首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The precursor to the nuclear-coded 17 kDa early light-inducible protein (ELIP) of pea has been transported into isolated intact chloroplasts. The location of the mature protein in the thylakoid membranes was investigated after using cleavable crosslinkers such as DSP and SAND in conjunction with immuno-fractionation methods and by application of mild detergent fractionation. We show that ELIP is integrated into the membranes via the unstacked stroma thylakoids. After isolation of protein complexes by solubilization of membranes with Triton X-100 and sucrose density-gradient centrifugation the crosslinked ELIP comigrates with the PS II core complex. Using SAND we identified ELIP as a 41–51 kDa crosslinked product while with DSP four products of 80 kDa, 70 kDa, 50–42 kDa and 23–21 kDa were found. The immunoprecipitation data suggested that the D1-protein of the PS II complex is one of the ELIP partners in crosslinked products.Abbreviations chl chlorophyll - D1 herbicide-binding protein - DSP dithiobis-(succinimidylpropionate) - ELIP early light-inducible protein - LHC I and LHC II light-harvesting chlorophyll a/b complex associated with photosystem I or II - PAGE polyacrylamide gel electrophoresis - poly(A)-rich RNA polyadenyd mRNA - PS I and PS II photosystems I and II - SAND sulfosuccinimidyl 2-(m-azido-o-nitro-benzamido)-ethyl-1,3-dithiopropionate - Triton X-100 octylphenoxypolyethoxyethanol  相似文献   

2.
The concept that the two photosystems of photosynthesis cooperate in series, immortalized in Hill and Bendall''s Z scheme, was still a black box that defined neither the structural nor the molecular organization of the thylakoid membrane network into grana and stroma thylakoids. The differentiation of the continuous thylakoid membrane into stacked grana thylakoids interconnected by single stroma thylakoids is a morphological reflection of the non-random distribution of photosystem II/light-harvesting complex of photosystem II, photosystem I and ATP synthase, which became known as lateral heterogeneity.  相似文献   

3.
The polypeptide composition of whole thylakoids and membrane subfragments was studied by using a modified two-dimensional gel electrophoresis technique of O'Farrell [J. Biol. Chem. 250, 4007-4021 (1975)]. The modifications were lithium dodecyl sulphate solubilization instead instead of SDS, reverse isofocusing and sensitive silver staining procedure. This high-resolution technique allowed us to separate and identify about 170 polypeptides of thylakoid membranes. After separating grana and stroma thylakoids it was found that both types of lamellae contained nearly equal amounts of polypeptides, but about 70 polypeptides were different in the two preparations. In grana thylakoids, 54 polypeptides out of 95 were found to be mainly present in grana and 31 of them were only present in grana preparations. In stroma membranes, 43 polypeptides out of 99 were mainly present in stroma lamellae and 38 of these polypeptides were exclusively present in stroma lamellae. In a functional photosystem II preparation, 61 individual polypeptides could be distinguished. Most of these polypeptides were present in both grana and stroma lamellae, but 22 of them were more pronounced in grana than in stroma lamellae. 9 polypeptides of photosystem II were distinctly different in grana and stroma lamellae, and these differences may connect closely with the functional differences of photosystem II in the two types of thylakoids.  相似文献   

4.
The lateral distribution of plastocyanin in the thylakoid lumen of spinach and pea chloroplasts was studied by combining immunocytochemical localization and kinetic measurements of P700+ reduction at high time resolution. In dark-adapted chloroplasts, the concentration of plastocyanin in the photosystem I containing stroma membranes exceeds that in photosystem II containing grana membranes by a factor of about two. Under these conditions, the reduction of P700+ with a halftime of 12 microseconds after a laser flash of saturating intensity indicates that to greater than 95% of total photosystem I a plastocyanin molecule is bound. An analysis of the labeling densities, the length of the different lumenal regions, and the total amounts of plastocyanin and P700 shows that most of the remaining presumable mobile plastocyanin is found in the granal lumen. This distribution of plastocyanin is consistent with a more negative surface charge density in the stromal than in the granal lumen. During illumination the concentration of plastocyanin in grana increases at the expense of that in stroma lamellae, indicating a light-driven diffusion from stroma to grana regions. Our observations provide evidence that a high concentration of plastocyanin in grana in the light favors the lateral electron transport from cytochrome b6/f complexes in appressed grana across the long distance to photosystem I in nonappressed stroma membranes.  相似文献   

