首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T cells can produce various cytokines that suppress HIV-1 replication or modulate anti-HIV-1 immunity, the extent to which HIV-1-specific CD8+ T cells produce cytokines when they recognize HIV-1-infected CD4+ T cells in vivo still remains unclear. We first analyzed the abilities of 10 cytotoxic T-lymphocyte (CTL) clones specific for three HIV-1 epitopes to produce gamma interferon, macrophage inflammatory protein 1beta, and tumor necrosis factor alpha after stimulation with epitope peptide-pulsed cells. These CTL clones produced these cytokines in various combinations within the same specificity and among the different specificities, suggesting a functional heterogeneity of HIV-1-specific effector CD8+ T cells in cytokine production. In contrast, the HIV-1-specific CTL clones for the most part produced a single cytokine, without heterogeneity of cytokine production among the clones, after stimulation with HIV-1-infected CD4+ T cells. The loss of heterogeneity in cytokine production may be explained by low surface expression of HLA class I-epitope peptide complexes. Freshly isolated HIV-1-specific CD8+ T cells with an effector/memory or memory phenotype produced much more of the cytokines than the same epitope-specific CTL clones when stimulated with HIV-1-infected CD4+ T cells. Cytokine production from HIV-1-specific memory/effector and memory CD8+ T cells might be a critical event in the eradication of HIV-1 in HIV-1-infected individuals.  相似文献   

2.
An in vitro proliferative defect has been observed in HIV-1-specific CD4(+) T cells from infected subjects with high-level plasma HIV-1 viremia. To determine the mechanism of this defect, HIV-1 Gag-specific CD4(+) T cells from treated and untreated HIV-1-infected subjects were analyzed for cytokine profile, proliferative capacity, and maturation state. Unexpectedly high frequencies of HIV-1-specific, IL-2-producing CD4(+) T cells were measured in subjects with low or undetectable plasma HIV-1 loads, regardless of treatment status, and IL-2 frequencies correlated inversely with viral loads. IL-2-producing CD4(+) T cells also primarily displayed a central memory (T(Cm); CCR7(+)CD45RA(-)) maturation phenotype, whereas IFN-gamma-producing cells were mostly effector memory (T(Em), CCR7(-)CD45RA(-)). Among Gag-specific, IFN-gamma-producing CD4(+) T cells, higher T(Em) frequencies and lower T(Cm) frequencies were observed in untreated, high viral load subjects than in subjects with low viral loads. The percentage of HIV-1 Gag-specific CD4(+) T(Cm) correlated inversely with HIV-1 viral load and directly with Gag-specific CD4(+) T cell proliferation, whereas the opposite relationships were observed for HIV-1-specific CD4(+) T(Em). These results suggest that HIV-1 viremia skews Gag-specific CD4(+) T cells away from an IL-2-producing T(Cm) phenotype and toward a poorly proliferating T(Em) phenotype, which may limit the effectiveness of the HIV-1-specific immune response.  相似文献   

3.
Human endogenous retrovirus (HERV)-specific T cell responses in HIV-1-infected adults have been reported. Whether HERV-specific immunity exists in vertically HIV-1-infected children is unknown. We performed a cross-sectional analysis of HERV-specific T cell responses in 42 vertically HIV-1-infected children. HERV (-H, -K, and -L family)-specific T cell responses were identified in 26 of 42 subjects, with the greatest magnitude observed for the responses to HERV-L. These HERV-specific T cell responses were inversely correlated with the HIV-1 plasma viral load and positively correlated with CD4(+) T cell counts. These data indicate that HERV-specific T cells may participate in controlling HIV-1 replication and that certain highly conserved HERV-derived proteins may serve as promising therapeutic vaccine targets in HIV-1-infected children.  相似文献   

