首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Protein-protein interaction is a common strategy exploited by enzymes to control substrate specificity and catalytic activities. RNA endonucleases, which are involved in many RNA processing and regulation processes, are prime examples of this. How the activities of RNA endonucleases are tightly controlled such that they act on specific RNA is of general interest. We demonstrate here that an inactive RNA splicing endonuclease subunit can be switched "on" solely by oligomerization. Furthermore, we show that the mode of assembly correlates with different RNA specificities. The recently identified splicing endonuclease homolog from Sulfolobus solfataricus, despite possessing all of the putatively catalytic residues, has no detectable RNA cleavage activity on its own but is active upon mixing with its structural subunit. Guided by the previously determined three-dimensional structure of the catalytic subunit, we altered its sequence such that it could potentially self-assemble thereby enabling its catalytic activity. We present the evidence for the specific RNA cleavage activity of the engineered catalytic subunit and for its formation of a functional tetramer. We also identify a higher order oligomer species that possesses distinct RNA cleavage specificity from that of previously characterized RNA splicing endonucleases.  相似文献   

2.
The crystal structure of winged bean basic agglutinin in complex with GalNAc-alpha-O-Ser (Tn-antigen) has been elucidated at 2.35 angstroms resolution in order to characterize the mode of binding of Tn-antigen with the lectin. The Gal moiety occupies the primary binding site and makes interactions similar to those found in other Gal/GalNAc specific legume lectins. The nitrogen and oxygen atoms of the acetamido group of the sugar make two hydrogen bonds with the protein atoms whereas its methyl group is stabilized by hydrophobic interactions. A water bridge formed between the terminal oxygen atoms of the serine residue of the Tn-antigen and the side chain oxygen atom of Asn128 of the lectin increase the affinity of the lectin for Tn-antigen compared to that for GalNAc. A comparison with the available structures reveals that while the interactions of the glyconic part of the antigen are conserved, the mode of stabilization of the serine residue differs and depends on the nature of the protein residues in its vicinity. The structure provides a qualitative explanation for the thermodynamic parameters of the complexation of the lectin with Tn-antigen. Modeling studies indicate the possibility of an additional hydrogen bond with the lectin when the antigen is part of a glycoprotein.  相似文献   

3.
MOA, a lectin from the mushroom Marasmius oreades, is one of the few reagents that specifically agglutinate blood group B erythrocytes. Further, it is the only lectin known to have exclusive specificity for Galalpha(1,3)Gal-containing sugar epitopes, which are antigens that pose a severe barrier to animal-to-human organ transplantation. We describe here the structure of MOA at 2.4 A resolution, in complex with the linear trisaccharide Galalpha(1,3)Galbeta(1,4)GlcNAc. The structure is dimeric, with two distinct domains per protomer: the N-terminal lectin module adopts a ricinB/beta-trefoil fold and contains three putative carbohydrate-binding sites, while the C-terminal domain serves as a dimerization interface. This latter domain, which has an unknown function, reveals a novel fold with intriguing conservation of an active site cleft. A number of indications suggest that MOA may have an enzymatic function in addition to the sugar-binding properties.  相似文献   

4.
A series of small molecules based on a chemotype identified from our compound collection were synthesized and tested for binding affinity (IC(50)) at the human Neuropeptide Y Y(2) receptor (NPY Y(2)). Six of the 23 analogs tested possessed an NPY Y(2) IC(50) ≤ 15 nM. One member of this series, JNJ 31020028, is a selective, high affinity, receptor antagonist existing as a racemic mixture. As such a synthetic route to the desired enantiomer was designed starting from commercially available (S)-(+)-mandelic acid.  相似文献   