5.
In higher plants, thylakoid membrane protein complexes show lateral heterogeneity in their distribution: photosystem (PS) II complexes are mostly located in grana stacks, whereas PSI and adenosine triphosphate (ATP) synthase are mostly found in the stroma-exposed thylakoids. However, recent research has revealed strong dynamics in distribution of photosystems and their light harvesting antenna along the thylakoid membrane. Here, the dark-adapted spinach (Spinacia oleracea L.) thylakoid network was mechanically fragmented and the composition of distinct PSII-related proteins in various thylakoid subdomains was analyzed in order to get more insights into the composition and localization of various PSII subcomplexes and auxiliary proteins during the PSII repair cycle. Most of the PSII subunits followed rather equal distribution with roughly 70% of the proteins located collectively in the grana thylakoids and grana margins; however, the low molecular mass subunits PsbW and PsbX as well as the PsbS proteins were found to be more exclusively located in grana thylakoids. The auxiliary proteins assisting in repair cycle of PSII were mostly located in stroma-exposed thylakoids, with the exception of THYLAKOID LUMEN PROTEIN OF 18.3 (TLP18.3), which was more evenly distributed between the grana and stroma thylakoids. The TL29 protein was present exclusively in grana thylakoids. Intriguingly, PROTON GRADIENT REGULATION5 (PGR5) was found to be distributed quite evenly between grana and stroma thylakoids, whereas PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1) was highly enriched in the stroma thylakoids and practically missing from the grana cores. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

6.
Summary The repartition of light-harvesting complex (LHC) and photosystem I (PS I) complex has been examined in isolated plastids ofFucus serratus by immunocytochemical labelling. LHC is distributed equally all along the length of thylakoid membranes, without any special repartition in the appressed membranes of the three associated thylakoids ofFucus. PS I is present on all the thylakoid membranes, but the external membranes of the three associated thylakoids are largely enriched relatively to the inner ones. This specific repartition of PSI on non-appressed membranes can be compared to the localization of PSI on stroma thylakoid membranes of higher plants and green algae. Consequently, although they share some common features with those of higher plants and green algae, the appressions of thylakoids in brown algae has neither the same structure nor the same functional role as typical grana stacked membranes in the repartition of the harvested energy.Abbreviations BSA bovine serum albumin - GAR goat anti-rabbit immunoglobulin G - LHC light-harvesting complex - PBS phosphatebuffered saline - PS I photosystem I - PS II photosystem II  相似文献   

7.
The grana margins of plant thylakoid membranes   总被引:1,自引:0,他引:1  
Plant thylakoid membranes contain three structurally distinct domains: the planar appressed membranes of the grana; the planar non-appressed stroma thylakoids; and the highly curved, non-appressed margins of the grana. Evidence is presented to suggest that the grana margins form a significant structural domain, which has hitherto been neglected. If indeed the grana margins contain some of the cytochrome b/f complex, photosystem (PS) I complex and ATP synthase, they form a third functional domain of the laterally heterogeneous continuous thylakoid membrane network. The consequences of grana margins containing complexes are explored with respect to linear electron transport under light-saturating and light-limiting conditions, non-cyclic vs cyclic photophorylation, and the regulation of light energy distribution to both PS I and PS II.  相似文献   