4.
Virus-specific CD8(+) T cells are known to play an important role in the control of HIV infection. In this study we investigated whether there may be qualitative differences in the CD8(+) T cell response in HIV-1- and HIV-2-infected individuals that contribute to the relatively efficient control of the latter infection. A molecular comparison of global TCR heterogeneity showed a more oligoclonal pattern of CD8 cells in HIV-1- than HIV-2-infected patients. This was reflected in restricted and conserved TCR usage by CD8(+) T cells recognizing individual HLA-A2- and HLA-B57-restricted viral epitopes in HIV-1, with limited plasticity in their response to amino acid substitutions within these epitopes. The more diverse TCR usage observed for HIV-2-specific CD8(+) T cells was associated with an enhanced potential for CD8 expansion and IFN-gamma production on cross-recognition of variant epitopes. Our data suggest a mechanism that could account for any possible cross-protection that may be mediated by HIV-2-specific CD8(+) T cells against HIV-1 infection. Furthermore, they have implications for HIV vaccine development, demonstrating an association between a polyclonal, virus-specific CD8(+) T cell response and an enhanced capacity to tolerate substitutions within T cell epitopes.  相似文献   

5.
One hallmark of uncontrolled, chronic human immunodeficiency virus type 1 (HIV-1) infection is the absence of strong HIV-1-specific, CD4(+) T-cell-proliferative responses, yet the mechanism underlying this T helper (Th)-cell defect remains controversial. To better understand the impact of HIV-1 replication on Th-cell function, we compared the frequency of CD4(+) Th-cell responses based on production of gamma interferon to lymphoproliferative responses directed against HIV-1 proteins in HIV-1-infected subjects with active in vivo viral replication versus those on suppressed highly active antiretroviral therapy (HAART). No statistically significant differences in the frequencies of cytokine-secreting, HIV-1-specific CD4(+) T cells between the donor groups were found, despite differences in viral load and treatment status. However, HIV-1-specific lymphoproliferative responses were significantly greater in the subjects with HAART suppression than in subjects with active viral replication. Similar levels of HIV-1 RNA were measured in T-cell cultures stimulated with HIV-1 antigens regardless of donor in vivo viral loads, but only HIV-1-specific CD4(+) T cells from subjects with HAART suppression proliferated in vitro, suggesting that HIV-1 replication in vitro does not preclude HIV-1-specific lymphoproliferation. This study demonstrates a discordance between the frequency and proliferative capacity of HIV-1-specific CD4(+) T cells in subjects with ongoing in vivo viral replication and suggests that in vivo HIV-1 replication contributes to the observed defect in HIV-1-specific CD4(+) T-cell proliferation.  相似文献   

6.
Without treatment most HIV-1-infected children in Africa die before their third birthday (>89%) and long-term nonprogressors are rare. The mechanisms underlying nonprogression in HIV-1-infected children are not well understood. In the present study, we examined potential correlates of delayed HIV disease progression in 51 HIV-1-infected African children. Children were assigned to progression subgroups based on clinical characterization. HIV-1-specific immune responses were studied using a combination of ELISPOT assays, tetramer staining, and FACS analysis to characterize the magnitude, specificity, and functional phenotype of HIV-1-specific CD8(+) and CD4(+) T cells. Host genetic factors were examined by genotyping with sequence-specific primers. HIV-1 nef gene sequences from infecting isolates from the children were examined for potential attenuating deletions. Thymic output was measured by T cell rearrangement excision circle assays. HIV-1-specific CD8(+) T cell responses were detected in all progression groups. The most striking attribute of long-term survivor nonprogressors was the detection of HIV-1-specific CD4(+) Th responses in this group at a magnitude substantially greater than previously observed in adult long-term nonprogressors. Although long-term survivor nonprogressors had a significantly higher percentage of CD45RA(+)CD4(+) T cells, nonprogression was not associated with higher thymic output. No protective genotypes for known coreceptor polymorphisms or large sequence deletions in the nef gene associated with delayed disease progression were identified. In the absence of host genotypes and attenuating mutations in HIV-1 nef, long-term surviving children generated strong CD4(+) T cell responses to HIV-1. As HIV-1-specific helper cells support anti-HIV-1 effector responses in active disease, their presence may be important in delaying disease progression.  相似文献   

