首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
β-Galactosidase was isolated from the cell-free extracts ofLactobacillus crispatus strain ATCC 33820 and the effects of temperature, pH, sugars and monovalent and divalent cations on the activity of the enzyme were examined.L. crispatus produced the maximum amount of enzyme when grown in MRS medium containing galactose (as carbon source) at 37°C and pH 6.5 for 2 d, addition of glucose repressing enzyme production. Addition of lactose to the growth medium containing galactose inhibited the enzyme synthesis. The enzyme was active between 20 and 60°C and in the pH range of 4–9. However, the optimum enzyme activity was at 45°C and pH 6.5. The enzyme was stable up to 45°C when incubated at various temperatures for 15 min at pH 6.5. When the enzyme was exposed to various pH values at 45°C for 1 h, it retained the original activity over the pH range of 6.0–7.0. Presence of divalent cations, such as Fe2+ and Mn2+, in the reaction mixture increased enzyme activity, whereas Zn2+ was inhibitory. TheK m was 1.16 mmol/L for 2-nitrophenyl-β-d-galactopyranose and 14.2 mmol/L for lactose.  相似文献   

2.
Bacillus subtilis has various cell wall hydrolases, however, the functions and hydrolase activities of some enzymes are still unknown. B. subtilis CwlK (YcdD) exhibits high sequence similarity with the peptidoglycan hydrolytic l,d-endopeptidase (PLY500) of Listeria monocytogenes phage and CwlK has the VanY motif which is a d-alanyl-d-alanine carboxypeptidase (Pfam: http://www.sanger.ac.uk/Software/Pfam/). The β-galactosidase activity observed on cwlK-lacZ fusion indicated that the cwlK gene was expressed during the vegetative growth phase, and Western blotting suggested that CwlK seems to be localized in the membrane. Truncated CwlK fused with a histidine-tag (h-ΔCwlK) was produced in Escherichia coli and purified on a nickel column. The h-ΔCwlK protein hydrolyzed the peptidoglycan of B. subtilis, and the optimal pH, temperature and NaCl concentration for h-ΔCwlK were pH 6.5, 37°C, and 0 M, respectively. Interestingly, h-ΔCwlK could hydrolyze the linkage of l-alanine-d-glutamic acid in the stem of the peptidoglycan, however, this enzyme could not hydrolyze the linkage of d-alanine-d-alanine, suggesting that CwlK is an l,d-endopeptidase not a d,d-carboxypeptidase. CwlK could not hydrolyze polyglutamate from B. natto or peptidoglycan of Staphylococcus aureus. This is the first report describing the characterization of an l,d-endopeptidase in B. subtilis and also the first report in bacteria of the characterization of a PLY500 family protein encoded in chromosomal DNA. Tatsuya Fukushima and Yang Yao contributed equally to this work.  相似文献   

3.
Alanine racemase catalyzes the interconversion of d- and l-alanine and plays an important role in supplying d-alanine, a component of peptidoglycan biosynthesis, to most bacteria. Alanine racemase exists mostly in prokaryotes and is generally absent in higher eukaryotes; this makes it an attractive target for the design of new antibacterial drugs. Here, we present the cloning and characterization of a new gene-encoding alanine racemase from Pseudomonas putida YZ-26. An open reading frame (ORF) of 1,230 bp, encoding a protein of 410 amino acids with a calculated molecular weight of 44,217.3 Da, was cloned into modified vector pET32M to form the recombinant plasmid pET–alr. After introduction into E.coli BL21, the strain pET-alr/E.coli BL21 expressed His6-tagged alanine racemase. The recombinant alanine racemase was efficiently purified to homogeneity using Ni2+–NTA and a gel filtration column, with 82.5% activity recovery. The amino acid sequence deduced from the alanine racemase gene revealed identity similarities of 97.0, 93, 23, and 22.0% with from P. putida F1, P. putida200, P. aeruginosa, and Salmonella typhimurium, respectively. The recombinant alanine racemase is a monomeric protein with a molecular mass of 43 kDa. The enzyme exhibited activity with l-alanine and l-isoleucine, and showed higher specificity for the former compared with the latter. The enzyme was stable from pH 7.0–11.0; its optimum pH was at 9.0. The optimum temperature for the enzyme was 37°C, and its activity was rapidly lost at temperatures above 40°C. Divalent metals, including Sr2+, Mn2+, Co2+, and Ni2+ obviously enhanced enzymatic activity, while the Cu2+ ion showed inhibitory effects.  相似文献   

