首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Animals typically respond to stressful stimuli such as handling by increasing core body temperature. However, small birds in cold environments have been found to decrease body temperature (Tb) when handled over longer periods, although there are no data extending beyond the actual handling event in such birds. We therefore measured both the initial Tb decrease during ringing and standardized Tb sampling, and subsequent recovery of Tb after this handling protocol in wild Great Tits Parus major roosting in nestboxes in winter. Birds reduced their Tb by 2.3 °C during c. 4 min of handling. When birds were returned to their nestboxes after handling, Tb decreased by a further 1.9 °C over c. 2 min, reaching a Tb of 34.6 °C before taking 20 min to rewarm to 2.5 °C above their initial Tb. The Tb reduction during handling could be a consequence of increased heat loss rate from disrupted plumage insulation, whereas Tb reduction after handling might reflect reduced heat production. These are important factors to consider when handling small birds in the cold.  相似文献   

2.
In order to examine the mediatory role of proton motive force (∆p) or proton ATPase in H2 production by Rhodobacter sphaeroides, ∆p was determined under anaerobic conditions in the dark, and the ATPase activity has been studied in R. sphaeroides strain A-10, isolated from Arzni mineral springs in Armenia. Membrane potential (∆φ) was measured from the distribution of tetraphenylphosphonium cation; pH gradient (∆pH) was the difference between the external and cytoplasmic pH values, and the latter was measured by 9-aminoacridine (9-AA) fluorescence changes. At pH 7.5, ∆φ was of −94 mV and the reversed ∆pH was +30 mV, resulting in ∆p of −64 mV. The addition of N,N′-dicyclohexylcarbodiimide (DCCD), the F0F1–ATPase inhibitor, was not affect ∆φ. It was shown that ∆φ varies nearly linearly with ΔpH, ∆φ increased from −57.1 mV at pH 6.0 to −103.8 mV at pH 8.0; it was compensated at high external pH by a reversed ∆pH, resulting in a low ∆p under anaerobic-dark conditions. Intracellular ATP concentrations and energetic charge (EC) were measured to evaluate a metabolism activity of R. sphaeroides.  相似文献   

3.
The body temperature (T b) of Cape ground squirrels (Xerus inauris, Sciuridae) living in their natural environment during winter has not yet been investigated. In this study we measured abdominal T b of eight free-ranging Cape ground squirrels over 27 consecutive days during the austral winter. Mean daily T b was relatively stable at 37.0 ± 0.2°C (range 33.4 to 40.2°C) despite a marked variation in globe temperature (T g) (range −7 to 37°C). Lactating females (n = 2) consistently had a significantly higher mean T b (0.7°C) than non-lactating females (n = 3) and males. There was a pronounced nychthemeral rhythm with a mean active phase T b of 38.1 ± 0.1°C and a mean inactive phase T b of 36.3 ± 0.3°C for non-lactating individuals. Mean daily amplitude of T b rhythm was 3.8 ± 0.2°C. T b during the active phase closely followed T g and mean active phase T b was significantly correlated with mean active phase T g (r 2 = 0.3–0.9; P < 0.01). There was no evidence for daily torpor or pronounced hypothermia during the inactive phase, and mean minimum inactive phase T b was 35.7 ± 0.3°C for non-lactating individuals. Several alternatives (including nocturnal huddling, an aseasonal breeding pattern and abundant winter food resources) as to why Cape ground squirrels do not employ nocturnal hypothermia are discussed.  相似文献   

4.
We examined the relationship between body temperature (Tb) of free flying pigeons and ambient water vapor pressure and temperature. Core or near core Tb of pigeons were measured using thermistors inserted into the cloaca and connected to small transmitters mounted on the tail feathers of free flying tippler pigeons (Columba livia). Wet and dry bulb temperatures were measured using modified transmitters mounted onto free-flying pigeons. These allowed calculation of relative humidity and hence water vapor pressure at flight altitudes. Mean Tb during flight was 42.0 ± 1.3 °C (n = 16). Paired comparisons of a subset of this data indicated that average in-flight Tb increased significantly by 1.2 ± 0.7 °C (n = 7) over that of birds at rest (t = −4.22, P < 0.05, n = 7) within the first 15 min of takeoff. In addition, there was a small but significant increase in Tb with increasing ambient air (Ta) when individuals on replicate flights (n = 35) were considered. Inclusion of water vapor pressure into the regression model did not improve the correlation between body temperature and ambient conditions. Flight Tb also increased a small (0.5 °C) but significant amount (t = 2.827, P < 0.05, n = 8) from the beginning to the end of a flight. The small response of Tb to changing flight conditions presumably reflects the efficiency of convection as a heat loss mechanism during sustained regular flight. The increase in Tb on landing that occurred in some birds was a probable consequence of a sudden reduction in convective heat loss. Accepted: 2 February 1999  相似文献   

