首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
Histone deacetylase (HDAC) inhibitors are a promising class of anticancer agents for the treatment of solid and hematological malignancies. The precise mechanism by which HDAC inhibitors mediate their effects on tumor cell growth, differentiation, and/or apoptosis is the subject of intense research. Previously we described a family of multiprotein complexes that contain histone deacetylase 1/2 (HDAC1/2) and the histone demethylase BHC110 (LSD1). Here we show that HDAC inhibitors diminish histone H3 lysine 4 (H3K4) demethylation by BHC110 in vitro. In vivo analysis revealed an increased H3K4 methylation concomitant with inhibition of nucleosomal deacetylation by HDAC inhibitors. Reconstitution of recombinant complexes revealed a functional connection between HDAC1 and BHC110 only when nucleosomal substrates were used. Importantly, while the enzymatic activity of BHC110 is required to achieve optimal deacetylation in vitro, in vivo analysis following ectopic expression of an enzymatically dead mutant of BHC110 (K661A) confirmed the functional cross talk between the demethylase and deacetylase enzymes. Our studies not only reveal an intimate link between the histone demethylase and deacetylase enzymes but also identify histone demethylation as a secondary target of HDAC inhibitors.  相似文献   

6.
7.
8.
Receptor activator of NFkappa-B ligand (RANKL) is essential for osteoclast formation, function, and survival. Although RANKL mRNA and protein levels are modulated by 1,25(OH)2D3 and other osteoactive factors, regulatory mechanisms remain unclear. In this study, we show that 2 kb or 2 kb plus exon 1 of a RANKL promoter sequence conferred neither 1,25(OH)2D3 response nor tissue specificity. The histone deacetylase inhibitors trichostatin A (TSA) and sodium butyrate (SB), however, strongly increased RANKL promoter activity. A series of 5'-deleted RANKL promoter constructs from 2,020 to 110 bp showed fourfold increased activity after TSA treatment. TSA also dose dependently enhanced endogenous RANKL mRNA expression with 50 microM of TSA treatment causing equivalent RANKL expression to that seen with 1 nM 1,25(OH)2D3. Using a chromatin immunoprecipitation (ChIP) assay we showed that TSA significantly enhanced association of both acetylated histone H3 and H4 on the RANKL promoter, with H4 > H3. A similar increase in acetylated histone H4 on the RANKL gene locus was seen after 1,25(OH)2D3 treatment, but ChIP assay did not reveal localization of VDR/RXR heterodimers on the putative VDRE of the RANKL promoter. To explore the role of H4 acetylation of 1,25(OH)2D3 stimulated RANKL, we added both TSA and 1,25(OH)2D3 together. While the combination further increased acetylation of H4 on the RANKL locus, surprisingly, TSA inhibited 1,25(OH)2D3-induced RANKL mRNA expression by 70% at all doses of 1 ,25(OH)2D3 studied. These results suggest that TSA increases of endogenous expression of RANKL involve enhanced acetylation of histones on the proximal RANKL promoter. Preventing deacetylation, however, blocks 1,25(OH)2D3 action on this gene. Chromatin remodeling is therefore involved in RANKL expression.  相似文献   

9.
10.
11.
12.
Histone acetylation plays an important role in chromatin remodeling and gene expression. The molecular mechanisms involved in cell-specific expression of endothelial nitric-oxide synthase (eNOS) are not fully understood. In this study we investigated whether histone deacetylation was involved in repression of eNOS expression in non-endothelial cells. Induction of eNOS expression by histone deacetylase (HDAC) inhibitors trichostatin A (TSA) and sodium butyrate was observed in all four different types of non-endothelial cells examined. Chromatin immunoprecipitation assays showed that the induction of eNOS expression by TSA was accompanied by a remarkable increase of acetylation of histone H3 associated with the eNOS 5'-flanking region in the non-endothelial cells. Moreover, DNA methylation-mediated repression of eNOS promoter activity was partially reversed by TSA treatment, and combined treatment of TSA and 5-aza-2'-deoxycytidine (AzadC) synergistically induced eNOS expression in non-endothelial cells. The proximal Sp1 site is critical for basal activity of eNOS promoter. The induction of eNOS by inhibition of HDACs in non-endothelial cells, however, appeared not mediated by the changes in Sp1 DNA binding activity. We further showed that Sp1 bound to the endogenous eNOS promoter and associated with HDAC1 in non-endothelial HeLa cells. Combined TSA and AzadC treatment increased Sp1 binding to the endogenous eNOS promoter but decreased the association between HDAC1 and Sp1 in HeLa cells. Our data suggest that HDAC1 plays a critical role in eNOS repression, and the proximal Sp1 site may serve a key target for HDCA1-mediated eNOS repression in non-endothelial cells.  相似文献   

13.
14.
The induction of immediate-early (IE) genes, including proto-oncogenes c-fos and c-jun, correlates well with a nucleosomal response, the phosphorylation of histone H3 and HMG-14 mediated via extracellular signal regulated kinase or p38 MAP kinase cascades. Phosphorylation is targeted to a minute fraction of histone H3, which is also especially susceptible to hyperacetylation. Here, we provide direct evidence that phosphorylation and acetylation of histone H3 occur on the same histone H3 tail on nucleosomes associated with active IE gene chromatin. Chromatin immunoprecipitation (ChIP) assays were performed using antibodies that specifically recognize the doubly-modified phosphoacetylated form of histone H3. Analysis of the associated DNA shows that histone H3 on c-fos- and c-jun-associated nucleosomes becomes doubly-modified, the same H3 tails becoming both phosphorylated and acetylated, only upon gene activation. This study reveals potential complications of occlusion when using site-specific antibodies against modified histones, and shows also that phosphorylated H3 is more sensitive to trichostatin A (TSA)-induced hyperacetylation than non-phosphorylated H3. Because MAP kinase-mediated gene induction is implicated in controlling diverse biological processes, histone H3 phosphoacetylation is likely to be of widespread significance.  相似文献   

