共查询到20条相似文献,搜索用时 0 毫秒
1.
《Cell Adhesion & Migration》2013,7(4):356-364
There is general agreement that many cancers are associated with aberrant phosphotyrosine signaling, which can be caused by the inappropriate activities of tyrosine kinases or tyrosine phosphatases. Furthermore, incorrect activation of signaling pathways has been often linked to changes in adhesion events mediated by cell surface receptors. Among these receptors, receptor protein tyrosine phosphatases (RPTPs) both antagonize tyrosine kinases as well as engage extracellular ligands. A recent wealth of data on this intriguing family indicates that its members can fulfill either tumor suppressing or oncogenic roles. The interpretation of these results at a molecular level has been greatly facilitated by the recent availability of structural information on the extra- and intracellular regions of RPTPs. These structures provide a molecular framework to understand how alterations in extracellular interactions can inactivate RPTPs in cancers or why the overexpression of certain RPTPs may also participate in tumor progression. 相似文献
2.
Downregulation of the Ras-mitogen-activated protein kinase pathway by the EphB2 receptor tyrosine kinase is required for ephrin-induced neurite retraction 下载免费PDF全文
Activation of the EphB2 receptor tyrosine kinase by clustered ephrin-B1 induces growth cone collapse and neurite retraction in differentiated NG108 neuronal cells. We have investigated the cytoplasmic signaling events associated with EphB2-induced cytoskeletal reorganization in these neuronal cells. We find that unlike other receptor tyrosine kinases, EphB2 induces a pronounced downregulation of GTP-bound Ras and consequently of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway. A similar inhibition of the Ras-MAPK pathway was observed on stimulation of endogenous EphB2 in COS-1 cells. Inactivation of Ras, induced by ephrin B1 stimulation of NG108 neuronal cells, requires EphB2 tyrosine kinase activity and is blocked by a truncated form of p120-Ras GTPase-activating protein (p120-RasGAP), suggesting that EphB2 signals through the SH2 domain protein p120-RasGAP to inhibit the Ras-MAPK pathway. Suppression of Ras activity appears functionally important, since expression of a constitutively active variant of Ras impaired the ability of EphB2 to induce neurite retraction. In addition, EphB2 attenuated the elevation in ERK activation induced by attachment of NG108 cells to fibronectin, indicating that the EphB2 receptor can modulate integrin signaling to the Ras GTPase. These results suggest that a primary function of EphB2, a member of the most populous family of receptor tyrosine kinases, is to inactivate the Ras-MAPK pathway in a fashion that contributes to cytoskeletal reorganization and adhesion responses in neuronal growth cones. 相似文献
3.
Catherine Bardelle Bernard Barlaam Nigel Brooks Tanya Coleman Darren Cross Richard Ducray Isabelle Green Christine Lambert-van der Brempt Annie Olivier Jon Read 《Bioorganic & medicinal chemistry letters》2010,20(21):6242-6245
Starting from the initial bis-anilinopyrimidine 1, good potency against EphB4 was retained when benzodioxole at C-4 was replaced by an indazole. The key interactions of the indazole with the protein were characterised by crystallographic studies. Further optimisation led to compound 20, a potent inhibitor of the EphB4 and Src kinases with good pharmacokinetics in various preclinical species and high fraction unbound in plasma. Compound 20 may be used as a tool for evaluating the potential of EphB4 kinase inhibitors in vivo. 相似文献
4.
The trkB tyrosine protein kinase is a receptor for neurotrophin-4. 总被引:22,自引:0,他引:22
Neurotrophin-4 is a novel member of the nerve growth factor family of neurotrophins recently isolated from Xenopus and viper DNA. We now report that the Xenopus NT-4 protein (XNT-4) can mediate some of its biological properties through gp145trkB, a murine tyrosine protein kinase previously identified as a primary receptor for the related brain-derived neurotrophic factor (BDNF). XNT-4 displaces 125I-labeled BDNF from binding to cells expressing gp145trkB receptors, induces their rapid phosphorylation on tyrosine residues, and causes the morphologic transformation of NIH 3T3 cells when coexpressed with gp145trkB. Moreover, XNT-4 induces the differentiation of PC12 cells into sympathetic-like neurons only if they ectopically express gp145trkB receptors. None of these biochemical or biological effects could be observed when XNT-4 was added to cells expressing the related receptors. Replacement of one of the extracellular cysteines (Cys-345) of gp145trkB by a serine residue prevents its activation by XNT-4 but not by BDNF. Therefore, XNT-4 and BDNF may interact with at least partially distinct domains within the gp145trkB receptor. 相似文献
5.