5.
The jerboa (Jaculus orientalis) has been described in the past as a hibernator, but no reliable data exist on the daily and seasonal rhythmicity of body temperature (T b). In this study, T b patterns were determined in different groups of jerboas (isolated males and females, castrated males and grouped animals) maintained in captivity during autumn and winter, and submitted to natural variations of light and ambient temperature (T a). T b and T a variations were recorded with surgically implanted iButton temperature loggers at 30-min intervals for two consecutive years. About half (6/13) of isolated female jerboas hibernated with a T b < 33°C, with hibernation bouts interspersed with short periods of normothermy from November to February. Hibernation bout durations were longer (4–5 days) than those of normothermia phases (1–4 days). During hibernation, the minimum T b was low (T bmin ~10.7°C). In contrast, one of the 12 isolated males showed short hibernation bouts of ca. 2 days late in the hibernation season, February–March. The males had T bmin values of 15.1°C. In contrast to predictions, no castrated males hibernated. When jerboas were grouped, females and males exhibited concomitant torpor bouts. In males, the longest bouts were observed during the late hibernation season. These data suggest complex regulation of hibernation in jerboas.  相似文献   

6.
Some mammals indigenous to desert environments, such as camels, cope with high heat load by tolerating an increase in body temperature (T b) during the hot day, and by dissipating excess heat during the cooler night hours, i.e., heterothermy. Because diurnal heat storage mechanisms should be favoured by large body size, we investigated whether this response also exists in Asian elephants when exposed to warm environmental conditions of their natural habitat. We compared daily cycles of intestinal T b of 11 adult Asian elephants living under natural ambient temperatures (T a) in Thailand (mean T a ~ 30°C) and in 6 Asian elephants exposed to cooler conditions (mean T a ~ 21°C) in Germany. Elephants in Thailand had mean daily ranges of T b oscillations (1.15°C) that were significantly larger than in animals kept in Germany (0.51°C). This was due to both increased maximum T b during the day and decreased minimum T b at late night. Elephant’s minimum T b lowered daily as T a increased and hence entered the day with a thermal reserve for additional heat storage, very similar to arid-zone ungulates. We conclude that these responses show all characteristics of heterothermy, and that this thermoregulatory strategy is not restricted to desert mammals, but is also employed by Asian elephants.  相似文献   

7.
Both whole-body heat exposure and intraperitoneal heating (IPH) result in a body temperature (T b) fall that occurs once heating is abated (”hyperthermia- induced hypothermia”). This phenomenon involves a decrease in the threshold T b (T b-thresh) for activation of metabolic heat production (cold defense). Whether the T b-thresh for ear skin vasodilation (heat defense) also changes during hyperthermia-induced hypothermia remains unknown. In experiment 1, we applied IPH to guinea pigs by perfusing water through a preimplanted intraperitoneal thermode and delivered the total heat load of either approximately 1.5 kJ (”short” IPH; perfusion duration: 14 min) or approximately 3.0 kJ (”long” IPH; 40 min). Short IPH caused skin vasodilation and a 1.1°C rise in T b; no hypothermia occurred when IPH ceased. Long IPH caused vasodilation and hyperthermia of a comparable magnitude (1.4°C) that were followed by a T b fall to 1.9°C below the preheating value. In experiment 2, the T b-thresh for skin vasodilation was measured twice: at the beginning of long IPH and at the nadir of the post-IPH hypothermia. The two T b-thresh values were 39.0 (SEM 0.1)°C and 39.2 (SEM 0.2)°C respectively. In the controls, the T b-thresh was measured at the beginning and after short IPH; both control values were 39.0 (SEM 0.2)°C. We conclude that the hyperthermia- induced hypothermia, although previously shown to be coupled with a decrease in the T b-thresh for cold defense, occurs without any substantial change in the T b-thresh for heat defense. We speculate that postheating thermoregulatory disorders are associated with threshold dissociation, thus representing the poikilothermic (wide dead-band) type of T b control. Received: 20 August 1999 / Revised: 18 November 1999 / Accepted: 24 November 1999  相似文献   