8.
We have investigated the three-dimensional (3D) architecture of the thylakoid membranes of Arabidopsis (Arabidopsis thaliana), tobacco (Nicotiana tabacum), and spinach (Spinacia oleracea) with a resolution of approximately 7 nm by electron tomography of high-pressure-frozen/freeze-substituted intact chloroplasts. Higher-plant thylakoids are differentiated into two interconnected and functionally distinct domains, the photosystem II/light-harvesting complex II-enriched stacked grana thylakoids and the photosystem I/ATP synthase-enriched, nonstacked stroma thylakoids. The grana thylakoids are organized in the form of cylindrical stacks and are connected to the stroma thylakoids via tubular junctions. Our data confirm that the stroma thylakoids are wound around the grana stacks in the form of multiple, right-handed helices at an angle of 20° to 25° as postulated by a helical thylakoid model. The junctional connections between the grana and stroma thylakoids all have a slit-like architecture, but their size varies tremendously from approximately 15 × 30 nm to approximately 15 × 435 nm, which is approximately 5 times larger than seen in chemically fixed thylakoids. The variable slit length results in less periodicity in grana/stroma thylakoid organization than proposed in the original helical model. The stroma thylakoids also exhibit considerable architectural variability, which is dependent, in part, on the number and the orientation of adjacent grana stacks to which they are connected. Whereas some stroma thylakoids form solid, sheet-like bridges between adjacent grana, others exhibit a branching geometry with small, more tubular sheet domains also connecting adjacent, parallel stroma thylakoids. We postulate that the tremendous variability in size of the junctional slits may reflect a novel, active role of junctional slits in the regulation of photosynthetic function. In particular, by controlling the size of junctional slits, plants could regulate the flow of ions and membrane molecules between grana and stroma thylakoid membrane domains.  相似文献   

9.
Molecular crowding and order in photosynthetic membranes   总被引:1,自引:0,他引:1  
The integrity and maintenance of the photosynthetic apparatus in thylakoid membranes of higher plants requires lateral mobility of their components between stacked grana thylakoids and unstacked stroma lamellae. Computer simulations based on realistic protein densities suggest serious problems for lateral protein and plastoquinone diffusion especially in grana membranes, owing to strong retardation by protein complexes. It has been suggested that three structural features of grana thylakoids ensure efficient lateral transport: the organization of protein complexes into supercomplexes; the arrangement of supercomplexes into structured assemblies, which facilitates diffusion process in crowded membranes; the limitation of the diameter of grana discs to less than approximately 500 nm, which keeps diffusion times short enough to support regulation of light harvesting and repair of photodamaged photosystem II.  相似文献   

10.
Envelope-free chloroplasts were imaged in situ by contact and tapping mode scanning force microscopy at a lateral resolution of 3-5 nm and vertical resolution of approximately 0.3 nm. The images of the intact thylakoids revealed detailed structural features of their surface, including individual protein complexes over stroma, grana margin and grana-end membrane domains. Structural and immunogold-assisted assignment of two of these complexes, photosystem I (PS I) and ATP synthase, allowed direct determination of their surface density, which, for both, was found to be highest in grana margins. Surface rearrangements and pigment- protein complex redistribution associated with salt-induced membrane unstacking were followed on native, hydrated specimens. Unstacking was accompanied by a substantial increase in grana diameter and, eventually, led to their merging with the stroma lamellae. Concomitantly, PS IIalpha effective antenna size decreased by 21% and the mean size of membrane particles increased substantially, consistent with attachment of mobile light-harvesting complex II to PS I. The ability to image intact photosynthetic membranes at molecular resolution, as demonstrated here, opens up new vistas to investigate thylakoid structure and function.  相似文献   

11.
The biogenesis of the well-ordered macromolecular protein arrangement of photosystem (PS)II and light harvesting complex (LHC)II in grana thylakoid membranes is poorly understood and elusive. In this study we examine the capability of self organization of this arrangement by comparing the PSII distribution and antenna organization in isolated untreated stacked thylakoids with restacked membranes after unstacking. The PS II distribution was deduced from freeze-fracture electron microscopy. Furthermore, changes in the antenna organization and in the oligomerization state of photosystem II were monitored by chlorophyll a fluorescence parameters and size analysis of exoplasmatic fracture face particles. Low-salt induced unstacking leads to a randomization and intermixing of the protein complexes. In contrast, macromolecular PSII arrangement as well as antenna organization in thylakoids after restacking by restoring the original solvent composition is virtually identical to stacked control membranes. This indicates that the supramolecular protein arrangement in grana thylakoids is a self-organized process.  相似文献   