4.
An enzyme cleaving l-2-oxothiazolidine-4-carboxylic acid to l-cysteine was purified 75-fold with 8% recovery to near homogeneity from crude extracts of Paecilomyces varioti F-1, which had been isolated as a fungus able to assimilate l-2-oxothiazolidine-4-carboxylic acid. The molecular mass was estimated to be 260 kDa by gel filtration. The purified preparation migrated as a single band of molecular mass 140 kDa upon SDS-PAGE. The maximum activity was observed at a range of pH 7.0–8.0 and at 50 °C. The enzyme activity was completely inhibited by SH-blocking reagents such as AgNO3, p-chloromercuribenzoic acid, N-ethylmaleimide, and N-bromosuccinimide. The enzyme required ATP, Mg2+, and KCl for the cleavage of l-2-oxothiazolidine-4-carboxylic acid. The enzyme also cleaved 5-oxo-l-proline to l-glutamic acid and is considered to be 5-oxo-l-prolinase. Received: 23 March 1999 / Accepted: 22 June 1999  相似文献   

5.
A comparative study has been carried out with FDP aldolases fromEscherichia coli 518 andLactobacillus casei ATCC 7469, which had been purified 17.6- and 65-fold, respectively. The aldolase ofL.casei was stable only in the presence of mercaptoethanol, whereas that ofE.coli was strongly inhibited at low (1.0×10–4 m) and activated at high concentrations (2.0×10–1 m) of the same compound.p-Chloromercuric benzoic acid inhibited both aldolases, with 40% inhibition at 2×10–5 m withE.coli aldolase against at 2×10–4 m withL.casei aldolase. Significant differences were also observed in pH optima and Km values.E.coli aldolase exhibited a maximal activity at pH 9.0 and gave a Km value of 1.76×10–3 m FDP with strong substrate inhibition above 7×10–3 m, against pH 6.8–7.0 and a Km of 7.04×10–3 m FDP forL.casei aldolase. Strong resistance ofL.casei aldolase against inhibition by EDTA, Ca2+ and Mn2+ was observed compared with complete inhibition at concentrations of 20mm, 40mm and 20mm, respectively, withE. coli aldolase. Polyacrylamide gel electrophoresis did not reveal any differences between the two enzyme preparations.The differences of the properties of FDP aldolases from different bacterial genera are discussed in relation to other Class II aldolases.  相似文献   

6.
Increased production, secretion, and activity of β-glucosidase in the filamentous fungus Termitomyces clypeatus was achieved in presence of the glycosylation inhibitor 2-deoxy-d-glucose (0.05%, w/v) during submerged fermentation. Enzyme activity increased to 163 U/mL by adding mannose (2 mg/mL) to the medium. Such a high enzyme activity has not been achieved without mutation or genetic manipulation. The Km and Vmax of the enzyme in culture medium were determined to be 0.092 mM and 35.54 U/mg, respectively, with p-nitrophenyl β-d-glucopyranoside as substrate, confirming its high catalytic activity. The enzyme displayed optimum activity at pH 5.4 and 45°C. The enzyme was fairly stable between acidic to alkaline pH and retained about 75 ∼ 65% residual activities between pH 4 and 10.6 and demonstrated full activity at 45°C for 3 days. The enzyme was also stable in the presence of Zn2+ and Mg2+ and 80% of the residual activity was observed in the presence of Mn2+, Ca2+, K+, Cu2+, EDTA, and sodium azide. Around 70% of the activity was retained in the presence of 2 M guanidium HCl and 3 M urea, whereas the activity was 5 and 2 times higher in the presence of 4 mM beta-mercaptoethanol and 50 mM DTT, respectively. The enzyme obtained from the culture filtrate showed potential cellulose saccharifying ability which increased further when supplemented with commercial cellulase. Thus, this enzyme could be used without any additional downstream processing for commercial cellulase preparation and production of bioethanol or for other biotechnological applications.  相似文献   