8.
Precise measures of phenology are critical to understanding how animals organize their annual cycles and how individuals and populations respond to climate-induced changes in physical and ecological stressors. We show that patterns of core body temperature (T b) can be used to precisely determine the timing of key seasonal events including hibernation, mating and parturition, and immergence and emergence from the hibernacula in free-living arctic ground squirrels (Urocitellus parryii). Using temperature loggers that recorded T b every 20 min for up to 18 months, we monitored core T b from three females that subsequently gave birth in captivity and from 66 female and 57 male ground squirrels free-living in the northern foothills of the Brooks Range Alaska. In addition, dates of emergence from hibernation were visually confirmed for four free-living male squirrels. Average T b in captive females decreased by 0.5–1.0°C during gestation and abruptly increased by 1–1.5°C on the day of parturition. In free-living females, similar shifts in T b were observed in 78% (n = 9) of yearlings and 94% (n = 31) of adults; females without the shift are assumed not to have given birth. Three of four ground squirrels for which dates of emergence from hibernation were visually confirmed did not exhibit obvious diurnal rhythms in T b until they first emerged onto the surface when T b patterns became diurnal. In free-living males undergoing reproductive maturation, this pre-emergence euthermic interval averaged 20.4 days (n = 56). T b-loggers represent a cost-effective and logistically feasible method to precisely investigate the phenology of reproduction and hibernation in ground squirrels.  相似文献   

9.
Continuous exposure of cattle to summer heat in the absence of shade results in significant hyperthermia and impairs growth and general health. Reliable predictors of heat strain are needed to identify this condition. A 12-day study was conducted during a moderate summer heat period using 12 Angus x Simmental (Bos taurus) steers (533 ± 12 kg average body weight) to identify animal and ambient determinations of core body temperature (T core) and respiration rate (RR) responses to heat stress. Steers were provided standard diet and water ad libitum, and implanted intraperitoneally with telemetric transmitters to monitor T core hourly. Visual count of flank movement at 0800 and 1500 hours was used for RR. Dataloggers recorded air temperature (T a), and black globe temperatures (T bg) hourly to assess radiant heat load. Analysis was across four periods and 2 consecutive days averaged within each period. Average T a and T bg increased progressively from 21.7 to 30.3°C and 25.3 to 34.0°C, respectively, from the first to fourth periods. A model utilizing a quadratic function of T a explained the most variation in T core (R 2 = 0.56). A delay in response from 1 to 3 h did not significantly improve R 2 for this relationship. Measurements at 0800 and 1500 hours alone are sufficient to predict heat strain. Daily minimum core body temperature and initial 2-h rise in T a were predictors of maximum core temperature and RR. Further studies using continuous monitoring are needed to expand prediction of heat stress impact under different conditions.  相似文献   

10.
It has been proposed that there is a thermal cost of the mane to male lions, potentially leading to increased body surface temperatures (Ts), increased sperm abnormalities, and to lower food intake during hot summer months. To test whether a mane imposes thermal costs on males, we measured core body temperature (Tb) continuously for approximately 1 year in 18 free‐living lions. There was no difference in the 24‐hr maximum Tb of males (n = 12) and females (n = 6), and males had a 24‐hr mean Tb that was 0.2 ± 0.1°C lower than females after correcting for seasonal effects. Although feeding on a particular day increased 24‐hr mean and 24‐hr maximum Tb, this phenomenon was true of both male and female lions, and females had higher 24‐hr mean and 24‐hr maximum Tb than males, on both days when lions did not feed, and on days when lions did feed. Twenty‐four‐hour Tb was not influenced by mane length or color, and 24‐hr mean Tb was negatively correlated with mane length. These data contradict the suggestion that there exists a thermal cost to male lions in possessing a long dark mane, but do not preclude the possibility that males compensate for a mane with increased heat loss. The increased insulation caused by a mane does not necessarily have to impair heat loss by males, which in hot environments is primarily through respiratory evaporative cooling, nor does in necessarily lead to increased heat gain, as lions are nocturnal and seek shade during the day. The mane may even act as a heat shield by increasing insulation. However, dominant male lions frequent water points more than twice as often as females, raising the possibility that male lions are increasing water uptake to facilitate increased evaporative cooling. The question of whether male lions with manes compensate for a thermal cost to the mane remains unresolved, but male lions with access to water do not have higher Tb than females or males with smaller manes.  相似文献   