12.
We used cryoelectron tomography to reveal the arrangements of photosystem II (PSII) and ATP synthase in vitreous sections of intact chloroplasts and plunge-frozen suspensions of isolated thylakoid membranes. We found that stroma and grana thylakoids are connected at the grana margins by staggered lamellar membrane protrusions. The stacking repeat of grana membranes in frozen-hydrated chloroplasts is 15.7 nm, with a 4.5-nm lumenal space and a 3.2-nm distance between the flat stromal surfaces. The chloroplast ATP synthase is confined to minimally curved regions at the grana end membranes and stroma lamellae, where it covers 20% of the surface area. In total, 85% of the ATP synthases are monomers and the remainder form random assemblies of two or more copies. Supercomplexes of PSII and light-harvesting complex II (LHCII) occasionally form ordered arrays in appressed grana thylakoids, whereas this order is lost in destacked membranes. In the ordered arrays, each membrane on either side of the stromal gap contains a two-dimensional crystal of supercomplexes, with the two lattices arranged such that PSII cores, LHCII trimers, and minor LHCs each face a complex of the same kind in the opposite membrane. Grana formation is likely to result from electrostatic interactions between these complexes across the stromal gap.  相似文献   

13.
High sensitivity differential scanning calorimetry (DSC) was employed to study the thermal denaturation of components of pea chloroplast thylakoid membranes. In contrast to previous reports utilizing spinach thylakoids, several transitions are reversible, and deconvolution of the calorimetric curves indicates nine transitions in both first and second heating scans, but overlapping transitions obscure at least three transitions in the first heating scans of control thylakoids. Glutaraldehyde fixation increases the denaturation temperature of several transitions which is consistent with a reported increase in thermal stability of thylakoid function due to fixation. Acidic pH treatment has little effect on the DSC curves, although it has been reported to have a significant effect on membrane structure. Separation of grana from stroma thylakoids indicates that components responsible for transitions centered at approximately 56, 73, 77, and 91 degrees C are predominantly or exclusively associated with grana thylakoids, whereas components responsible for transitions centered at approximately 63 and 81 degrees C are predominantly associated with stroma thylakoids. A broad transition centered at 66 degrees C is associated with grana thylakoids, whereas a sharp transition at the same temperature is due to a component associated with stroma thylakoids. Evidence obtained by washing treatments suggests the latter transition originates from the denaturation of the thylakoid ATPase (CF1). Analysis of the calorimetric enthalpy values indicates most components of the grana thylakoids denature irreversibly at high temperature, whereas components associated with the stroma thylakoids have a considerable degree of thermal reversibility.  相似文献   

14.
Grana are not essential for photosynthesis, yet they are ubiquitous in higher plants and in the recently evolved Charaphyta algae; hence grana role and its need is still an intriguing enigma. This article discusses how the grana provide integrated and multifaceted functional advantages, by facilitating mechanisms that fine-tune the dynamics of the photosynthetic apparatus, with particular implications for photosystem II (PSII). This dynamic flexibility of photosynthetic membranes is advantageous in plants responding to ever-changing environmental conditions, from darkness or limiting light to saturating light and sustained or intermittent high light. The thylakoid dynamics are brought about by structural and organizational changes at the level of the overall height and number of granal stacks per chloroplast, molecular dynamics within the membrane itself, the partition gap between appressed membranes within stacks, the aqueous lumen encased by the continuous thylakoid membrane network, and even the stroma bathing the thylakoids. The structural and organizational changes of grana stacks in turn are driven by physicochemical forces, including entropy, at work in the chloroplast. In response to light, attractive van der Waals interactions and screening of electrostatic repulsion between appressed grana thylakoids across the partition gap and most probably direct protein interactions across the granal lumen (PSII extrinsic proteins OEEp-OEEp, particularly PsbQ-PsbQ) contribute to the integrity of grana stacks. We propose that both the light-induced contraction of the partition gap and the granal lumen elicit maximisation of entropy in the chloroplast stroma, thereby enhancing carbon fixation and chloroplast protein synthesizing capacity. This spatiotemporal dynamic flexibility in the structure and function of active and inactive PSIIs within grana stacks in higher plant chloroplasts is vital for the optimization of photosynthesis under a wide range of environmental and developmental conditions.  相似文献   

