首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An often-proposed tissue engineering design hypothesis is that the scaffold should provide a biomimetic mechanical environment for initial function and appropriate remodeling of regenerating tissue while concurrently providing sufficient porosity for cell migration and cell/gene delivery. To provide a systematic study of this hypothesis, the ability to precisely design and manufacture biomaterial scaffolds is needed. Traditional methods for scaffold design and fabrication cannot provide the control over scaffold architecture design to achieve specified properties within fixed limits on porosity. The purpose of this paper was to develop a general design optimization scheme for 3D internal scaffold architecture to match desired elastic properties and porosity simultaneously, by introducing the homogenization-based topology optimization algorithm (also known as general layout optimization). With an initial target for bone tissue engineering, we demonstrate that the method can produce highly porous structures that match human trabecular bone anisotropic stiffness using accepted biomaterials. In addition, we show that anisotropic bone stiffness may be matched with scaffolds of widely different porosity. Finally, we also demonstrate that prototypes of the designed structures can be fabricated using solid free-form fabrication (SFF) techniques.  相似文献   

2.
The combination of computational methods with 3D printing allows for the control of scaffolds microstructure. Lately, triply periodic minimal surfaces (TPMS) have been used to design porosity-controlled scaffolds for bone tissue engineering (TE). The goal of this work was to assess the mechanical properties of TPMS Gyroid structures with two porosity levels (50 and 70%). The scaffold stiffness function of porosity was determined by the asymptotic homogenisation method and confirmed by mechanical testing. Additionally, microCT analysis confirmed the quality of the printed parts. Thus, the potential of both design and manufacturing processes for bone TE applications is here demonstrated.  相似文献   

3.
《Organogenesis》2013,9(4):234-244
Tissue engineering aims to develop functionalized tissues for organ replacement or restoration. Biodegradable scaffolds have been used in tissue engineering to support cell growth and maintain mechanical and biological properties of tissue constructs. Ideally cells on these scaffolds adhere, proliferate, and deposit matrix at a rate that is consistent with scaffold degradation. However, the cellular rearrangement within these scaffolds often does not recapitulate the architecture of the native tissues. Directed assembly of tissue-like structures is an attractive alternative to scaffold-based approach for tissue engineering which potentially can build tissue constructs with biomimetic architecture and function. In directed assembly, shape-controlled microstructures are fabricated in which organized structures of different cell types can be used as tissue building blocks. To fabricate tissue building blocks, hydrogels are commonly used as biomaterials for cell encapsulation to mimic the matrix in vivo. The hydrogel-based tissue building blocks can be arranged in pre-defined architectures by various directed tissue assembly techniques. In this paper, recent advances in directed assembly-based tissue engineering are summarized as an emerging alternative to meet challenges associated with scaffold-based tissue engineering and future directions are addressed.  相似文献   

4.
Tissue engineering aims to develop functionalized tissues for organ replacement or restoration. Biodegradable scaffolds have been used in tissue engineering to support cell growth and maintain mechanical and biological properties of tissue constructs. Ideally cells on these scaffolds adhere, proliferate, and deposit matrix at a rate that is consistent with scaffold degradation. However, the cellular rearrangement within these scaffolds often does not recapitulate the architecture of the native tissues. Directed assembly of tissue-like structures is an attractive alternative to scaffold-based approach for tissue engineering which potentially can build tissue constructs with biomimetic architecture and function. In directed assembly, shape-controlled microstructures are fabricated in which organized structures of different cell types can be used as tissue building blocks. To fabricate tissue building blocks, hydrogels are commonly used as biomaterials for cell encapsulation to mimic the matrix in vivo. The hydrogel-based tissue building blocks can be arranged in pre-defined architectures by various directed tissue assembly techniques. In this paper, recent advances in directed assembly-based tissue engineering are summarized as an emerging alternative to meet challenges associated with scaffold-based tissue engineering and future directions are addressed.  相似文献   