11.
Panting is a mechanism that increases respiratory evaporative heat loss (REHL) under heat load. Because REHL uses body water, it is physiologically and ecologically relevant to know under what conditions free-ranging animals use panting. We investigated whether the cranial arterio-venous temperature difference could provide information about REHL. We exposed sheep to environments varying in ambient dry bulb temperatures (Env 1: ~15°C, Env 2: ~25°C, Env 3: ~40°C, Env 4: ~40°C + infrared radiation) and measured REHL simultaneously with carotid arterial (T car) and jugular venous (T jug) blood temperatures, as well as brain (T brain) and rectal (T rec) temperatures. REHL increased significantly with ambient temperature, from 18.4 ± 4.5 W at Env 1 to 79.5 ± 12.6 W at Env 4 (P < 10−6). While there was no effect of environment on T car (P = 0.7) or T jug (P = 0.09), the difference between them (T a-v = T car − T jug) increased from Env 1 to Env 2 (P = 0.04) and from Env 3 to Env 4 (P = 0.008). T a-v reached a maximum of 0.7 ± 0.2°C at Env 4 and was positively correlated with REHL across environments (r 2 = 0.78, F = 34.7, P < 10−3). Calculated cranial blood flow changed only from Env 2 to Env 3 (P = 0.002). The increase in REHL maintained homeothermy when dry heat loss decreased. While REHL could increase without generating an increase in T a-v, any increase in T a-v was always associated with an increase in REHL. We conclude that the cranial T a-v provides useful information about REHL in panting animals.  相似文献   

12.
A plant-specific biogenic amine, serotonin, was produced by heterologous expression of two key biosynthetic genes, tryptophan decarboxylase (TDC) and tryptamine 5-hydroxylase (T5H), in Escherichia coli. The native T5H, a cytochrome P450 enzyme, was unable to be functionally expressed in E. coli. Through a series of N-terminal deletions or additions of tagging proteins, we generated a functional T5H enzyme construct (GST∆37T5H) in which glutathione S transferase (GST) was translationally fused with the N-terminal 37 amino acid deleted T5H. Dual expression of GST∆37T5H and TDC using a pCOLADuet-1 E. coli vector produced serotonin at concentrations of approximately 24 mg l−1 in the culture medium and 4 mg l−1 in the cells. An optimum temperature of approximately 20°C was required to achieve peak serotonin production in E. coli because the low induction temperature gave rise to the highest soluble expression of GST∆37T5H.  相似文献   

13.
Data on thermal energetics for vespertilionid bats are under-represented in the literature relative to their abundance, as are data for bats of very small body mass. Therefore, we studied torpor use and thermal energetics in one of the smallest (4 g) Australian vespertilionids, Vespadelus vulturnus. We used open-flow respirometry to quantify temporal patterns of torpor use, upper and lower critical temperatures (T uc and T lc) of the thermoneutral zone (TNZ), basal metabolic rate (BMR), resting metabolic rate (RMR), torpid metabolic rate (TMR), and wet thermal conductance (C wet) over a range of ambient temperatures (T a). We also measured body temperature (T b) during torpor and normothermia. Bats showed a high proclivity for torpor and typically aroused only for brief periods. The TNZ ranged from 27.6°C to 33.3°C. Within the TNZ T b was 33.3±0.4°C and BMR was 1.02±0.29 mlO2 g−1 h−1 (5.60±1.65 mW g−1) at a mean body mass of 4.0±0.69 g, which is 55 % of that predicted for a 4 g bat. Minimum TMR of torpid bats was 0.014±0.006 mlO2 g−1 h−1 (0.079±0.032 mW g−1) at T a=4.6±0.4°C and T b=7.5±1.9. T lc and C wet of normothermic bats were both lower than that predicted for a 4 g bat, which indicates that V. vulturnus is adapted to minimising heat loss at low T a. Our findings support the hypothesis that vespertilionid bats have evolved energy-conserving physiological traits, such as low BMR and proclivity for torpor.  相似文献   