15.
The effect of a 30 h high light treatment on the amount and the localization of thylakoid proteins was analysed in low light grown photoautotrophic cells of Marchantia polymorpha and Chenopodium rubrum. High light treatment resulted in a net loss of D1 protein which was accompanied by comparable losses of other proteins of the PS II core (reaction center with inner antenna). LHC II proteins were not reduced correspondingly, indicating that these complexes are less affected by prolonged high light. High light influenced the distribution of PS II components between the grana and the stroma region of the thylakoid membrane, probably by translocation of the respective PS II proteins. Additionally, modifications of several thylakoid proteins were detected in high light treated cells of C. rubrum. These effects are discussed in relation to photoinhibitory damage and repair processes.Abbreviations BCA bioinchonic acid - chl chlorophyll - CF1 coupling factor - CYC cycloheximide - GT grana thylakoids - HL high light - LL low light - PAGE polyacrylamide gel electrophoresis - PFD photon flux density - PS I Photosystem I - PS II Photosystem II - RC reaction center - SDS sodium dodecylsulfate - ST stroma thylakoids - Thyl unfractionated thylakoids  相似文献   

16.
The biogenesis of the well-ordered macromolecular protein arrangement of photosystem (PS)II and light harvesting complex (LHC)II in grana thylakoid membranes is poorly understood and elusive. In this study we examine the capability of self organization of this arrangement by comparing the PSII distribution and antenna organization in isolated untreated stacked thylakoids with restacked membranes after unstacking. The PS II distribution was deduced from freeze-fracture electron microscopy. Furthermore, changes in the antenna organization and in the oligomerization state of photosystem II were monitored by chlorophyll a fluorescence parameters and size analysis of exoplasmatic fracture face particles. Low-salt induced unstacking leads to a randomization and intermixing of the protein complexes. In contrast, macromolecular PSII arrangement as well as antenna organization in thylakoids after restacking by restoring the original solvent composition is virtually identical to stacked control membranes. This indicates that the supramolecular protein arrangement in grana thylakoids is a self-organized process.  相似文献   

17.
For more than half a century, electron microscopy has been a main tool for investigating the complex ultrastructure and organization of chloroplast thylakoid membranes, but, even today, the three-dimensional relationship between stroma and grana thylakoids, and the arrangement of the membrane protein complexes within them are not fully understood. Electron cryo-tomography (cryo-ET) is a powerful new technique for visualizing cellular structures, especially membranes, in three dimensions. By this technique, large membrane protein complexes, such as the photosystem II supercomplex or the chloroplast ATP synthase, can be visualized directly in the thylakoid membrane at molecular (4-5 nm) resolution. This short review compares recent advances by cryo-ET of plant thylakoid membranes with earlier results obtained by conventional electron microscopy.  相似文献   

18.
Summary The photosynthetic pigments of chloroplast thylakoid membranes are complexed with specific intrinsic polypeptides which are included in three supramolecular complexes, photosystem I complex, photosystem II complex and the light-harvesting complex. There is a marked lateral heterogeneity in the distribution of these complexes along the membrane with photosystem II complex and its associated light-harvesting complex being located mainly in the stacked membranes of the grana partitions, while photosystem I complex is found mainly in unstacked thylakoids together with ATP synthetase. In contrast, the intermediate electron transport complex, the cylochrome b-f complex, is rather uniformly distributed in these two membrane regions. The consequences of this lateral heterogeneity in the location of the thylakoid complexes are considered in relation to the function and structure of chloroplasts of higher plants.  相似文献   

19.
Bertil Andersson  Jan M. Anderson   《BBA》1980,593(2):427-440
The lateral distribution of the main chlorophyll-protein complexes between appressed and non-appressed thylakoid membranes has been studied. The reaction centre complexes of Photosystems I and II and the light-harvesting complex have been resolved by an SDS-polyacrylamide gel electrophoretic method which permits most of the chlorophyll to remain protein-bound.

