首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
S Gangloff  H Zou    R Rothstein 《The EMBO journal》1996,15(7):1715-1725
The genomic stability of the rDNA tandem array in yeast is tightly controlled to allow sequence homogenization and at the same time prevent deleterious rearrangements. In our study, we show that gene conversion, and not unequal sister chromatid exchange, is the predominant recombination mechanism regulating the expansion and contraction of the rDNA array. Furthermore, we found that RAD52, which is essential for gene conversion, is required for marker duplication stimulated in the absence of the two yeast type I topoisomerases. Our results have implications for the mechanisms regulating genomic stability of repetitive sequence families found in all eukaryotes.  相似文献   

2.
We have used human β2 and β4 cDNA probes to map the genes encoding two isoforms of the regulatory β subunit of voltage-activated Ca2+ channels, viz. CACNB2 (β2) and CACNB4 (β4), to human chromosomes 10p12 and 2q22-q23, respectively, by fluorescence in situ hybridization. The gene encoding the β2 protein, first described as a Lambert-Eaton myasthenic syndrome (LEMS) antigen in humans, is found close to a region that undergoes chromosome rearrangements in small cell lung cancer, which occurs in association with LEMS. CACNB2 (β2) and CACNB4 (β4) genes are members of the ion-channel gene superfamily and it should now be possible to examine their loci by linkage analysis of ion-channel-related disorders. To date, no such disease-related gene has been assigned to 10p12 and 2q22-q23. Received: 5 February 1997 / Accepted: 4 April 1997  相似文献   

3.
Genetic recombination is a robust mechanism for expanding CTG.CAG triplet repeats involved in the etiology of hereditary neurological diseases (Jakupciak, J. P., and Wells, R. D. (1999) J. Biol. Chem. 274, 23468-23479). This two-plasmid recombination system in Escherichia coli with derivatives of pUC19 and pACYC184 was used to investigate the effect of triplet repeat orientation on recombination and extent of expansions; tracts of 36, 50, 80, and 36, 100, and 175 repeats in length, respectively, in all possible permutations of length and in both orientations (relative to the unidirectional replication origins) revealed little or no effect of orientation of expansions. The extent of expansions was generally severalfold the length of the progenitor tract and frequently exceeded the combined length of the two tracts in the cotransformed plasmids. Expansions were much more frequent than deletions. Repeat tracts bearing two G-to-A interruptions (polymorphisms) within either 171- or 219-base pair tracts substantially reduced the expansions compared with uninterrupted repeat tracts of similar lengths. Gene conversion, rather than crossing over, was the recombination mechanism. Prior studies showed that DNA replication, repair, and tandem duplication also mediated genetic instabilities of the triplet repeat sequence. However, gene conversion (recombinational repair) is by far the most powerful expansion mechanism. Thus, we propose that gene conversion is the likely expansion mechanism for myotonic dystrophy, spinocerebellar ataxia type 8, and fragile X syndrome.  相似文献   

4.
5.
6.
Gene silencing: repeats that count   总被引:17,自引:0,他引:17  
Selker EU 《Cell》1999,97(2):157-160
  相似文献   

7.
8.
The wheat insertion sequence Wis 2-1A possesses all the structural features characteristic of retrotransposons. Its long-terminal repeats (LTRs) are unusually long (1,755 bp) compared with those of other retrotransposons. Sequence analysis revealed that they differ from each other by only six point mutations. They contain a few tandem direct repeats, which could be explained by slippage mechanisms during replication. Almost half (44%) of the length of the LTRs is occupied by hairpin structures, which may relate to their large size. Possible origins of these inverted repeats are proposed, including the insertion and imprecise excision of transposable elements and errors when the DNA replication intermediate switches RNA template during retrotransposon replication.  相似文献   

9.
10.
Testis-specific expression of tandemly repeated Stellate genes, located in eu- and heterochromatin regions of the X chromosome of Drosophila melanogaster, is suppressed by homologous Suppressor of Stellate repeats located on the Y chromosome. Using transgenic lines, we have demonstrated that three Su(Ste) copies failed to change the expression of the reporter construction carrying the bacterial beta-galactosidase gene under control of the Stellate gene regulatory sequence. Possible mechanisms of the Su(Ste) repeat suppressor activity are discussed.  相似文献   

11.
12.
13.
A gene, FLONS, conferring NewFlo-type flocculation ability in yeast was cloned. The 3,396-bp ORF encoded a peptide of 1,132 amino acids with high identity to Flo1 protein. Aligned with the FLO1 gene, two repeated regions (675 and 540 bp) were lost in the middle of FLONS, revealing that this gene was a derived form of the FLO1 gene. The missing repeated sequence contained three highly homologous repeat units. Although the flocculation phenotype of the transformant YTS-S with the FLONS gene was inhibited by both mannose and glucose, it exhibited some distinguished physiological characteristics from the reported typical NewFlo-type flocculation during detailed investigation. The deletion of repeats was suspected to cause conversion of the flocculation phenotype from Flo1 to NewFlo, suggesting that intragenic tandem repeats generated functional variability in Flo1 protein.  相似文献   

14.