5.
6.
Wasilewski M  Wojtczak L 《FEBS letters》2005,579(21):4724-4728
Long-chain N-acylethanolamines (NAEs) have been found to uncouple oxidative phosphorylation and to inhibit uncoupled respiration of rat heart mitochondria [Wasilewski, M., Wieckowski, M.R., Dymkowska, D. and Wojtczak, L. (2004) Biochim. Biophys. Acta 1657, 151-163]. The aim of the present work was to investigate in more detail the mechanism of the inhibitory effects of NAEs on the respiratory chain. In connection with this, we also investigated a possible action of NAEs on the generation of reactive oxygen species (ROS) by respiring rat heart mitochondria. It was found that unsaturated NAEs, N-oleoylethanolamine (N-Ole) and, to a greater extent, N-arachidonoylethanolamine (N-Ara), inhibited predominantly complex I of the respiratory chain, with a much weaker effect on complexes II and III, and no effect on complex IV. Saturated N-palmitoylethanolamine had a much smaller effect compared to unsaturated NAEs. N-Ara and N-Ole were found to decrease ROS formation, apparently due to their uncoupling action. However, under specific conditions, N-Ara slightly but significantly stimulated ROS generation in uncoupled conditions, probably due to its inhibitory effect on complex I. These results may contribute to our better understanding of physiological roles of NAEs in protection against ischemia and in induction of programmed cell death.  相似文献   

7.
A two-dimensional proteome map of maize endosperm   总被引:8,自引:0,他引:8  
We have established a proteome reference map for maize (Zea mays L.) endosperm by means of two-dimensional gel electrophoresis and protein identification with LC-MS/MS analysis. This investigation focussed on proteins in major spots in a 4-7 pI range and 10-100 kDa M(r) range. Among the 632 protein spots processed, 496 were identified by matching against the NCBInr and ZMtuc-tus databases (using the SEQUEST software). Forty-two per cent of the proteins were identified against maize sequences, 23% against rice sequences and 21% against Arabidopsis sequences. Identified proteins were not only cytoplasmic but also nuclear, mitochondrial or amyloplastic. Metabolic processes, protein destination, protein synthesis, cell rescue, defense, cell death and ageing are the most abundant functional categories, comprising almost half of the 632 proteins analyzed in our study. This proteome map constitutes a powerful tool for physiological studies and is the first step for investigating the maize endosperm development.  相似文献   

8.
Tritiated opioid radioligands have proven valuable in exploring opioid binding sites. However, tritium has many limitations. Its low specific activity and limited counting efficiency makes it difficult to examine low abundant, high affinity sites and its disposal is problematic due to the need to use organic scintillants and its relatively long half-life. To overcome these issues, we have synthesized both unlabeled and carrier-free radioiodinated iodobenzoyl derivatives of 6β-naltrexamine (125I-BNtxA, 18), 6β-naloxamine (125I-BNalA, 19) and 6β-oxymorphamine (125I-BOxyA, 20) with specific activities of 2100 Ci/mmol. To optimize the utility of the radioligand, we designed a synthesis in which the radiolabel is incorporated in the last synthetic step, which required the selective iodination of the benzoyl moiety without incorporation into the phenolic A ring. Competition studies demonstrated high affinity of the unlabelled compounds for opioid receptors in transfected cell lines, as did the direct binding of the 125I-ligands to the opioid receptors. The radioligand displayed very high sensitivity, enabling a marked reduction in tissue, as well as excellent signal/noise characteristics. These new 125I-radioligands should prove valuable in future studies of opioid binding sites.  相似文献   

9.
Methods for the visualization of RNAs are urgently needed for studying a wide variety of cellular processes. Here we report on-bead screening of RNA libraries and its application to the isolation of specific fluorescence-enhancing RNA sequences. A one-bead-one-compound combinatorial RNA library with over one million different sequences was synthesized using the split-and-mix method. Solid-phase synthesis of 30 mer RNAs was performed on 15 ??m and 60 ??m diameter polystyrene beads bearing a non-cleavable linker. The RNA-derivatized beads were incubated with the well-established FlAsH pre-fluorophore and then screened for fluorescence enhancement, either by manually picking the brightest beads under a fluorescence microscope or by sorting with a FACS instrument. A protocol was established for sequence determination from single beads. While numerous RNA sequences showed increased fluorescence when immobilized, only few of them influenced the fluorescence properties of the FlAsH dye when detached from the beads. One of these sequences was found to induce a bathochromic shift in the excitation (from 492 to 510 nm) and emission (from 512 to 523 nm) maxima. This shift was accompanied by a 3.6-fold fluorescence enhancement of FlAsH fluorescence intensity. Mutation studies on the sequence revealed a rather robust structural motif.  相似文献   