5.
《Biotechnology advances》2017,35(6):633-656
Weaving is a resourceful technology which offers a large selection of solutions that are readily adaptable for tissue engineering (TE) of artificial heart valves (HV). The different ways that the yarns are interlaced in this technique could be used to produce complex architectures, such as the three-layer architecture of the leaflets. Once the assembly is complete, growth of cells in the scaffold would occur in the orientation of the yarn, enabling the deposition of extra cellular matrixes proteins in an oriented manner. Weaving technology is a rapidly evolving field that, first, needs to be understood, and then explored by tissue engineers, so that it could be used to create efficient scaffolds. Similarly, the textile engineers need to gain a basic understanding of key structural and mechanical aspects of the heart valve. The aim of this review is to provide the platform for joining these two fields and to enable cooperative research efforts. Moreover, examples of woven medical products and patents as well as related publication are discussed in this review, nevertheless due to the large, and continuously growing volume of data, only the aspects strictly associated with HVTE lay in the scope of this paper.  相似文献   

6.
The term tissue engineering is the technology that combines cells, engineering and biological/synthetic material in order to repair, replace or regenerate biological tissues such as bone, muscle, tendons and cartilage. The major human applications of tissue engineering are: skin, bone, cartilage, corneas, blood vessels, left mainstem bronchus and urinary structures. In this systematic review several criteria were identified as the most desirable characteristics of an ideal scaffold. These state that an ideal scaffolds needs to be biodegradable, possess mechanical strength, be highly porous, biocompatible, non-cytotoxic, non antigentic, stuitable for cell attachment, proliferation and differentiation, flexible and elastic, three dimensional, osteoconductive and support the transport of nutrients and metabolic waste. Subsequently, studies reporting on the various advantages and disadvantages of using collagen based scaffolds in musculoskeletal and cartilage tissue engineering were identified. The purpose of this review is to 1) provide a list of ideal characteristics of a scaffold as identified in the literature 2) identify different types of biological protein-based collagen scaffolds used in musculoskeletal and cartilage tissue engineering 3) assess how many of the criteria each scaffold type meets 4) weigh different scaffolds against each other according to their relative properties and shortcomings. The rationale behind this approach is that the ideal scaffold material has not yet been identified. Hence, this review will define how many of the identified ideal characteristics are fulfilled by natural collagen-based scaffolds and address the shortcomings of its use as found in the literature.  相似文献   

7.
The design of porous scaffolds for tissue engineering requires methods to generate geometries in order to control the stiffness and the permeability of the implant among others characteristics. This article studied the potential of the reaction-diffusion systems to design porous scaffolds for bone regeneration. We simulate the degradation of the scaffold material and the formation of new bone tissue over canal-like, spherical and ellipsoid structures obtained by this approach. The simulations show that the degradation and growth rates are affected by the form of porous structures. The results have indicated that the proposed method has potential as a tool to generate scaffolds with internal porosities and is comparable with other methodologies to obtain this type of structures.  相似文献   

8.
The development of methods to predict the strength and stiffness of biomaterials used in tissue engineering is critical for load-bearing applications in which the essential functional requirements are primarily mechanical. We previously quantified changes in the effective stiffness (E) of needled nonwoven polyglycolic acid (PGA) and poly-L-lactic acid (PLLA) scaffolds due to tissue formation and scaffold degradation under three-point bending. Toward predicting these changes, we present a structural model for E of a needled nonwoven scaffold in flexure. The model accounted for the number and orientation of fibers within a representative volume element of the scaffold demarcated by the needling process. The spring-like effective stiffness of the curved fibers was calculated using the sinusoidal fiber shapes. Structural and mechanical properties of PGA and PLLA fibers and PGA, PLLA, and 50:50 PGA/PLLA scaffolds were measured and compared with model predictions. To verify the general predictive capability, the predicted dependence of E on fiber diameter was compared with experimental measurements. Needled nonwoven scaffolds were found to exhibit distinct preferred (PD) and cross-preferred (XD) fiber directions, with an E ratio (PD/XD) of approximately 3:1. The good agreement between the predicted and experimental dependence of E on fiber diameter (R2 = 0.987) suggests that the structural model can be used to design scaffolds with E values more similar to native soft tissues. A comparison with previous results for cell-seeded scaffolds (Engelmayr, G. C., Jr., et al., 2005, Biomaterials, 26(2), pp. 175-187) suggests, for the first time, that the primary mechanical effect of collagen deposition is an increase in the number of fiber-fiber bond points yielding effectively stiffer scaffold fibers. This finding indicated that the effects of tissue deposition on needled nonwoven scaffold mechanics do not follow a rule-of-mixtures behavior. These important results underscore the need for structural approaches in modeling the effects of engineered tissue formation on nonwoven scaffolds, and their potential utility in scaffold design.  相似文献   