7.
Park CS  Yeom SJ  Kim HJ  Lee SH  Lee JK  Kim SW  Oh DK 《Biotechnology letters》2007,29(9):1387-1391
The rpiB gene, encoding ribose-5-phosphate isomerase (RpiB) from Clostridium thermocellum, was cloned and expressed in Escherichia coli. RpiB converted d-psicose into d-allose but it did not convert d-xylose, l-rhamnose, d-altrose or d-galactose. The production of d-allose by RpiB was maximal at pH 7.5 and 65°C for 30 min. The half-lives of the enzyme at 50°C and 65°C were 96 h and 4.7 h, respectively. Under stable conditions of pH 7.5 and 50°C, 165 g d-allose l1 was produced without by-products from 500 g d-psicose l−1 after 6 h.  相似文献   

8.
An epoxide hydrolase gene of about 0.8 kb was cloned from Rhodococcus opacus ML-0004, and the open reading frame (ORF) sequence predicted a protein of 253 amino acids with a molecular mass of about 28 kDa. An expression plasmid carrying the gene under the control of the tac promotor was introduced into Escherichia coli, and the epoxide hydrolase gene was successfully expressed in the recombinant strains. Some characteristics of purified recombinant epoxide hydrolase were also studied. Epoxide hydrolase showed a high stereospecificity for l(+)-tartaric acid, but not for d(+)-tartaric acid. The epoxide hydrolase activity could be assayed at the pH ranging from 3.5 to 10.0, and its maximum activity was obtained between pH 7.0 and 7.5. The enzyme was sensitive to heat, decreasing slowly between 30°C and 40°C, and significantly at 45°C. The enzyme activity was activated by Ca2+ and Fe2+, while strongly inhibited by Ag+ and Hg+, and slightly inhibited by Cu2+, Zn2+, Ba2+, Ni+, EDTA–Na2 and fumarate.  相似文献   

9.
Wang Y  Gao X  Su Q  Wu W  An L 《Current microbiology》2007,55(1):65-70
A novel thermostable phytase gene was cloned from Aspergillus fumigatus WY-2. It was 1459 bp in size and encoded a polypeptide of 465 amino acids. The gene was expressed in Pichia pastoris GS115 as an extracellular enzyme. The expressed enzyme was purified to homogeneity and biochemically characterized. The purified enzyme had a specific activity of 51 U/mg with an approximate molecular mass of 88 kDa. The optimum pH and temperature for activity were pH 5.5 and 55°C, respectively. After incubation at 90°C for 15 min, it still remained at 43.7% of the initial activity. The enzyme showed higher affinity for sodium phytate than other phosphate conjugates, and the Km and Kcat for sodium phytate were 114 μM and 102 s−1, respectively. Incubated with pepsin at 37°C for 2 h at the ratio (pepsin/phytase, wt/wt) of 0.1, it still retained 90.1% residual activity. These exceptional properties give the newly cloned enzyme good potential in animal feed applications.  相似文献   

10.
The α-l-arabinosidase, AraB, was induced when Bacillus pumilus ARA was grown at 50°C in a minimal medium containing xylan. A 56-kDa protein with α-l-arabinosidase activity was purified from culture supernatant to gel electrophoretic homogeneity. The optimal activity was at pH 6.4 and 60°C over a 10-min assay. The purified enzyme was stable over a pH range of 5.2–7.6 and had a 1-h half life at 70°C. The enzyme released arabinose from oat spelt xylan. Kinetic experiments at 60°C with p-nitrophenyl α-l-arabinofuranoside as substrate gave a K m, and V max of 1.05 mM and 240 U per mg of protein. The NH2-terminal amino acid sequence of the enzyme was determined, and its gene araB was subsequently cloned, sequenced, and over-expressed in Escherichia coli. The open reading frame of araB consists of a 1,479-bp fragment encoding a protein of 472 amino acids, which belonged to family 51 of the glycoside hydrolases with an identity of 67% to the protein encoded by abfB of Bacillus subtilis 168.  相似文献   