Andres AC Munarini N Djonov V Bruneau S Zuercher G Loercher S Rohrbach V Ziemiecki A 《Mechanisms of development》2003,120(4):511-516
We have established transgenic mice over-expressing the EphB4 receptor tyrosine kinase in the kidney. The EphB4 protein was localised to the developing tubular system of both control and transgenic newborn mice. In transgenic adults, transgene expression persisted in the proximal tubules and the Bowman's capsules, structures, which were not stained in control kidneys. The glomeruli of control animals consisted of regular, round vascular baskets with clearly discernable afferent and efferent arterioles. In contrast, approximately 40% of the transgenic glomeruli had an irregular shrivelled appearance and many exhibited fused, horse shoe-like afferent and efferent arterioles bypassing the glomerulus. These abnormal glomerular structures are very reminiscent of aglomerular vascular shunts, a human degenerative glomerulopathy of unknown aetiology. 相似文献
6.
《Cell Adhesion & Migration》2013,7(2):249-254
The transmembrane (TM) domains of receptor tyrosine kinases (RTKs) play an active role in signaling. They contribute to the stability of full-length receptor dimers and to maintaining a signaling-competent dimeric receptor conformation. In an exciting new development, two structures of RTK TM domains have been solved, a break-through achievement in the field. Here we review these structures, and we discuss recent studies of RTK TM domain dimerization energetics, possible synergies between domains, and the effects of pathogenic RTK TM mutations on structure and dimerization. 相似文献
7.
《Cell cycle (Georgetown, Tex.)》2013,12(4):648-655
Approximately 25% of breast cancers overexpress and depend on the receptor tyrosine kinase ERBB2, one of 4 ERBB family members. Targeted therapies directed against ERBB2 have been developed and used clinically, but many patients continue to develop resistance to such therapies. Although much effort has been focused on elucidating the mechanisms of acquired resistance to ERBB2-targeted therapies, the involvement of ERBB4 remains elusive and controversial. We demonstrate that genetic ablation of ERBB4, but not ERBB1-3, led to apoptosis in lapatinib-resistant cells, suggesting that the efficacy of pan-ERBB inhibitors was, at least in part, mediated by the inhibition of ERBB4. Moreover, ERBB4 was upregulated at the protein level in ERBB2+ breast cancer cell lines selected for acquired lapatinib resistance in vitro and in MMTV-Neu mice following prolonged lapatinib treatment. Knockdown of ERBB4 caused a decrease in AKT phosphorylation in resistant cells but not in sensitive cells, suggesting that ERBB4 activated the PI3K/AKT pathway in lapatinib-resistant cells. Importantly, ERBB4 knockdown triggered apoptosis not only in lapatinib-resistant cells but also in trastuzumab-resistant cells. Our results suggest that although ERBB4 is dispensable for naïve ERBB2+ breast cancer cells, it may play a key role in the survival of ERBB2+ cancer cells after they develop resistance to ERBB2 inhibitors, lapatinib and trastuzumab. 相似文献
8.