9.
Novel peptide-based biomaterial scaffolds for tissue engineering.   总被引:18,自引:0,他引:18  
Biomaterial scaffolds are components of cell-laden artificial tissues and transplantable biosensors. Some of the most promising new synthetic biomaterial scaffolds are composed of self-assembling peptides that can be modified to contain biologically active motifs. Peptide-based biomaterials can be fabricated to form two- and three-dimensional structures. Recent studies show that biomaterial promotion of multi-dimensional cell-cell interactions and cell density are crucial for proper cellular differentiation and for subsequent tissue formation. Other refinements in tissue engineering include the use of stem cells, cell pre-selection and growth factor pre-treatment of cells that are used for seeding scaffolds. These cell-culture technologies, combined with improved processes for defining the dimensions of peptide-based scaffolds, might lead to further improvements in tissue engineering. Novel peptide-based biomaterial scaffolds seeded with cells show promise for tissue repair and for other medical applications.  相似文献   

10.
聚肽是20种α-氨基酸中的一种或者几种氨基酸通过酰胺键(肽键)联成的长链分子,此外还包含有其它非肽链结构的组成成分,具有和蛋白质类似的二级结构.由于其独特的结构和性能,近年来在组织工程领域聚肽被广泛地研究和应用,主要被用作生长因子、支架材料表面改性物以及支架材料.从以上3个方面介绍了近年来聚肽在骨组织工程领域的研究和应用情况,并对聚肽在骨组织工程研究领域的应用前景进行了展望.  相似文献   

11.
The ability of the human body to naturally recover from coronary heart disease is limited because cardiac cells are terminally differentiated, have low proliferation rates, and low turn-over rates. Cardiovascular tissue engineering offers the potential for production of cardiac tissue ex vivo, but is currently limited by several challenges: (i) Tissue engineering constructs require pure populations of seed cells, (ii) Fabrication of 3-D geometrical structures with features of the same length scales that exist in native tissue is non-trivial, and (iii) Cells require stimulation from the appropriate biological, electrical and mechanical factors. In this review, we summarize the current state of microfluidic techniques for enrichment of subpopulations of cells required for cardiovascular tissue engineering, which offer unique advantages over traditional plating and FACS/MACS-based enrichment. We then summarize modern techniques for producing tissue engineering scaffolds that mimic native cardiac tissue.  相似文献   

12.
Lin N  Lin J  Bo L  Weidong P  Chen S  Xu R 《Cell proliferation》2010,43(5):427-434
Objectives: Alginate scaffolds are the most frequently investigated biomaterials in tissue engineering. Tissue engineering techniques that generate liver tissue have become important for treatment of a number of liver diseases and recent studies indicate that bone marrow‐derived stem cells (BMSCs) can differentiate into hepatocyte‐like cells. The goal of the study described here, was to examine in vitro hepatic differentiation potential of BMSCs cultured in an alginate scaffold. Materials and methods: To investigate the potential of BMSCs to differentiate into hepatocyte‐like cells, we cultured BMSCs in alginate scaffolds in the presence of specific growth factors including hepatocyte growth factor, epidermal growth factor and fibroblast growth factor‐4. Results: We can demonstrate that alginate scaffolds are compatible for growth of BMSCs and when cultured in alginate scaffolds for several days they display several liver‐specific markers and functions. Specifically, they expressed genes encoding alpha‐foetoprotein, albumin (ALB), connexin 32 and CYP7A1. In addition, these BMSCs produced both ALB and urea, expressed cytokeratin‐18 (CK‐18) and were capable of glycogen storage. Percentage of CK‐18 positive cells, a marker of hepatocytes, was 56.7%. Conclusions: Our three‐dimensional alginate scaffolds were highly biocompatible with BMSCs. Furthermore, culturing induced their differentiation into hepatocyte‐like cells. Therefore, BMSCs cultured in alginate scaffolds may be applicable for hepatic tissue engineering.  相似文献   

