescence in the presence of the acceptor fluorophore. Using F?rster's theories, distances separating the fluorophores could be calculated that were generally in reasonable agreement with the distances expected in an idealized B-form DNA helix. However anomalous results were obtained for one donor/acceptor pair where the expected distance was less than 20 A. Fluorescence anisotropy values determined in solutions of varying viscosity were quite high suggesting that the fluorophores did not experience complete freedom of movement when attached to the DNA helix.  相似文献   

20.
The stereochemical course of the first step of pre-mRNA splicing.   总被引:4,自引:0,他引:4       下载免费PDF全文
We have determined the effects on splicing of sulfur substitution of the non-bridging oxygens in the phosphodiester bond at the 5' splice site of a pre-mRNA intron. Pre-mRNAs containing stereochemically pure Rp and Sp phosphorothioate isomers were produced by ligation of a chemically synthesized modified RNA oligonucleotide to enzymatically synthesized RAs. When these modified pre-mRNA substrates were tested for in vitro splicing activity in a HeLa cell nuclear extract system, the RNA with the Rp diastereomeric phosphorothioate was not spliced while the Sp diastereomeric RNA spliced readily. The sulfur-containing branched trinucleotide was purified from the splicing reaction of the Sp RNA and analyzed by cleavage with a stereospecific nuclease. The results showed that the Sp phosphorothioate was inverted during the splicing reaction to the Rp configuration; a finding previously obtained for a Group I self-splicing RNA. This inversion of configuration is consistent with a transesterification mechanism for pre-mRNA splicing. The lack of splicing of the Rp modified RNA also suggests that the pro-Rp oxygen at the 5' splice site is involved in a critical chemical contact in the splicing mechanism. Additionally, we have found that the HeLa cell RNA debranching enzyme is inactive on branches containing an Rp phosphorothioate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号