10.
Vega N  Pérez G 《Phytochemistry》2006,67(4):347-355
A lectin was isolated and characterised from Salvia bogotensis seeds. Removal of the abundant pigments and polysaccharides, which are present in seeds, was an essential step in its purification. Several procedures were assayed and the best suited, including Pectinex treatment, DEAE-cellulose and affinity chromatography, led to a protein being obtained amounting to 18-20mg/100g seeds having high specific agglutination activity (SAA). The lectin specifically agglutinated human Tn erythrocytes and was inhibited by 37mM GalNAc, 0.019mM ovine submaxillary mucin (OSM) or 0.008mM asialo bovine submaxillary mucin (aBSM). Enzyme-linked lectinosorbent assay (ELLSA) revealed strong binding to aOSM and aBSM, corroborating Tn specificity, whereas no binding to fetuin or asialo fetuin was observed. The lectin's monomer MW (38,702Da), amino acid composition, pI, carbohydrate content, deglycosylated form MW, thermal stability and Ca(2+) and Mn(2+) requirements were determined. Evidence of the existence of two glycoforms was obtained. The lectin's specificity and high affinity for the Tn antigen, commonly found in tumour cells, makes this protein a useful tool for immunohistochemical and cellular studies.  相似文献   

11.
A variety of evidence has been obtained that estrogens are weak tumor initiators. A major step in the multi-stage process leading to tumor initiation involves metabolic formation of 4-catechol estrogens from estradiol (E2) and/or estrone and further oxidation of the catechol estrogens to the corresponding catechol estrogen quinones. The electrophilic catechol quinones react with DNA mostly at the N-3 of adenine (Ade) and N-7 of guanine (Gua) by 1,4-Michael addition to form depurinating adducts. The N3Ade adducts depurinate instantaneously, whereas the N7Gua adducts depurinate with a half-life of several hours. Only the apurinic sites generated in the DNA by the rapidly depurinating N3Ade adducts appear to produce mutations by error-prone repair. Analogously to the catechol estrogen-3,4-quinones, the synthetic nonsteroidal estrogen hexestrol-3',4'-quinone (HES-3',4'-Q) reacts with DNA at the N-3 of Ade and N-7 of Gua to form depurinating adducts. We report here an additional similarity between the natural estrogen E2 and the synthetic estrogen HES, namely, the slow loss of deoxyribose from the N7deoxyguanosine (N7dG) adducts formed by reaction of E2-3,4-Q or HES-3',4'-Q with dG. The half-life of the loss of deoxyribose from the N7dG adducts to form the corresponding 4-OHE2-1-N7Gua and 3'-OH-HES-6'-N7Gua is 6 or 8 h, respectively. The slow cleavage of this glycosyl bond in DNA seems to limit the ability of these adducts to induce mutations.  相似文献   