7.
Small-animal models are needed to test human immunodeficiency virus (HIV) vaccine efficacy following viral challenge. To this end, we examined HIV-1-specific immune responses following immunization of nonobese diabetic-severe combined immunodeficient mice that were repopulated with human peripheral blood lymphocytes (hu-PBL-NOD/SCID mice). Autologous dendritic cells (DC) were transduced ex vivo with replication-defective, helper virus-free, herpes simplex virus type 1 (HSV-1) amplicons that expressed HIV-1 gp120 and were then injected into the hu-PBL-NOD/SCID mice. This resulted in primary HIV-1-specific humoral and cellular immune responses. Serum samples from vaccinated animals contained human immunoglobulin G that reacted with HIV-1 Env proteins by enzyme-linked immunosorbent assay and neutralized the infectivity of HIV-1 LAI and ADA strains. T cells isolated from the mice responded to viral antigens by producing gamma interferon when analyzed by enzyme-linked immunospot assay. Importantly, exposure of the vaccinated animals to infectious HIV-1 demonstrated partial protection against infectious HIV-1 challenge. This was reflected by a reduction in HIV-1(ADA) and by protection of the engrafted human CD4(+) T lymphocytes against HIV-1(LAI)-induced cytotoxicity. These data demonstrate that transduction of DC by HSV amplicon vectors expressing HIV-1 gp120 induce virus-specific immune responses in hu-PBL-NOD/SCID mice. This mouse model may be a useful tool to evaluate human immune responses and protection against viral infection following vaccination.  相似文献   

8.
The importance of antigen-specific CD4(+) helper T cells in virus infections is well recognized, but their possible role as direct mediators of virus clearance is less well characterized. Here we describe a recombinant Sendai virus strategy for probing the effector role(s) of CD4(+) T cells. Mice were vaccinated with DNA and vaccinia virus recombinant vectors encoding a secreted human immunodeficiency virus type 1 (HIV-1) envelope protein and then challenged with a Sendai virus carrying a homologous HIV-1 envelope gene. The primed mice showed (i) prompt homing of numerous envelope-primed CD4(+) T cell populations to the virus-infected lung, (ii) substantial production of gamma interferon, and interleukin-2 (IL-2), IL-4, and IL-5 in that site, and (iii) significantly reduced pulmonary viral load. The challenge experiments were repeated with immunoglobulin(-/-) microMT mice in the presence or absence of CD8(+) and/or CD4(+) T cells. These selectively immunodeficient mice were protected by primed CD4(+) T cells in the absence of antibody or CD8(+) T cells. Together, these results highlight the role of CD4(+) T cells as direct effectors in vivo and, because this protocol gives such a potent response, identify an outstanding experimental model for further dissecting CD4(+) T-cell-mediated immunity in the lung.  相似文献   

9.
HIV-1-specific CD4(+) T cells are qualitatively dysfunctional in the majority of HIV-1-infected individuals and are thus unable to effectively control viral replication. The current study extensively details the maturational phenotype of memory CD4(+) T cells directed against HIV-1 and CMV. We find that HIV-1-specific CD4(+) T cells are skewed to an early central memory phenotype, whereas CMV-specific CD4(+) T cells generally display a late effector memory phenotype. These differences hold true for both IFN-gamma- and IL-2-producing virus-specific CD4(+) T cells, are present during all disease stages, and persist even after highly active antiretroviral therapy (HAART). In addition, after HAART, HIV-1-specific CD4(+) T cells are enriched for CD27(+)CD28(-)-expressing cells, a rare phenotype, reflecting an early intermediate stage of differentiation. We found no correlation between differentiation phenotype of HIV-1-specific CD4(+) T cells and HIV-1 plasma viral load or HIV-1 disease progression. Surprisingly, HIV-1 viral load affected the maturational phenotype of CMV-specific CD4(+) T cells toward an earlier, less-differentiated state. In summary, our data indicate that the maturational state of HIV-1-specific CD4(+) T cells cannot be a sole explanation for loss of containment of HIV-1. However, HIV-1 replication can affect the phenotype of CD4(+) T cells of other specificities, which might adversely affect their ability to control those pathogens. The role for HIV-1-specific CD4(+) T cells expressing CD27(+)CD28(-) after HAART remains to be determined.  相似文献   