Kaleigh Canfield Jiaqi Li Owen M. Wilkins Meghan M Morrison Matthew Ung Wendy Wells Charlotte R. Williams Karen T Liby Detlef Vullhorst Andres Buonanno Huizhong Hu Rachel Schiff Rebecca S Cook Manabu Kurokawa 《Cell cycle (Georgetown, Tex.)》2015,14(4):648-655
Approximately 25% of breast cancers overexpress and depend on the receptor tyrosine kinase ERBB2, one of 4 ERBB family members. Targeted therapies directed against ERBB2 have been developed and used clinically, but many patients continue to develop resistance to such therapies. Although much effort has been focused on elucidating the mechanisms of acquired resistance to ERBB2-targeted therapies, the involvement of ERBB4 remains elusive and controversial. We demonstrate that genetic ablation of ERBB4, but not ERBB1-3, led to apoptosis in lapatinib-resistant cells, suggesting that the efficacy of pan-ERBB inhibitors was, at least in part, mediated by the inhibition of ERBB4. Moreover, ERBB4 was upregulated at the protein level in ERBB2+ breast cancer cell lines selected for acquired lapatinib resistance in vitro and in MMTV-Neu mice following prolonged lapatinib treatment. Knockdown of ERBB4 caused a decrease in AKT phosphorylation in resistant cells but not in sensitive cells, suggesting that ERBB4 activated the PI3K/AKT pathway in lapatinib-resistant cells. Importantly, ERBB4 knockdown triggered apoptosis not only in lapatinib-resistant cells but also in trastuzumab-resistant cells. Our results suggest that although ERBB4 is dispensable for naïve ERBB2+ breast cancer cells, it may play a key role in the survival of ERBB2+ cancer cells after they develop resistance to ERBB2 inhibitors, lapatinib and trastuzumab. 相似文献
9.
Protein tyrosine kinases (PTKs) are critical in regulating cell growth and differentiation and are deeply involved in several cancers. PTK-inhibitors are mainly ATP-site directed and are finding use in the treatment of several cancers, and more than 30 such agents are now in phase I-III clinical trials. The present review focuses mainly on the development of PTK inhibitors in clinical trials, with special emphasis on imatinib mesylate, a rationally designed, potent oral anticancer agent and selective inhibitor for Abl tyrosine kinase, including Bcr-Abl, C-kit and platelet-derived growth factor-receptor tyrosine kinases, which has been implicated in several malignancies, including chronic myeloid leukemia and gastrointestinal stromal tumour. 相似文献
10.
The RTKs are one of the most important families mediating transmembrane signaling and they participate and are instrumental in regulating a broad range of physiological activities. Indeed, tyrosine kinases in general, and the processes that they control and/or stimulate, provide a rich source of drug targets, particularly in growth related disorders such as cancer (Zwick et al., 2002; Krause and Van Etten, 2005). However, there remain many questions regarding their activation and downstream signaling and the application of proteomic analyses promises to answer many of them. There have been relatively few detailed studies of this type to date and it will require considerably more of them to better define the pathways with respect to both the major and minor PTMs that, along with the protein-protein interactions, are the means to direct the flow of the signals generated. It will take such approaches to define the specificity that characterize the individual families, even appreciating that to some degree all are capable of activating many, if not all, of the principal pathways. It will also be necessary to understand, in the highly complex networks of intracellular phosphorylation (that contain thousands of sites of modification and clearly have not yet been fully determined in any paradigm), exactly which kinases modify which substrates, and to work out the inter-relationships with other modifications such as O-GlcNAcylation and acetylation. Only then will it be possible to determine which modifications are physiologically significant and which are simply background. Along theway, these studies should continue to provide potential drug targets and perhaps improve the current lackluster biomarker discovery track record. 相似文献
11.
Members of the Eph family of receptor tyrosine kinases control many aspects of cellular interactions during development, including axon guidance. Here, we demonstrate that EphB2 also regulates postnatal synaptic function in the mammalian CNS. Mice lacking the EphB2 intracellular kinase domain showed wild-type levels of LTP, whereas mice lacking the entire EphB2 receptor had reduced LTP at hippocampal CA1 and dentate gyrus synapses. Synaptic NMDA-mediated current was reduced in dentate granule neurons in EphB2 null mice, as was synaptically localized NR1 as revealed by immunogold localization. Finally, we show that EphB2 is upregulated in hippocampal pyramidal neurons in vitro and in vivo by stimuli known to induce changes in synaptic structure. Together, these data demonstrate that EphB2 plays an important role in regulating synaptic function. 相似文献
12.
Barlaam B Ducray R Lambert-van der Brempt C Plé P Bardelle C Brooks N Coleman T Cross D Kettle JG Read J 《Bioorganic & medicinal chemistry letters》2011,21(8):2207-2211
Optimization of our bis-anilino-pyrimidine series of EphB4 kinase inhibitors led to the discovery of compound 12 which incorporates a key m-hydroxymethylene group on the C4 aniline. 12 displays a good kinase selectivity profile, good physical properties and pharmacokinetic parameters, suggesting it is a suitable candidate to investigate the therapeutic potential of EphB4 kinase inhibitors. 相似文献
13.