12.
Recent studies show that O-acylethanolamines (OAEs), structural isomers of the putative stress-fighting lipids, namely N-acylethanolamines (NAEs), can be derived from NAEs and are present in biological membranes under physiological conditions. In view of this, we have synthesized O-stearoylethanolamine (OSEA) as a representative OAE and investigated its phase behavior and crystal structure. The thermotropic phase transitions of OSEA dispersed in water and in 150 mM NaCl were characterized using calorimetric, spectroscopic, turbidimetric and X-ray diffraction studies. These studies have revealed that when dispersed in water OSEA undergoes a cooperative phase transition centered at 53.8 °C from an ordered gel phase to a micellar structure whereas in presence of 150 mM NaCl the transition temperature increases to 55.8 °C and most likely the bilayer structure is retained above the phase transition. O-Stearoylethanolamine crystallized in the orthorhombic space group P212121 with four symmetry-related molecules in the unit cell. Single-crystal X-ray diffraction studies show that OSEA molecules adopt a linear structure with all-trans conformation in the acyl chain region. The molecules are organized in a tail-to-tail fashion, similar to the arrangement in a bilayer membrane. These studies are relevant to understanding the role of salt on the phase properties of this new class of lipids.  相似文献   

13.
Amyloid formation normally exhibits a lag phase followed by a growth phase, which leads to amyloid fibrils. Characterization of the species populated during the lag phase is experimentally challenging, but is critical since the most toxic entities may be pre-fibrillar species. p-Cyanophenylalanine (FC≡N) fluorescence is used to probe the nature of lag-phase species populated during the formation of amyloid by human islet amyloid polypeptide. The polypeptide contains two phenylalanines at positions 15 and 23 and a single tyrosine located at the C-terminus. Each aromatic residue was separately replaced by FC≡N. The substitutions do not perturb amyloid formation relative to wild-type islet amyloid polypeptide as detected using thioflavin T fluorescence and electron microscopy. FC≡N fluorescence is high when the cyano group is hydrogen bonded and low when it is not. It can also be quenched via Förster resonance energy transfer to tyrosine. Fluorescence intensity was monitored in real time and revealed that all three positions remained exposed to solvent during the lag phase but less exposed than unstructured model peptides. The time course of amyloid formation as monitored by thioflavin T fluorescence and FC≡N fluorescence is virtually identical. Fluorescence quenching experiments confirmed that each residue remains exposed during the lag phase. These results place significant constraints on the nature of intermediates that are populated during the lag phase and indicate that significant sequestering of the aromatic side chains does not occur until β-structure sufficient to bind thioflavin T has developed. Seeding studies and analysis of maximum rates confirm that sequestering of the cyano groups occurs concomitantly with the development of thioflavin T binding capability. Overall, the process of amyloid formation and growth appears to be remarkably homogenous in terms of side-chain ordering. FC≡N also provides information about fibril structure. Fluorescence emission measurements, infrared measurements, and quenching studies indicate that the aromatic residues are differentially exposed in the fibril state with Phe15 being the most exposed. FC≡N is readily accommodated into proteins; thus, the approach should be broadly applicable.  相似文献   

14.
Relationship among the mahseer species (Family: Cyprinidae) has long been debated in fish systematics. Present study concentrates on the nature of the phylogenetic relationship among the five mahseer species using the sequence of major ribosomal DNA (45S rDNA). We have covered rDNA sequence of approximately 5.2 kb per individual, 26.0 kb per species and 130.0 kb as a whole. We also characterized the 45S and 5S rDNA regions with respect to their nucleotide composition. For phylogenetic analyses, nucleotide sequences were divided into four datasets. First and second datasets contained 18S rDNA and ITS1 sequence, whereas third and fourth datasets consisted of ITS2 and complete 18S-ITS1-5.8S-ITS2-28S, respectively. The NJ tree was constructed for all the datasets. The mahseer species under study formed a monophyletic group well separated from the outgroup species. Similarly, the individuals of Neolissochilus hexagonolepis form monophyletic group with Tor species, indicating Neolissochilus as a sister genus of Tor. The findings from the present study provide greater insights into taxonomic status of mahseer, and set the stage for future investigations dealing with phylo-geography, taxonomy, conservation and co-evolution within this interesting and important group of fish.  相似文献   