10.
CD4(+) T cells have been shown to play a critical role in the maintenance of an effective anti-viral CD8(+) CTL response in murine models. Recent studies have demonstrated that CD4(+) T cells provide help to CTLs through ligation of the CD40 receptor on dendritic cells. The role of CD4(+) T cell help in the expansion of virus-specific CD8(+) memory T cell responses was examined in normal volunteers recently vaccinated to influenza and in HIV-1 infected individuals. In recently vaccinated normal volunteers, CD4(+) T cell help was required for optimal in vitro expansion of influenza-specific CTL responses. Also, CD40 ligand trimer (CD40LT) enhanced CTL responses and was able to completely substitute for CD4(+) T cell help in PBMCs from normal volunteers. In HIV-1 infection, CD4(+) T cell help was required for optimal expansion of HIV-1-specific memory CTL in vitro in 9 of 10 patients. CD40LT could enhance CTL in the absence of CD4(+) T cell help in the majority of patients; however, the degree of enhancement of CTL responses was variable such that, in some patients, CD40LT could not completely substitute for CD4(+) T cell help. In those HIV-1-infected patients who demonstrated poor responses to CD40LT, a dysfunction in circulating CD8(+) memory T cells was demonstrated, which was reversed by the addition of cytokines including IL-2. Finally, it was demonstrated that IL-15 produced by CD40LT-stimulated dendritic cells may be an additional mechanism by which CD40LT induces the expansion of memory CTL in CD4(+) T cell-depleted conditions, where IL-2 is lacking.  相似文献   

11.
T-cell responses to X4 strains of human immunodeficiency virus type 1 (HIV-1) are considered important in controlling progression of HIV-1 infection. We investigated the ability of dendritic cells (DC) and various forms of HIV-1 X4 antigen to induce anti-HIV-1 T-cell responses in autologous peripheral blood mononuclear cells from HIV-1-infected persons. Immature DC loaded with HIV-1 IIIB-infected, autologous, apoptotic CD8(-) cells and matured with CD40 ligand induced gamma interferon production in autologous CD8(+) and CD4(+) T cells. In contrast, mature DC loaded with HIV-1 IIIB-infected, necrotic cells or directly infected with cell-free HIV-1 IIIB were poorly immunogenic. Thus, HIV-1-infected cells undergoing apoptosis serve as a rich source of X4 antigen for CD8(+) and CD4(+) T cells by DC. This may be an important mechanism of HIV-1 immunogenicity and provides a strategy for immunotherapy of HIV-1-infected patients on combination antiretroviral therapy.  相似文献   

12.
13.
14.
TLRs directly induce innate host defense responses, but the mechanisms of TLR-mediated adaptive immunity remain subject to debate. In this study, we clarified a role of TLR-mediated innate immunity for induction of adaptive immunity by oral vaccination with a live recombinant attenuated Salmonella enteric serovar Typhimurium vaccine (RASV) strain expressing Streptococcus pneumoniae surface protein A (PspA) Ag. Of note, oral or intranasal vaccination with RASV expressing PspA resulted in identical or even significantly higher levels of PspA-specific IgG and IgA responses in the systemic and mucosal compartments of MyD88(-/-) mice of either BALB/c or C57BL/6 background when compared with those of wild-type mice. Although PspA-specific CD4(+) T cell proliferation in the MyD88(-/-) mice was minimal, depletion of CD4(+) T cells abolished PspA-specific IgG and IgA responses in the MyD88(-/-) mice of BALB/c background. Of the greatest interest, MyD88(-/-) mice that possessed high levels of PspA-specific IgG and IgA responses but minimal levels of CD4(+) T cell responses died earlier than nonvaccinated and vaccinated wild-type mice following i.v. or intranasal challenge with virulent S. pneumoniae. Taken together, these results suggest that innate immunity activated by MyD88 signals might not be necessary for Ag-specific Ab induction in both systemic and mucosal sites but is critical for protection following oral vaccination with attenuated Salmonella expressing PspA.  相似文献   