The analyses were applied to subchloroplast fractions shown to be derived from different thylakoid regions. Stroma thylakoids were separated from grana stacks by centrifugation following chloroplast disruption by press treatment or digitonin. Vesicles derived from the grana partitions were isolated by aqueous polymer two-phase partition. A substantial depletion in the amount of Photosystem I chlorophyll-protein complex and an enrichment in the Photosystem II reaction centre complex and the light-harvesting complex occurred in the appressed grana partition region. The high enrichment in this fraction compared to grana stack fractions derived from press or digitonin treatments, suggests that the grana Photosystem I is restricted mainly to the non-appressed grana end membranes and margins, and that the grana partitions possess mainly Photosystem II reaction centre complex and the light-harvesting complex.

In contrast, stroma thylakoids are highly enriched in the Photosystem I reaction centre complex. They possess also some 10–20% of the total Photosystem II reaction centre complex and the light-harvesting complex.

The ratio of light-harvesting complex to Photosystem II reaction centre complex is rather constant in all subchloroplast fractions suggesting a close association between these complexes. This was not so for the ratio of light-harvesting complex and the Photosystem I reaction centre complex.

The lateral heterogeneity in the distribution of the photosystems between appressed and non-appressed membranes must have a profound impact on current understanding of both the distribution of excitation energy and photosynthetic electron transport between the photosystems.  相似文献   


20.
ABSTRACT: BACKGROUND: The thylakoid system in plant chloroplasts is organized into two distinct domains: granaarranged in stacks of appressed membranes and non-appressed membranes consisting ofstroma thylakoids and margins of granal stacks. It is argued that the reason for thedevelopment of appressed membranes in plants is that their photosynthetic apparatus need tocope with and survive ever-changing environmental conditions. It is not known however,why different plant species have different arrangements of grana within their chloroplasts. Itis important to elucidate whether a different arrangement and distribution of appressed andnon-appressed thylakoids in chloroplasts are linked with different qualitative and/orquantitative organization of chlorophyll-protein (CP) complexes in the thylakoid membranesand whether this arrangement influences the photosynthetic efficiency. RESULTS: Our results from TEM and in situ CLSM strongly indicate the existence of differentarrangements of pea and bean thylakoid membranes. In pea, larger appressed thylakoids areregularly arranged within chloroplasts as uniformly distributed red fluorescent bodies, whileirregular appressed thylakoid membranes within bean chloroplasts correspond to smaller andless distinguished fluorescent areas in CLSM images. 3D models of pea chloroplasts show adistinct spatial separation of stacked thylakoids from stromal spaces whereas spatial divisionof stroma and thylakoid areas in bean chloroplasts are more complex. Structural differencesinfluenced the PSII photochemistry, however without significant changes in photosyntheticefficiency. Qualitative and quantitative analysis of chlorophyll-protein complexes as well asspectroscopic investigations indicated a similar proportion between PSI and PSII corecomplexes in pea and bean thylakoids, but higher abundance of LHCII antenna in pea ones.Furthermore, distinct differences in size and arrangements of LHCII-PSII and LHCI-PSIsupercomplexes between species are suggested. CONCLUSIONS: Based on proteomic and spectroscopic investigations we postulate that the differences in thechloroplast structure between the analyzed species are a consequence of quantitativeproportions between the individual CP complexes and its arrangement inside membranes.Such a structure of membranes induced the formation of large stacked domains in pea, orsmaller heterogeneous regions in bean thylakoids. Presented 3D models of chloroplasts showed that stacked areas are noticeably irregular with variable thickness, merging with eachother and not always parallel to each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号