14.
Most research on mammalian heterothermic responses in southern Africa tends to be laboratory based and biased towards rodents and smaller members of the Afrotheria. In this study, we continuously measured body temperature of southern African hedgehogs (Atelerix frontalis) between April and August 2009 (−10°C < T a < 43°C), kept under semi-captive conditions. A. frontalis showed a high propensity for torpor with animals spending up to 84% of the measurement period torpid. During this study, A. frontalis displayed the lowest T b min (ca 1°C) yet recorded in an Afrotropical placental heterotherm. Bout lengths of between 0.7 h (40 min) and 116.3 h (4.8 days) were recorded. Differences in bout length were observed between lighter individuals compared with an individual exhibiting a higher body mass at the onset of winter, with low M b individuals exhibiting daily torpor whereas a heavier individual exhibited torpor bouts that were indicative of hibernation. Our results suggest that heterothermic responses are an important feature in the energy balance equation of this species and that body mass at the onset of winter may determine the patterns of heterothermy utilised in this species.  相似文献   

15.
Three major forms of dormancy in mammals have been classified: hibernation in endotherms is characterised by reduced metabolic rate (MR) and body temperature (T b) near ambient temperature (T a) over prolonged times in the winter. Estivation is a similar form of dormancy in a dry and hot environment during summertime. Daily torpor is defined as reduced MR and T b lower than 32 °C, limited to a duration of less than 24 h. The edible dormouse (Glis glis) is capable for all three distinct forms of dormancy. During periods of food restriction and/or low T a, daily torpor is displayed throughout the year, alternating with hibernation and estivation in winter and summer respectively. We recorded T b, O2-consumption and CO2-production in unrestrained dormice at different T a's for periods of up to several months. Cooling rate and rate of metabolic depression during entrance into the torpid state was identical in all three forms of dormancy. The same was true for thermal conductance, maximum heat production, duration of arousal and cost of an arousal. The only difference between hibernation and daily torpor was found in the bout duration. A daily torpor bout lasted 3–21 h, a hibernation bout 39–768 h. As a consequence of prolonged duration, MR, T b and also the T b − T a gradient decreased to lower values during hibernation bouts when compared to daily torpor bouts. Our findings suggest that all three forms of dormancy are based on the same physiological mechanism of thermal and metabolic regulation. Accepted: 27 June 2000  相似文献   

16.
Relative quantification real-time PCR has become a routine method in molecular biology research to study the small amount gene expression. There are a few mathematical models for relative quantification data analysis in real-time PCR, and the formula 2−∆∆CT is one of the most frequently used method. In this paper, we are to present another equation which directly calculates the change rate (R c) of gene expression, and give a example to compare the application of this model with 2−∆∆CT.  相似文献   

17.
J. Schmid 《Oecologia》2000,123(2):175-183
Patterns and energetic consequences of spontaneous daily torpor were measured in the gray mouse lemur (Microcebus murinus) under natural conditions of ambient temperature and photoperiod in a dry deciduous forest in western Madagascar. Over a period of two consecutive dry seasons, oxygen consumption (VO2) and body temperature (T b) were measured on ten individuals kept in outdoor enclosures. In all animals, spontaneous daily torpor occurred on a daily basis with torpor bouts lasting from 3.6 to 17.6 h, with a mean torpor bout duration of 9.3 h. On average, body temperatures in torpor were 17.3±4.9°C with a recorded minimum value of 7.8°C. Torpor was not restricted to the mouse lemurs’ diurnal resting phase: entries occurred throughout the night and arousals mainly around midday, coinciding with the daily ambient temperature maximum. Arousal from torpor was a two-phase process with a first passive, exogenous heating where the T b of animals increased from the torpor T b minimum to a mean value of 27.1°C before the second, endogenous heat production commenced to further raise T b to normothermic values. Metabolic rate during torpor (28.6±13.2 ml O2 h–1) was significantly reduced by about 76% compared to resting metabolic rate (132.6±50.5 ml O2 h–1). On average, for all M. murinus individuals measured, hypometabolism during daily torpor reduced daily energy expenditure by about 38%. In conclusion, all these energy-conserving mechanisms of the nocturnal mouse lemurs, with passive exogenous heating during arousal from torpor, low minimum torpor T bs, and extended torpor bouts into the activity phase, comprise an important and highly adapted mechanism to minimize energetic costs in response to unfavorable environmental conditions and may play a crucial role for individual fitness. Received: 8 July 1999 / Accepted: 3 December 1999  相似文献   