11.
β-galactosidase is a commercially important enzyme that was purified from probiotic Pediococcus acidilactici. The enzyme was extracted from cells using sonication and subsequently purified using ammonium sulphate fractionation and successive chromatographies on Sephadex G-100 and Q-Sepharose. The enzyme was purified 3.06-fold up to electrophoretic homogeneity with specific activity of 0.883 U/mg and yield of 28.26%. Molecular mass of β-galactosidase as estimated by SDS-PAGE and MALDI-TOF was 39.07 kDa. The enzyme is a heterodimer with subunit mass of 15.55 and 19.58 kDa. The purified enzyme was optimally active at pH 6.0 and stable in a pH range of 5.8–7.0 with more than 97% activity. Purified β-galactosidase was optimally active at 50 °C. Kinetic parameters Km and Vmax for purified enzyme were 400 µM and 1.22 × 10−1 U respectively. Its inactivation by PMSF confirmed the presence of serine at the active site. The metal ions had different effects on enzyme. Ca2+, Mg2+ and Mn2+ slightly activated the enzyme whereas NH4+, Co2+ and Fe3+ slightly decreased the enzyme activity. Thermodynamic parameters were calculated that suggested that β-galactosidase is less stable at higher temperature (60 °C). Purified enzyme effectively hydrolysed milk lactose with lactose hydrolysing rate of 0.047 min−1 and t1/2 of 14.74 min. This is better than other studied β-galactosidases. Both sonicated Pediococcus acidilactici cells and purified β-galactosidase synthesized galactooligosaccharides (GOSs) as studied by TLC at 30% and 50% of lactose concentration at 47.5 °C. These findings indicate the use of β-galactosidase from probiotic bacteria for producing delactosed milk for lactose intolerant population and prebiotic synthesis. pH and temperature optima and its activation by Ca2+ shows that it is suitable for milk processing.  相似文献   

12.
Scytalidium thermophilum produces an extracellular phenol oxidase on glucose-containing medium. Certain phenolic acids, specifically gallic acid and tannic acid, induce the expression of the enzyme. Production at 45°C in batch cultures is growth-associated and is enhanced in the presence of 160 μM CuSO4.5 H2O and 3 mM gallic acid. The highest enzyme activity is observed at pH 7.5 and 65°C, on catechol. When incubated for 1 h at pH 7 and pH 8, 95% and 86% of the activity is retained. Thermostability decreases gradually from 40°C to 80°C. Estimated molecular mass is c. 83 kDa, and pI is acidic at c. 5.4. Substrate specificity and inhibition analysis in culture supernatants suggest that the enzyme has unique properties showing activity towards catechol; 3,4-dihydroxy-l-phenylalanine (l-DOPA); 4-amino-N, N-diethylaniline (ADA); p-hydroquinone; gallic acid; tannic acid and caffeic acid, and no activity towards l-tyrosine, guaiacol, 2,2′-azino-bis(3-ethyl-benzthiazoline-6-sulphonic acid) (ABTS) and syringaldazine. Inhibition is observed in the presence of salicyl hydroxamic acid (SHAM) and p-coumaric acid. Enzyme activity is enhanced by cetyltrimethylammonium bromide (CTAB) and polyvinylpyrrolidone (PVP), and the organic solvents dimethyl sulfoxide (DMSO) and ethanol. No inhibition is observed in the presence of carbon monoxide. Benzoin, benzoyl benzoin and hydrobenzoin are converted into benzil, and stereoselective oxidation is observed on hydrobenzoin. The reported enzyme is novel due to its catalytic properties resembling mainly catechol oxidases, but displaying some features of laccases at the same time.  相似文献   

13.
EstA was purified from the supernatant by A. lwoffii 16C-1. Its molecular mass was determined to be 45 kDa, and the optimal activity occurred when the pH level was 8.0 at a temperature of 37°C. The activation energies for the hydrolysis of p-nitrophenyl butyrate was determined to be 11.25 kcal/mol in the temperature range of 10–37°C. The enzyme was unstable at temperatures higher than 50°C. The Michaelis constant (K m ) and V max for p-nitrophenyl butyrate were 11 μM and 131.6 μM min−1 mg of protein-1, respectively. The enzyme was strongly inhibited by Hg2−, Ca2+, Mg2+, Fe2+, Cu2+, Zn2+, Mn2+, Co2+, ethylemediaminetetraacetic acid (EDTA), phenylmethylsulfonyl fluoride (PMSF), and diisopropyl fluorophosphate (DFP). Received: 20 August 2001 / Accepted: 20 September 2001  相似文献   