13.
Natural biodegradable polymers were processed by different techniques for the production of porous structures for tissue engineering scaffolds. Potato, corn, and sweet potato starches and chitosan, as well as blends of these, were characterized and used in the experiments. The techniques used to produce the porous structures included a novel solvent-exchange phase separation technique and the well-established thermally induced phase separation method. Characterization of the open pore structures was performed by measuring pore size distribution, density, and porosity of the samples. A wide range of pore structures ranging from 1 to 400 microm were obtained. The mechanisms of pore formation are discussed for starch and chitosan scaffolds. Pore morphology in starch scaffolds seemed to be determined by the initial freezing temperature/freezing rate, whereas in chitosan scaffolds the shape and size of pores may have been determined by the processing route used. The mechanical properties of the scaffolds were assessed by indentation tests, showing that the indentation collapse strength depends on the pore geometry and the material type. Bioactivity and degradation of the potential scaffolds were assessed by immersion in simulated body fluid.  相似文献   

14.
Ifkovits JL  Wu K  Mauck RL  Burdick JA 《PloS one》2010,5(12):e15717
Fibrous scaffolds are finding wide use in the field of tissue engineering, as they can be designed to mimic many native tissue properties and structures (e.g., cardiac tissue, meniscus). The influence of fiber alignment and scaffold architecture on cellular interactions and matrix organization was the focus of this study. Three scaffolds were fabricated from the photocrosslinkable elastomer poly(glycerol sebacate) (PGS), with changes in fiber alignment (non-aligned (NA) versus aligned (AL)) and the introduction of a PEO sacrificial polymer population to the AL scaffold (composite (CO)). PEO removal led to an increase in scaffold porosity and maintenance of scaffold anisotropy, as evident through visualization, mechanical testing, and mass loss studies. Hydrated scaffolds possessed moduli that ranged between ~3-240 kPa, failing within the range of properties (<300 kPa) appropriate for soft tissue engineering. CO scaffolds were completely degraded as early as 16 days, whereas NA and AL scaffolds had ~90% mass loss after 21 days when monitored in vitro. Neonatal cardiomyocytes, used as a representative cell type, that were seeded onto the scaffolds maintained their viability and aligned along the surface of the AL and CO fibers. When implanted subcutaneously in rats, a model that is commonly used to investigate in vivo tissue responses to biomaterials, CO scaffolds were completely integrated at 2 weeks, whereas ~13% and ~16% of the NA and AL scaffolds, respectively remained acellular. However, all scaffolds were completely populated with cells at 4 weeks post-implantation. Polarized light microscopy was used to evaluate the collagen elaboration and orientation within the scaffold. An increase in the amount of collagen was observed for CO scaffolds and enhanced alignment of the nascent collagen was observed for AL and CO scaffolds compared to NA scaffolds. Thus, these results indicate that the scaffold architecture and porosity are important considerations in controlling tissue formation.  相似文献   

15.
Bone tissue engineering is a promising field of regenerative medicine in which cultured cells, scaffolds, and osteogenic inductive signals are used to regenerate bone. This technology has already been used in several clinical studies and its efficacy has been reported. In this review, we focus on bone marrow stromal cells, which are the most commonly used cell source for bone tissue engineering. The nature of the cells, suitable culture conditions for bone tissue engineering, and their potential therapeutic applications are reviewed with possible caveats. Furthermore, recent advances in bone marrow stromal cell biology are discussed with reference to clinical translation.  相似文献   