15.
16.
《Epigenetics》2013,8(4):390-399
CD1d is a MHC class-like molecule that presents glycolipids to natural killer T (NKT) cells, then regulates innate and adaptive immunity. The regulation of CD1d gene expression in solid tumors is still largely unknown. Gene expression can be epigenetically regulated by DNA methylation and histone acetylation. We found that histone deacetylase inhibitors, trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), induced CD1d gene expression in human (A549 and NCI-H292) and mouse (TC-1 and B16/F0) cancer cells. Simultaneous knockdown of HDAC1 and 2 induced CD1d gene expression. Sp1 inhibitor mitramycin A (MTM) blocked TSA- and SAHA-induced CD1d mRNA expression and Sp1 luciferase activity. Co-transfection of GAL4-Sp1 and Fc-luciferase reporters demonstrated that TSA and SAHA induced Sp1 luciferase reporter activity by enhancing Sp1 transactivation activity. The binding of Sp1 to CD1d promoter and histone H3 acetylation on Sp1 sites were increased by TSA and SAHA. These results indicate that TSA and SAHA could up-regulate CD1d expression in tumor cells through inhibition of HDAC1/2 and activation of Sp1.  相似文献   

17.
CD1d is a MHC class-like molecule that presents glycolipids to natural killer T (NKT) cells, then regulates innate and adaptive immunity. The regulation of CD1d gene expression in solid tumors is still largely unknown. Gene expression can be epigenetically regulated by DNA methylation and histone acetylation. We found that histone deacetylase inhibitors, trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), induced CD1d gene expression in human (A549 and NCI-H292) and mouse (TC-1 and B16/F0) cancer cells. Simultaneous knockdown of HDAC1 and 2 induced CD1d gene expression. Sp1 inhibitor mitramycin A (MTM) blocked TSA- and SAHA-induced CD1d mRNA expression and Sp1 luciferase activity. Co-transfection of GAL4-Sp1 and Fc-luciferase reporters demonstrated that TSA and SAHA induced Sp1 luciferase reporter activity by enhancing Sp1 transactivation activity. The binding of Sp1 to CD1d promoter and histone H3 acetylation on Sp1 sites were increased by TSA and SAHA. These results indicate that TSA and SAHA could up-regulate CD1d expression in tumor cells through inhibition of HDAC1/2 and activation of Sp1.  相似文献   

18.
Histone deacetylase (HDAC) inhibitors inhibit the proliferation of transformed cells in vitro, restrain tumor growth in animals, and are currently being actively exploited as potential anticancer agents. To identify gene targets of the HDAC inhibitor trichostatin A (TSA), we compared the gene expression profiles of BALB/c-3T3 cells treated with or without TSA. Our results show that TSA up-regulates the expression of the gene encoding growth-differentiation factor 11 (Gdf11), a transforming growth factor beta family member that inhibits cell proliferation. Detailed analyses indicated that TSA activates the gdf11 promoter through a conserved CCAAT box element. A comprehensive survey of human HDACs revealed that HDAC3 is necessary and sufficient for the repression of gdf11 promoter activity. Chromatin immunoprecipitation assays showed that treatment of cells with TSA or silencing of HDAC3 expression by small interfering RNA causes the hyperacetylation of Lys-9 in histone H3 on the gdf11 promoter. Together, our results provide a new model in which HDAC inhibitors reverse abnormal cell growth by inactivation of HDAC3, which in turn leads to the derepression of gdf11 expression.  相似文献   

19.
20.
Treatment of higher eukaryotic cells with short-chain fatty acids (SCFA) such as butyrate causes decreased levels of histone deacetylase (HDAC) activity and hyperacetylation of histones, and thereby affects gene expression, cell growth and differentiation. Entamoeba parasites encounter high levels of SCFA in the host colon, and in vitro these compounds allow trophozoite stage parasites to multiply but prevent their differentiation into infectious cysts. The Entamoeba invadens IP-1 histone H4 protein has an unusual number of lysines in its N-terminus, and these become hyperacetylated in trophozoites exposed to the HDAC inhibitors trichostatin A (TSA) or HC-toxin, but not in trophozoites exposed to butyrate. We have now found that several other commonly studied isolates of Entamoeba parasites also have an extended set of histone H4 acetylation sites that become hyperacetylated in response to TSA, but hypoacetylated in response to butyrate, suggesting an unusual sensitivity of this parasite's histone modifying enzymes to SCFA. Butyrate was found to enter trophozoites in a pH-dependent manner consistent with diffusive entry of the un-ionised form of the fatty acid into the amoebae. Transit of the Entamoeba organism through areas of the host intestine with distinct pH and SCFA concentrations would therefore result in very different levels of SCFA within the parasite. Entamoeba appears to have acquired unique alterations of its histone acetylation mechanism that may allow for its growth in the presence of varying amounts of the bacterial fermentation products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号