15.
A vaccine regimen that can rapidly control HIV-1 replication at the site of exposure following sexual contact is likely to be the most effective in preventing HIV-1 infection. As part of a larger, phase II clinical trial, we evaluated the ability of a recombinant canarypox HIV-1 vaccine to induce CTL that can be detected in both the systemic and mucosal compartments following i.m. immunization in 12 low- and high-risk HIV-1 seronegative volunteers. In the 7 volunteers receiving four immunizations with live recombinant canarypox ALVAC-HIV vaccine with or without rgp120/SF-2, HIV-1-specific CTL were detected in the blood of 5 (71%) and in the rectum of 4 (57%). CTL responses were observed in both risk strata. In contrast, 5 volunteers receiving placebo had undetectable responses in both compartments. Vaccine-induced, HIV-1-specific effector activities included IFN-gamma secretion and class I MHC-restricted CD8(+) CTL. Rectal and systemic CD8(+) CTL clones established in 1 vaccine recipient revealed similar Env-specific responses and MHC restriction. These findings indicate that parenteral vaccination can induce HIV-1-specific CTL that localize to sites of HIV-1 acquisition, where their presence may be critical in the control of initial viral replication and eventual dissemination. Determination of the optimal strategy to induce mucosal T cells requires future clinical studies.  相似文献   

16.
A previous study using a Nef-defective human immunodeficiency virus type 1 (HIV-1) mutant suggested that Nef-mediated down-regulation of HLA class I on the infected cell surface affects the cytolytic activity of HIV-1-specific cytotoxic T-lymphocyte (CTL) clones for HIV-1-infected primary CD4(+) T cells. We confirmed this effect by using a nef-mutant HIV-1 strain (NL-M20A) that expresses a Nef protein which does not induce down-regulation of HLA class I molecules but is otherwise functional. HIV-1-specific CTL clones were not able to kill primary CD4(+) T cells infected with a Nef-positive HIV-1 strain (NL-432) but efficiently lysed CD4(+) T cells infected with NL-M20A. Interestingly, CTL clones stimulated with NL-432-infected CD4(+) T cells were able to produce cytokines, albeit at a lower level than when stimulated with NL-M20A-infected CD4(+) T cells. This indicates that Nef-mediated HLA class I down-regulation affects CTL cytokine production to a lesser extent than cytolytic activity. Replication of NL-432 was partially suppressed in a coculture of HIV-1-infected CD4(+) T cells and HIV-1-specific CTL clones, while replication of NL-M20A was completely suppressed. These results suggest that HIV-1-specific CD8(+) T cells are able to partially suppress the replication of HIV-1 through production of soluble HIV-1-suppressive factors such as chemokines and gamma interferon. These findings may account for the mechanism whereby HIV-1-specific CD8(+) T cells are able to partially but not completely control HIV-1 replication in vivo.  相似文献   

17.
CD8(+) T cells are believed to play an important role in the control of human immunodeficiency virus type 1 (HIV-1) infection. However, despite intensive efforts, it has not been possible to consistently link the overall magnitude of the CD8(+) T-cell response with control of HIV-1. Here, we have investigated the association of different CD8(+) memory T-cell subsets responding to HIV-1 in early infection with future control of HIV-1 viremia. Our results demonstrate that both a larger proportion and an absolute number of HIV-1-specific CD8(+) CCR7(-) CD45RA(+) effector memory T cells (T(EMRA) cells) were associated with a lower future viral load set point. In contrast, a larger absolute number of HIV-1-specific CD8(+) CCR7(-) CD45RA(-) effector memory T cells (T(EM)) was not related to the viral load set point. Overall, the findings suggest that CD8(+) T(EMRA) cells have superior antiviral activity and indicate that both qualitative and quantitative aspects of the CD8(+) T-cell response need to be considered when defining the characteristics of protective immunity to HIV-1.  相似文献   