The receptor tyrosine kinase EphB4 and ephrin-B ligands restrict angiogenic growth of embryonic veins in Xenopus laevis 总被引:10,自引:0,他引:10
The cues and signaling systems that guide the formation of embryonic blood vessels in tissues and organs are poorly understood. Members of the Eph family of receptor tyrosine kinases and their cell membrane-anchored ligands, the ephrins, have been assigned important roles in the control of cell migration during embryogenesis, particularly in axon guidance and neural crest migration. Here we investigated the role of EphB receptors and their ligands during embryonic blood vessel development in Xenopus laevis. In a survey of tadpole-stage Xenopus embryos for EphB receptor expression, we detected expression of EphB4 receptors in the posterior cardinal veins and their derivatives, the intersomitic veins. Vascular expression of other EphB receptors, including EphB1, EphB2 or EphB3, could however not be observed, suggesting that EphB4 is the principal EphB receptor of the early embryonic vasculature of Xenopus. Furthermore, we found that ephrin-B ligands are expressed complementary to EphB4 in the somites adjacent to the migratory pathways taken by intersomitic veins during angiogenic growth. We performed RNA injection experiments to study the function of EphB4 and its ligands in intersomitic vein development. Disruption of EphB4 signaling by dominant negative EphB4 receptors or misexpression of ephrin-B ligands in Xenopus embryos resulted in intersomitic veins growing abnormally into the adjacent somitic tissue. Our findings demonstrate that EphB4 and B-class ephrins act as regulators of angiogenesis possibly by mediating repulsive guidance cues to migrating endothelial cells. 相似文献
14.
Scott A. Mitchell Mihaela Diana Danca Peter A. Blomgren James W. Darrow Kevin S. Currie Jeffrey E. Kropf Seung H. Lee Steven L. Gallion Jin-Ming Xiong Douglas A. Pippin Robert W. DeSimone David R. Brittelli David C. Eustice Aaron Bourret Melissa Hill-Drzewi Patricia M. Maciejewski Lisa L. Elkin 《Bioorganic & medicinal chemistry letters》2009,19(24):6991-6995
Inhibition of receptor tyrosine kinases (RTKs) such as vascular endothelial growth factor receptors (VEGFRs) and platelet-derived growth factor receptors (PDGFRs) has been validated by recently launched small molecules Sutent® and Nexavar®, both of which display activities against several angiogenesis-related RTKs. EphB4, a receptor tyrosine kinase (RTK) involved in the processes of embryogenesis and angiogenesis, has been shown to be aberrantly up regulated in many cancer types such as breast, lung, bladder and prostate. We propose that inhibition of EphB4 in addition to other validated RTKs would enhance the anti-angiogenic effect and ultimately result in more pronounced anti-cancer efficacy. Herein we report the discovery and SAR of a novel series of imidazo[1,2-a]pyrazine diarylureas that show nanomolar potency for the EphB4 receptor, in addition to potent activity against several other RTKs. 相似文献
15.
By means of an immune affinity chromatography we have obtained some receptor tyrosine protein kinase preparations from the spleen lymphocytes membrane in control and in 12 hours after rat X-ray irradiation in the doses of 0.5 and 1 Gy. An inhibitory analysis and estimation of essential catalytic properties of this enzyme have been performed. As a result of the researches performed we have suggested that EGF-R tyrosine protein kinases are involved in radiation-induced response of immune competent spleen cells and mediate the effects of EGF signal transduction in these cells in 12 hours after irradiation in the dose of 1 Gy. 相似文献
16.