14.
Penicillium ulaiense is a post-harvest pathogenic fungus that attacks citrus fruits. The objective of this work was to study this microorganism as an α-l-rhamnosidase producer and to characterize it from P. ulaiense. The enzyme under study is used for different applications in food and beverage industries. α-l-Rhamnosidase was produced in a stirred-batch reactor using rhamnose as the main carbon source. The kinetic parameters for the growth of the fungi and for the enzyme production were calculated from the experimental values. A method for partial purification, including (NH4)2SO4 precipitation, incubation at pH 12 and DEAE-sepharose chromatography yielded an enzyme with very low β-glucosidase activity. The pH and temperature optima were 5.0 and 60°C, respectively. The Michaelis–Menten constants for the hydrolysis of p-nitrophenyl-α-l-rhamnoside were V max = 26 ± 4 IU ml−1 and K m  = 11 ± 2 mM. The enzyme showed good thermostability up to 60°C and good operational stability in white wine. Co2+ affected positively the activity; EDTA, Mn2+, Mg2+, dithiotreitol and Cu2+ reduced the activity by different amounts, and Hg2+ completely inhibited the enzyme. The enzyme showed more activity on p-nitrophenyl-α-l-rhamnoside than on naringin. According to these results, this enzyme has potential for use in the food and pharmacy industries since P. ulaiense does not produce mycotoxins.  相似文献   

15.
l-arabinose isomerase (EC5.3.1.4. AI) mediates the isomerization of d-galactose into d-tagatose as well as the conversion of l-arabinose into l-ribulose. The AI from Lactobacillus plantarum SK-2 was purified to an apparent homogeneity giving a single band on SDS–PAGE with a molecular mass of 59.6 kDa. Optimum activity was observed at 50°C and pH 7.0. The enzyme was stable at 50°C for 2 h and held between pH 4.5 and 8.5 for 1 h. AI activity was stimulated by Mn2+, Fe3+, Fe2+, Ca2+ and inhibited by Cu2+, Ag+, Hg2+, Pb2+. d-galactose and l-arabinose as substrates were isomerized with high activity. l-arabitol was the strongest competitive inhibitor of AI. The apparent Michaelis–Menten constant (K m), for galactose, was 119 mM. The first ten N-terminal amino acids of the enzyme were determined as MLSVPDYEFW, which is identical to L. plantarum (Q88S84). Using the purified AI, 390 mg tagatose could be converted from 1,000 mg galactose in 96 h, and this production corresponds to a 39% equilibrium.  相似文献   

16.
Glutaminase from Stenotrophomonas maltophilia NYW-81 was purified to homogeneity with a final specific activity of 325 U/mg. The molecular mass of the native enzyme was estimated to be 41 kDa by gel filtration. A subunit molecular mass of 36 kDa was measured with SDS-PAGE, thus indicating that the native enzyme is a monomer. The N-terminal amino acid sequence of the enzyme was determined to be KEAETQQKLANVVILATGGTIA. Besides l-glutamine, which was hydrolyzed with the highest specific activity (100%), l-asparagine (74%), d-glutamine (75%), and d-asparagine (67%) were also hydrolyzed. The pH and temperature optima were 9.0 and approximately 60°C, respectively. The enzyme was most stable at pH 8.0 and was highly stable (relative activities from 60 to 80%) over a wide pH range (5.0–10.0). About 70 and 50% of enzyme activity was retained even after treatment at 60 and 70°C, respectively, for 10 min. The enzyme showed high activity (86% of the original activity) in the presence of 16% NaCl. These results indicate that this enzyme has a higher salt tolerance and thermal stability than bacterial glutaminases that have been reported so far. In a model reaction of Japanese soy sauce fermentation, glutaminase from S. maltophilia exhibited high ability in the production of glutamic acid compared with glutaminases from Aspergillus oryzae, Escherichia coli, Pseudomonas citronellolis, and Micrococcus luteus, indicating that this enzyme is suitable for application in Japanese soy sauce fermentation.  相似文献   