18.
A tetrameric recombinant major histocompatibility complex (MHC) class II-peptide complex was used to quantitate human immunodeficiency virus type 1 (HIV-1) envelope (Env)-specific CD4(+) T cells in vaccinated and in simian/human immunodeficiency virus (SHIV)-infected rhesus monkeys. A rhesus monkey MHC class II DR molecule, Mamu-DR*W201, and an HIV-1 Env peptide (p46) were employed to construct this tetrameric complex. A p46-specific proliferative response was seen in sorted, tetramer-binding, but not nonbinding, CD4(+) T cells, directly demonstrating that this response was mediated by the epitope-specific lymphocytes. Although staining of whole blood from 10 SHIV-infected Mamu-DR*W201(+) rhesus monkeys failed to demonstrate tetramer-binding CD4(+) T cells (<0.02%), p46-stimulated peripheral blood mononuclear cells (PBMCs) from 9 of these 10 monkeys had detectable p46 tetramer-binding cells, comprising 0.5 to 15.2% of the CD4(+) T cells. p46-stimulated PBMCs from 7 of 10 Mamu-DR*W201(+) monkeys vaccinated with a recombinant canarypox virus-HIV-1 env construct also demonstrated p46 tetramer-binding cells, comprising 0.9 to 7.2% of the CD4(+) T cells. Thus, Env p46-specific CD4(+) T cells can be detected by tetrameric Mamu-DR*W201-p46 complex staining of PBMCs in both SHIV-infected and vaccinated rhesus monkeys. These epitope-specific cell populations appear to be present in peripheral blood at a very low frequency.  相似文献   

19.
This study investigated the relationship between HIV-1 replication and virus (HIV-1; CMV)-specific CD4(+) T cell frequency and function in HIV-1-infected children. HIV-1 gag p55-specific CD4(+) T cell IFN-gamma responses were detected in the majority of children studied. p55-specific responses were detected less commonly and at lower frequencies in children with <50 copies/ml plasma HIV-1 RNA than in children with active HIV-1 replication. In children with <50 copies/ml plasma HIV-1, p55-specific responses were detected only in children with evidence of ongoing HIV-1 replication, indicating a direct relationship between HIV-1 replication and HIV-specific CD4(+) T cell frequencies. In contrast, p55-specific proliferative responses were detected more frequently in children with <50 copies/ml plasma HIV-1. CMV-specific CD4(+) responses were more commonly detected and at higher frequencies in CMV-coinfected children with suppressed HIV-1 replication. The lack of HIV-specific CD4(+) proliferative responses, along with the preservation of CMV-specific CD4(+) responses in children with controlled HIV-1 replication, suggests that viral replication may have deleterious effects on HIV-1 and other virus-specific CD4(+) responses. Vaccination to stimulate HIV-specific CD4(+) T cell responses in these children may synergize with antiretroviral therapy to improve the long-term control of viral replication, and may perhaps allow the eventual discontinuation of antiretroviral therapy.  相似文献   

20.
Human immunodeficiency virus type 1 (HIV-1) infection causes apoptosis of infected CD4 T cells as well as uninfected (bystander) CD4 and CD8 T cells. It remains unknown what signals cause infected cells to die. We demonstrate that HIV-1 protease specifically cleaves procaspase 8 to create a novel fragment termed casp8p41, which independently induces apoptosis. casp8p41 is specific to HIV-1 protease-induced death but not other caspase 8-dependent death stimuli. In HIV-1-infected patients, casp8p41 is detected only in CD4(+) T cells, predominantly in the CD27(+) memory subset, its presence increases with increasing viral load, and it colocalizes with both infected and apoptotic cells. These data indicate that casp8p41 independently induces apoptosis and is a specific product of HIV-1 protease which may contribute to death of HIV-1-infected cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号