15.
A novel biopolymer-based antioxidant, chitosan conjugated with gallic acid (chitosan galloylate, chitosan-GA), is proposed. Electron paramagnetic resonance (EPR) demonstrates a wide range of antioxidant activity for chitosan-GA as evidenced from its reactions with oxidizing free radicals, that is, 1,1-diphenyl-2-picryl-hydrazyl (DPPH), horseradish peroxidase (HRP)-H2O2, carbon-centered alkyl radicals, and hydroxyl radicals. The EPR spectrum of the radical formed on chitosan-GA was attributed to the semiquinone radical of the gallate moiety. The stoichiometry and effective concentration (EC50) of the DPPH free radical with chitosan-GA show that the radical scavenging capacity is maintained even after thermal treatment at 100 °C for an hour. Although the degree of substitution of GA on chitosan was about 15%, its antioxidant capacity, that is, the reaction with carbon-centered and hydroxyl radicals, is comparable to that of GA.  相似文献   

16.
Previously, tubulin has been purified from Leishmania amazonensis and used to identify novel molecules with selective antimitotic activity. However, L. amazonensis is pathogenic and requires a relatively expensive medium for large-scale cultivation. Herein, the purification and characterization of tubulin from the non-pathogenic Leishmania tarentolae is reported, together with the sequence of alpha- and beta-tubulin from this organism. This protein was purified by sonication, diethylaminoethyl-Sepharose chromatography, and one assembly disassembly cycle in 1% overall recovery based on total cellular protein. Leishmania tarentolae tubulin was indistinguishable from the corresponding L. amazonensis protein in terms of binding affinity for dinitroaniline sulfanilamides and sensitivity to assembly inhibition by these compounds. The amino acid sequences derived from the L. tarentolae alpha- and beta-tubulin genes were 99.6 and 99.4% identical to the corresponding amino acid sequences from the Leishmania major Friedlin strain. These results indicate that tubulin from L. tarentolae is suitable for use in drug screening.  相似文献   

17.
N-Acetylglucosaminyltransferase V (GnT-V) is an enzyme involved in the biosynthesis of asparagine-linked oligosaccharides. It is responsible for the transfer of N-acetylglucosamine (GlcNAc) from the nucleotide sugar donor, uridine 5'-diphospho-N-acetylglucosamine (UDP-GlcNAc), to the 6 position of the alpha-1-6 linked Man residue in N-linked oligosaccharide core structures. GnT-V up-regulation has been linked to increased cancer invasiveness and metastasis and, appropriately, targeted for drug development. However, drug design is impeded by the lack of structural information on the protein and the way in which substrates are bound. Even though the catalytic domain of this type II membrane protein can be expressed in mammalian cell culture, obtaining structural information has proved challenging due to the size of the catalytic domain (95 kDa) and its required glycosylation. Here, we present an experimental approach to obtaining information on structural characteristics of the active site of GnT-V through the investigation of the bound conformation and relative placement of its ligands, UDP-GlcNAc and beta-D-GlcpNAc-(1-->2)-alpha-D-Manp-(1-->6)-beta-D-GlcpOOctyl. Nuclear magnetic resonance (NMR) spectroscopy experiments, inducing transferred nuclear Overhauser effect (trNOE) and saturation transfer difference (STD) experiments, were used to characterize the ligand conformation and ligand-protein contact surfaces. In addition, a novel paramagnetic relaxation enhancement experiment using a spin-labeled ligand analogue, 5'-diphospho-4-O-2,2,6,6-tetramethylpiperidine 1-oxyl (UDP-TEMPO), was used to characterize the relative orientation of the two bound ligands. The structural information obtained for the substrates in the active site of GnT-V can be useful in the design of inhibitors for GnT-V.  相似文献   