17.
Eighty-five strains of bacteria were screened for selection of microorganisms suitable for industrial production of polynucleotides. Among these bacteria, Achromobacter sp. KR 170-4 (ATCC 21942) was found to be rich in polynucleotide Phosphorylase (PNPase) in its “salt-shockate” as compared with the other strains tested. PNPase was purified about 50-fold from the “salt-shockate” of Achromobacter sp. KR 170-4, and properties of the enzyme were elucidated. Optimal pH for reaction was 10.1. Stable pH range at 37°C was between pH 6.5 and 10.5. Optimal temperatures were 46°C for polymerization of ADP or IDP, and 43°C for CDP or UDP. The enzyme was stable below 55°C at pH 9.2. The enzyme required Mn2+ rather than Mg2+ unlike the other PNPases reported. Optimal concentration of Mn2+ was 6 mM.  相似文献   

18.
Liu B  Li Z  Hong Y  Ni J  Sheng D  Shen Y 《Biotechnology letters》2006,28(20):1655-1660
An exo-β-d-glucosaminidase gene (PH0511) was cloned from the hyperthermophilic archaeon, Pyrococcus horikoshii, and expressed in Escherichia coli. The purified protein showed a strong exo-β-d-glucosaminidase activity by TLC analysis. DTT (50 mM) had little effect on its homodimeric structure during SDS-PAGE. The enzyme was optimally active at 90°C (over 20 min) and pH 6. It had a half-life of 9 h at 90°C and is the most thermostable glucosaminidase described up to now. The activity was not inhibited by ethanol, 2-propanol, DMSO, PEG-400, denaturing agents SDS (5%, w/v), urea, guanidine hydrochloride (5 M) and Mg2+, Mn2+, Co2+, Ca2+, Sr2+, Ni2+ (at up to 10 mM).  相似文献   

19.
A putative N-acyl-d-glucosamine 2-epimerase from Caldicellulosiruptor saccharolyticus was cloned and expressed in Escherichia coli. The recombinant enzyme was identified as a cellobiose 2-epimerase by the analysis of the activity for substrates, acid-hydrolyzed products, and amino acid sequence. The cellobiose 2-epimerase was purified with a specific activity of 35 nmol min–1 mg–1 for d-glucose with a 47-kDa monomer. The epimerization activity for d-glucose was maximal at pH 7.5 and 75°C. The half-lives of the enzyme at 60°C, 65°C, 70°C, 75°C, and 80°C were 142, 71, 35, 18, and 4.6 h, respectively. The enzyme catalyzed the epimerization reactions of the aldoses harboring hydroxyl groups oriented in the right-hand configuration at the C2 position and the left-hand configuration at the C3 position, such as d-glucose, d-xylose, l-altrose, l-idose, and l-arabinose, to their C2 epimers, such as d-mannose, d-lyxose, l-allose, l-gulose, and l-ribose, respectively. The enzyme catalyzed also the isomerization reactions. The enzyme exhibited the highest activity for mannose among monosaccharides. Thus, mannose at 75 g l–1 and fructose at 47.5 g l–1 were produced from 500 g l–1 glucose at pH 7.5 and 75°C over 3 h by the enzyme.  相似文献   

20.
A levanase from Bacillus sp. was purified to a homogeneous state. The enzyme had a molecular weight of 135,000 and an isoelectric point of pH 4.7. The enzyme was most active at pH 6.0 and 40°C, stable from pH 6.0 to 10.0 for 20 hr of incubation at 4°C and up to 30°C for 30 min of incubation at pH 6.0. The enzyme activity was inhibited by Ag +, Hg2 +, Cu2 +, Fe3 +, Pb2+, and p-chloromercuribenzoic acid. The enzyme hydrolyzed levan and phlein endowise to produce levanheptaose as a main product. The limit of hydrolysis of levan and phlein were 71% and 96%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号