Ross C. Overman Judit E. Debreczeni Caroline M. Truman Mark S. McAlister Teresa K. Attwood 《Protein science : a publication of the Protein Society》2014,23(5):627-638
The EphB receptors have key roles in cell morphology, adhesion, migration and invasion, and their aberrant action has been linked with the development and progression of many different tumor types. Their conflicting expression patterns in cancer tissues, combined with their high sequence and structural identity, present interesting challenges to those seeking to develop selective therapeutic molecules targeting this large receptor family. Here, we present the first structure of the EphB1 tyrosine kinase domain determined by X‐ray crystallography to 2.5Å. Our comparative crystalisation analysis of the human EphB family kinases has also yielded new crystal forms of the human EphB2 and EphB4 catalytic domains. Unable to crystallize the wild‐type EphB3 kinase domain, we used rational engineering (based on our new structures of EphB1, EphB2, and EphB4) to identify a single point mutation which facilitated its crystallization and structure determination to 2.2 Å. This mutation also improved the soluble recombinant yield of this kinase within Escherichia coli, and increased both its intrinsic stability and catalytic turnover, without affecting its ligand‐binding profile. The partial ordering of the activation loop in the EphB3 structure alludes to a potential cis‐phosphorylation mechanism for the EphB kinases. With the kinase domain structures of all four catalytically competent human EphB receptors now determined, a picture begins to emerge of possible opportunities to produce EphB isozyme‐selective kinase inhibitors for mechanistic studies and therapeutic applications. 相似文献
17.
18.
There is general agreement that many cancers are associated with aberrant phosphotyrosine signaling, which can be caused by the inappropriate activities of tyrosine kinases or tyrosine phosphatases. Furthermore, incorrect activation of signaling pathways has been often linked to changes in adhesion events mediated by cell surface receptors. Among these receptors, receptor protein tyrosine phosphatases (RPTPs) both antagonize tyrosine kinases as well as engage extracellular ligands. A recent wealth of data on this intriguing family indicates that its members can fulfill either tumor suppressing or oncogenic roles. The interpretation of these results at a molecular level has been greatly facilitated by the recent availability of structural information on the extra- and intracellular regions of RPTPs. These structures provide a molecular framework to understand how alterations in extracellular interactions can inactivate RPTPs in cancers or why the overexpression of certain RPTPs may also participate in tumor progression. 相似文献
19.
20.
Kazuhito Satomura Anna R. Derubeis Neal S. Fedarko Kyomi Ibaraki-O'Connor Sergei A. Kuznetsov David W. Rowe Marian F. Young Pamela Gehron Robey 《Journal of cellular physiology》1998,177(3):426-438
Bone marrow stromal cells (BMSCs) are a heterogeneous population of cells derived from colony-forming units-fibroblastic (CFU-Fs). These cells reside in the bone marrow cavity and are capable of differentiating into several cell phenotypes including osteoblasts, chondroblasts, hematopoiesis-supporting stromal cells, and adipocytes. However, the factors that regulate the proliferation and differentiation of the BMSC population are for the most part unknown. Since many members of the receptor tyrosine kinase (RTK) family have been shown to participate in growth control of various mesenchymal cell populations, in this study we examined the expression and function of RTKs in the BMSC population. Degenerate oligonucleotides corresponding to two conserved catalytic domains of the RTK family and RT-PCR were used initially to determine which RTKs are expressed in the human BMSC (hBMSC) system. After subcloning the amplification product generated from mRNA of a multicolony-derived hBMSC strain, PDGF receptor (β), EGF receptor, FGF receptor 1, and Axl were identified by DNA sequencing of 26 bacterial colonies. Furthermore, PDGF and EGF were found to enhance BMSC growth in a dose-dependent manner and to induce tyrosine phosphorylation of intracellular molecules, including the PDGF and EGF receptors themselves, demonstrating the functionality of these receptors. On the other hand, bFGF was found to have little effect on proliferation or tyrosine phosphorylation. Since single colony-derived hBMSC strains are known to vary from one colony to another in colony habit (growth rate and colony structure) and the ability to form bone in vivo, the expression levels of these RTKs were determined in 18 hBMSC clonal strains by semiquantitative RT-PCR and were found to vary from one clonal strain to another. While not absolutely predictive of the osteogenic capacity of individual clonal strains, on average, relatively high levels of PDGF-receptor were found in bone-forming strains, while on average, nonbone-forming strains had relatively high levels of EGF-receptor. Taken together, these results indicate that RTKs play a role in the control of hBMSC proliferation, and that the differential pattern of RTK expression may be useful in correlating the biochemical properties of individual clonal strains with their ability to produce bone in vivo. J. Cell. Physiol. 177:426–438, 1998. © 1998 Wiley-Liss, Inc. 相似文献