首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucocorticoid hormones and p44/42 mitogen-activated protein kinase (MAPK) inactivation are considered to be important in small-intestinal differentiation/maturation. In this study, we found that co-treatment with glucocorticoid hormone agonist dexamethasone and p44/42 MAPK inhibitor PD98059 in intestinal cell line Caco-2 strongly induced GLUT5 gene expression. Glucocorticoid hormone receptor (GR) was translocated from the cytoplasm to the nucleus and de-phosphorylated at serine residue 203 in the nucleus, by combined treatment with dexamethasone and PD98059. The binding of GR, as well as acetylated histones H3 and H4, to the promoter/enhancer region of GLUT5 gene was enhanced by combined treatment with dexamethasone and PD98059. These results suggest that the inactivation of p44/42 MAP kinase enhances glucocorticoid hormone-induced GLUT5 gene expression, probably through controlling the phosphorylation at serine 203 and nuclear transport of GR, as well as histone acetylation on the promoter/enhancer region of GLUT5 gene.  相似文献   

2.
3.

Background

Inactivation of glucocorticoid hormones and p44/42 mitogen-activated protein kinase (MAPK) is thought to be important in small intestinal maturation and expression of genes related to intestinal differentiation and functions.

Methods

We investigated target genes induced by co-treatment for 48 h with a glucocorticoid hormone agonist, dexamethasone (Dex), and a p44/42 MAPK inhibitor, PD98059 (PD), in a small intestine-like cell line (Caco-2) using microarray analysis. We also investigated whether expression changes of the target genes induced by the co-treatment are associated with histone modifications around these genes.

Results

Co-treatment of Caco-2 cells with Dex and PD enhanced several genes related to intestinal differentiation and functions such as SCNN1A, FXYD3, LCT and LOX. Induction of the SCNN1A gene was associated with increased presence of acetylated histone H3 and H4 and di-methylated histone H3 at lysine (K) 4 around the transcribed region of the gene, and induction of the FXYD3 gene was associated with increased presence of acetylated histones H3 and H4 from the promoter/enhancer to the transcribed region of the gene. Induction of LCT and LOX genes was associated with increased presence of acetylated histone H4 on the promoter/enhancer region of the genes.

Conclusions

Histone acetylation and/or histone H3 K4 methylation around the promoter/enhancer or/and transcribed regions of target genes are associated with induction of the genes by co-treatment with Dex and PD in Caco-2 cells.

General significance

The histone code is specific to each gene with respect to induction by glucocorticoid hormone and inhibition of p44/42 MAPK in Caco-2 cells.  相似文献   

4.
5.
6.
7.
8.
A major focus of current research into gene induction relates to chromatin and nucleosomal regulation, especially the significance of multiple histone modifications such as phosphorylation, acetylation, and methylation during this process. We have discovered a novel physiological characteristic of all lysine 4 (K4)–methylated histone H3 in the mouse nucleus, distinguishing it from lysine 9–methylated H3. K4-methylated histone H3 is subject to continuous dynamic turnover of acetylation, whereas lysine 9–methylated H3 is not. We have previously reported dynamic histone H3 phosphorylation and acetylation as a key characteristic of the inducible proto-oncogenes c-fos and c-jun. We show here that dynamically acetylated histone H3 at these genes is also K4-methylated. Although all three modifications are proven to co-exist on the same nucleosome at these genes, phosphorylation and acetylation appear transiently during gene induction, whereas K4 methylation remains detectable throughout this process. Finally, we address the functional significance of the turnover of histone acetylation on the process of gene induction. We find that inhibition of turnover, despite causing enhanced histone acetylation at these genes, produces immediate inhibition of gene induction. These data show that all K4-methylated histone H3 is subject to the continuous action of HATs and HDACs, and indicates that at c-fos and c-jun, contrary to the predominant model, turnover and not stably enhanced acetylation is relevant for efficient gene induction.  相似文献   

9.
A major focus of current research into gene induction relates to chromatin and nucleosomal regulation, especially the significance of multiple histone modifications such as phosphorylation, acetylation, and methylation during this process. We have discovered a novel physiological characteristic of all lysine 4 (K4)–methylated histone H3 in the mouse nucleus, distinguishing it from lysine 9–methylated H3. K4-methylated histone H3 is subject to continuous dynamic turnover of acetylation, whereas lysine 9–methylated H3 is not. We have previously reported dynamic histone H3 phosphorylation and acetylation as a key characteristic of the inducible proto-oncogenes c-fos and c-jun. We show here that dynamically acetylated histone H3 at these genes is also K4-methylated. Although all three modifications are proven to co-exist on the same nucleosome at these genes, phosphorylation and acetylation appear transiently during gene induction, whereas K4 methylation remains detectable throughout this process. Finally, we address the functional significance of the turnover of histone acetylation on the process of gene induction. We find that inhibition of turnover, despite causing enhanced histone acetylation at these genes, produces immediate inhibition of gene induction. These data show that all K4-methylated histone H3 is subject to the continuous action of HATs and HDACs, and indicates that at c-fos and c-jun, contrary to the predominant model, turnover and not stably enhanced acetylation is relevant for efficient gene induction.  相似文献   

10.
11.
It has been reported that fructose force-feeding rapidly induced jejunal Slc2a5 gene expression in rodents. We demonstrate in this study that acetylation at lysine (K) 9 of histone H3 and acetylation at K5 and K16 of histone H4 were more enhanced in the promoter/enhancer to transcribed regions of the Slc2a5 gene in fructose force-fed mice than in glucose force-fed mice. However, fructose force-feeding did not induce acetylation at K14 of histone H3, or at K8 and K12 of histone H4 around the Slc2a5 gene. These results suggest that fructose force-feeding induced selective histone acetylation, particularly of H3 and H4, around the jejunal Slc2a5 gene in mice.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号