18.
  1. Arctic animals inhabit some of the coldest environments on the planet and have evolved physiological mechanisms for minimizing heat loss under extreme cold. However, the Arctic is warming faster than the global average and how well Arctic animals tolerate even moderately high air temperatures (T a) is unknown.
  2. Using flow‐through respirometry, we investigated the heat tolerance and evaporative cooling capacity of snow buntings (Plectrophenax nivalis; ≈31 g, N = 42), a cold specialist, Arctic songbird. We exposed buntings to increasing T a and measured body temperature (T b), resting metabolic rate (RMR), rates of evaporative water loss (EWL), and evaporative cooling efficiency (the ratio of evaporative heat loss to metabolic heat production).
  3. Buntings had an average (±SD) T b of 41.3 ± 0.2°C at thermoneutral T a and increased T b to a maximum of 43.5 ± 0.3°C. Buntings started panting at T a of 33.2 ± 1.7°C, with rapid increases in EWL starting at T a = 34.6°C, meaning they experienced heat stress when air temperatures were well below their body temperature. Maximum rates of EWL were only 2.9× baseline rates at thermoneutral T a, a markedly lower increase than seen in more heat‐tolerant arid‐zone species (e.g., ≥4.7× baseline rates). Heat‐stressed buntings also had low evaporative cooling efficiencies, with 95% of individuals unable to evaporatively dissipate an amount of heat equivalent to their own metabolic heat production.
  4. Our results suggest that buntings’ well‐developed cold tolerance may come at the cost of reduced heat tolerance. As the Arctic warms, and this and other species experience increased periods of heat stress, a limited capacity for evaporative cooling may force birds to increasingly rely on behavioral thermoregulation, such as minimizing activity, at the expense of diminished performance or reproductive investment.
  相似文献   

19.
Tunas (family Scombridae) are exceptional among most teleost fishes in that they possess vascular heat exchangers which allow heat retention in specific regions of the body (termed ‘regional heterothermy’). Seemingly exclusive to heterothermic fishes is a markedly reduced temperature dependence of blood–oxygen (blood–O2) binding, or even a reversed temperature dependence where increasing temperature increases blood–O2 affinity. These unusual binding properties have been documented in whole blood and in haemoglobin (Hb) solutions, and they are hypothesised to prevent oxygen loss from arteries to veins within the vascular heat exchangers and/or to prevent excessive oxygen unloading to the warm tissues and ensure an adequate supply of oxygen to tissues positioned efferent to the heat exchangers. The temperature sensitivity of blood–O2 binding has not been characterised in an ectothermic scombrid (mackerels and bonitos), but the existence of the unusual binding properties in these fishes would have clear implications for their proposed association with regional heterothermy. Accordingly, the present study examined oxygenation of whole blood of the chub mackerel (Scomber japonicus) at 10, 20 and 30°C and at 0.5, 1 and 2% CO2. Oxygen affinity was generally highest at 20°C for all levels of CO2. Temperature-independent binding was observed at low (0.5%) CO2, where the PO2 at 50% blood–O2 saturation (P 50) was not statistically different at 10 and 30°C (2.58 vs. 2.78 kPa, respectively) with an apparent heat of oxygenation (∆H°) close to zero (−6 kJ mol−1). The most significant temperature-mediated difference occurred at high (2%) CO2, where the P 50 at 10°C was twofold higher than that at 20°C with a corresponding ∆H° of +43 kJ mol−1. These results provide clear evidence of independent and reversed open-system temperature effects on blood oxygenation in S. japonicus, and it is therefore speculated that these unusual blood–O2 binding characteristics may have preceded the evolution of vascular heat exchangers and regional heterothermy in fishes.  相似文献   

20.
The mountain hare (Lepus timidus) is a year-round active herbivore adapted to survive the boreal winter. Captive mountain hares (N = 4) were implanted with intraabdominal thermosensitive loggers to record their core body temperature (Tb) for a year and during food deprivation (8–48 h) in summer and winter. The average Tb was 38.7 ± 0.01 °C in summer and 38.3 ± 0.01 °C in winter. The yearly Tb correlated positively with the ambient temperature. The 24-h Tb was the highest from late scotophase to early photophase in summer and winter and the lowest during middle-late photophase in summer or during early-middle scotophase in winter. The range of the 24-h oscillations in Tb increased in three animals in winter. Food deprivation did not induce hypothermia in summer or winter. These preliminary data suggest that the mountain hare can spare a modest amount of energy with the wintertime reduction in Tb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号