16.
This article reports the development of fibers from starch acetates that have mechanical properties and water stability better than most polysaccharide‐based biomaterials and protein fibers used in tissue engineering. In this research, starch acetates with three different degrees of substitution (DS) have been used to develop fibers for potential use as tissue engineering scaffolds. Varying the DS of starch acetate will provide fibers with different mechanical properties, hydrophilicity, and degradation behavior. Fibers made from DS 2.3 and 2.8 starch acetates have mechanical properties and water stability required for tissue engineering applications. The starch acetate fibers support the adhesion of fibroblasts demonstrating that the fibers would be suitable for tissue engineering and other medical applications. Biotechnol. Bioeng. 2009;103: 1016–1022. © 2009 Wiley Periodicals, Inc.  相似文献   

17.
Biocompatible materials for the fabrication of tissue substitutes are crucially important in the advancement of modern medicinal biotechnology. These materials, to serve their function, should be similar in physical, chemical, biological, and structural properties to native tissues which they are aimed to mimic. The porosity of artificial scaffolds is essential for normal nutrient transmission to cells, gas diffusion, and cell attachment and proliferation. Nanoscale inorganic additives and dopants are widely used to improve the functional properties of the polymer materials for tissue engineering. Among these inorganic dopants, halloysite nanotubes are arguably the most perspective candidates because of their biocompatibility and functional properties allowing to enhance significantly the mechanical and chemical stability of tissue engineering scaffolds. Here, this vibrant field of biotechnology for regenerative medicine is overviewed.  相似文献   

18.
Tissue engineering is a multidisciplinary field that applies the principles of engineering and life-sciences for regeneration of damaged tissues. Stem cells have attracted much interest in tissue engineering as a cell source due to their ability to proliferate in an undifferentiated state for prolonged time and capability of differentiating to different cell types after induction. Scaffolds play an important role in tissue engineering as a substrate that can mimic the native extracellular matrix and the properties of scaffolds have been shown to affect the cell behavior such as the cell attachment, proliferation and differentiation. Here, we focus on the recent reports that investigated the various aspects of scaffolds including the materials used for scaffold fabrication, surface modification of scaffolds, topography and mechanical properties of scaffolds towards stem cells differentiation effect. We will present a more detailed overview on the effect of mechanical properties of scaffolds on stem cells fate.  相似文献   

19.
The characteristics of tissue engineered scaffolds are major concerns in the quest to fabricate ideal scaffolds for tissue engineering applications. The polymer scaffolds employed for tissue engineering applications should possess multifunctional properties such as biocompatibility, biodegradability and favorable mechanical properties as it comes in direct contact with the body fluids in vivo. Additionally, the polymer system should also possess biomimetic architecture and should support stem cell adhesion, proliferation and differentiation. As the progress in polymer technology continues, polymeric biomaterials have taken characteristics more closely related to that desired for tissue engineering and clinical needs. Stimuli responsive polymers also termed as smart biomaterials respond to stimuli such as pH, temperature, enzyme, antigen, glucose and electrical stimuli that are inherently present in living systems. This review highlights the exciting advancements in these polymeric systems that relate to biological and tissue engineering applications. Additionally, several aspects of technology namely scaffold fabrication methods and surface modifications to confer biological functionality to the polymers have also been discussed. The ultimate objective is to emphasize on these underutilized adaptive behaviors of the polymers so that novel applications and new generations of smart polymeric materials can be realized for biomedical and tissue engineering applications.  相似文献   

20.

Mechanical stimulation can regulate cellular behavior, e.g., differentiation, proliferation, matrix production and mineralization. To apply fluid-induced wall shear stress (WSS) on cells, perfusion bioreactors have been commonly used in tissue engineering experiments. The WSS on cells depends on the nature of the micro-fluidic environment within scaffolds under medium perfusion. Simulating the fluidic environment within scaffolds will be important for gaining a better insight into the actual mechanical stimulation on cells in a tissue engineering experiment. However, biomaterial scaffolds used in tissue engineering experiments typically have highly irregular pore geometries. This complexity in scaffold geometry implies high computational costs for simulating the precise fluidic environment within the scaffolds. In this study, we propose a low-computational cost and feasible technique for quantifying the micro-fluidic environment within the scaffolds, which have highly irregular pore geometries. This technique is based on a multiscale computational fluid dynamics approach. It is demonstrated that this approach can capture the WSS distribution in most regions within the scaffold. Importantly, the central process unit time needed to run the model is considerably low.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号