18.
The role of electrostatic interactions in the assembly of a native protein structure was studied using fragment complementation. Contributions of salt, pH, or surface charges to the kinetics and equilibrium of calbindin D(9k) reconstitution was measured in the presence of Ca(2+) using surface plasmon resonance and isothermal titration calorimetry. Whereas surface charge substitutions primarily affect the dissociation rate constant, the association rates are correlated with subdomain net charge in a way expected for Coulomb interactions. The affinity is reduced in all mutants, with the largest effect (260-fold) observed for the double mutant K25E+K29E. At low net charge, detailed charge distribution is important, and charges remote from the partner EF-hand have less influence than close ones. The effects of salt and pH on the reconstitution are smaller than mutational effects. The interaction between the wild-type EF-hands occurs with high affinity (K(A) = 1.3 x 10(10) M(-1); K(D) = 80 pM). The enthalpy of association is overall favorable and there appears to be a very large favorable entropic contribution from the desolvation of hydrophobic surfaces that become buried in the complex. Electrostatic interactions contribute significantly to the affinity between the subdomains, but other factors, such as hydrophobic interactions, dominate.  相似文献   

19.
Many lantibiotics use the membrane bound cell wall precursor Lipid II as a specific target for killing Gram-positive bacteria. Binding of Lipid II usually impedes cell wall biosynthesis, however, some elongated lantibiotics such as nisin, use Lipid II also as a docking molecule for pore formation in bacterial membranes. Although the unique nisin pore formation can be analyzed in Lipid II-doped vesicles, mechanistic details remain elusive. We used optical sectioning microscopy to directly visualize the interaction of fluorescently labeled nisin with membranes of giant unilamellar vesicles containing Lipid II and its various bactoprenol precursors. We quantitatively analyzed the binding and permeation capacity of nisin when applied at nanomolar concentrations. Specific interactions with Lipid I, Lipid II and bactoprenol-diphosphate (C55-PP), but not bactoprenol-phosphate (C55-P), resulted in the formation of large molecular aggregates. For Lipid II, we demonstrated the presence of both nisin and Lipid II in these aggregates. Membrane permeation induced by nisin was observed in the presence of Lipid I and Lipid II, but not in the presence of C55-PP. Notably, the size of the C55-PP–nisin aggregates was significantly smaller than that of the aggregates formed with Lipid I and Lipid II. We conclude that the membrane permeation capacity of nisin is determined by the size of the bactoprenol-containing aggregates in the membrane. Notably, transmitted light images indicated that the formation of large aggregates led to a pinch-off of small vesicles, a mechanism, which probably limits the growth of aggregates and induces membrane leakage.  相似文献   

20.
Cytochrome P450 3A4 (CYP3A4) is the most abundant CYP enzyme in the liver and metabolizes approximately 50% of the drugs, including antiretrovirals. Although CYP3A4 induction by ethanol and impact of CYP3A4 on drug metabolism and toxicity is known, CYP3A4-ethanol physical interaction and its impact on drug binding, inhibition, or metabolism is not known. Therefore, we studied the effect of ethanol on binding and inhibition of CYP3A4 with a representative protease inhibitor, nelfinavir, followed by the effect of alcohol on nelfinavir metabolism. Our initial results showed that methanol, ethanol, isopropanol, isobutanol, and isoamyl alcohol bind in the active site of CYP3A4 and exhibit type I spectra. Among these alcohol compounds, ethanol showed the lowest KD (5.9 ± 0.34 mM), suggesting its strong binding affinity with CYP3A4. Ethanol (20 mM) decreased the KD of nelfinavir by >5-fold (0.041 ± 0.007 vs. 0.227 ± 0.038 μM). Similarly, 20 mM ethanol decreased the IC50 of nelfinavir by >3-fold (2.6 ± 0.5 vs. 8.3 ± 3.1 μM). These results suggest that ethanol facilitates binding of nelfinavir with CYP3A4. Furthermore, we performed nelfinavir metabolism using LCMS. Although ethanol did not alter kcat, it decreased the Km of nelfinavir, suggesting a decrease in catalytic efficiency (kcat/Km). This is an important finding because alcoholism is prevalent in HIV-1-infected persons and alcohol is shown to decrease the response to antiretroviral therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号