Background  

Toll-like receptors (TLR) recognize pathogen-associated molecular patterns and are important mediators of the innate immune system. TLR1 and TLR6 are paralogs and located in tandem on the same chromosome in mammals. They form heterodimers with TLR2 and bind lipopeptide components of gram-positive and gram-negative bacterial cell walls. To identify conserved stretches in TLR1 and TLR6, that may be important for their function, we compared their protein sequences in nine mammalian species(Homo sapiens, Pan troglodytes, Macaca mulatta, Mus musculus, Rattus norvegicus; Erinaceus europaeus, Bos Taurus, Sus scrofa and Canis familiaris).  相似文献   

15.
Gene conversion among chemokine receptors   总被引:2,自引:0,他引:2  
Shields DC 《Gene》2000,246(1-2):239-245
It has been proposed that proteins which are involved in host defence and susceptibility undergo accelerated evolution. Chemokine receptors have roles as pro-inflammatory agents acting in response to infection, and in addition are receptors for entry of viruses and other pathogens into cells. Consistent with this, their rate of evolution is higher than that for other members of the seven-transmembrane domain receptor family. The pattern of evolution of the chemokine receptors was examined in detail. Both chromosomal clusters of chemokine receptors (CC and CXC) showed evidence of a number of gene conversions. These are likely to have resulted in protein sequence changes, which could possibly alter function. 45% of a control group of clustered genes also showed evidence of conversion. Thus, the fixation of a gene conversion is not in itself sufficiently unusual in tandemly repeated genes and cannot be taken as strong evidence of a selection for a novel function. However, the degree of amino acid difference between the chemokine receptors CCR1 and CCR3 was greater than that for any of the control genes. Such changes could have functional implications for inter-species differences in chemokine receptor interactions with pathogens.  相似文献   

16.
Structure of the murine serum amyloid A gene family. Gene conversion   总被引:19,自引:0,他引:19  
Serum amyloid A (SAA) is an apolipoprotein produced by the liver in response to inflammation; the levels of SAA mRNA and SAA protein increase at least 500-fold within 24 h. We have obtained clones of all three genes and pseudogene that make up the murine SAA gene family. Two of the genes have 96% sequence homology over their entire length, including introns and flanking sequences 288 base pairs (bp) 5' and 443 bp 3' to the genes: an overall length of 3215 bp. The sharp boundaries between homologous and nonhomologous sequences and the absence of interspersed repeated sequences there suggest that conversion has occurred between these two genes. The homologous regions are bounded by short inverted repeats containing alternating purine and pyrimidine residues, as described for other gene conversion units. The third SAA gene has evolved separately, although all are closely linked on chromosome 7. Comparison of the upstream regions of the SAA genes with those of the rat fibrinogen genes, whose expression is also induced by inflammation, reveals sequences common to all six genes which are very improbable on a random basis.  相似文献   

17.
18.
Summary In dipteran insects the most distal telomere-associated DNA known to exist consists of long, complex tandem repeats. We have classified the 340-bp tandemly arranged repeats in Chironomus pallidivittatus. The repeats are distributed in a small number of subfamilies. One type of the repeat has the character of a master unit from which other main units can be derived usually by simple changes. The derived subfamilies contain segments that are degenerate versions of the corresponding segment in the master sequence. Such segments can also occur together in one and the same repeat unit in different combinations. There is a complete absence of subfamily-specific base variants in regions lying outside of the degenerate segments. Homogenization takes place between DNA sequences that are often smaller than a whole repeat unit. The mosaic structure of the repeat arrays suggests that gene conversion is an important force in the generation and maintenance of this family of repeats.Offprint requests to: M. Cohn  相似文献   

19.
20.
A circular DNA plasmid, pSR1, isolated from Zygosaccharomyces rouxii has a pair of inverted repeats consisting of completely homologous 959-base pair (bp) sequences. Intramolecular recombination occurs frequently at the inverted repeats in cells of Saccharomyces cerevisiae, as well as in Z. rouxii, and is catalyzed by a protein encoded by the R gene of its own genome. The recombination is, however, independent of the RAD52 gene of the host genome. A site for initiation of the intramolecular recombination in the S. cerevisiae host was delimited into, at most, a 58-bp region in the inverted repeats by using mutant plasmids created by linker insertion. The 58-bp region contains a pair with 14-bp dyad symmetry separated by a 3-bp spacer sequence. The recombination initiated at this site was accompanied by a high frequency of gene conversion (3 to 50% of the plasmid clones examined). Heterogeneity created by the linker insertion or by a deletion (at most 153 bp so far tested) at any place on the inverted repeats was converted to a homologous combination by the gene conversion, even in the rad52-1 mutant host. A mechanism implying branch migration coupled with DNA replication is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号