首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen sulfide (H(2)S), nitric oxide (NO) and nitrite (NO(2)(-)) are formed in vivo and are of crucial importance in the tissue response to hypoxia, particularly in the cardiovascular system, where these signaling molecules are involved in a multitude of processes including the regulation of vascular tone, cellular metabolic function and cytoprotection. This report summarizes current advances on the mechanisms by which these signaling pathways act and may have evolved in animals with different tolerance to hypoxia, as presented and discussed during the scientific sessions of the annual meeting of the Society for Experimental Biology in 2011 in Glasgow. It also highlights the need and potential for a comparative approach of study and collaborative effort to identify potential link(s) between the signaling pathways involving NO, nitrite and H(2)S in the whole-body responses to hypoxia.  相似文献   

2.
Mitochondria were classically recognized as the organelles that produce the energy required to drive the endergonic processes of cell life, but now they are considered as the most important cellular source of free radicals, as the main target for free radical regulatory and toxic actions, and as the source of signaling molecules that command cell cycle, proliferation and apoptosis. The progress in the knowledge of mitochondrial functions in the last decades is reviewed. The mitochondrial production of the primary free radicals superoxide anion (O(2)(-)) and nitric oxide (NO), as well as of the termination products H(2)O(2) (hydrogen peroxide) and peroxynitrite (ONOO(-)), is described. A network of intramitochondrial antioxidants consisting of the enzymes Mn-superoxide dismutase and glutathione peroxidase and of the reductants NADH(2), ubiquinol and reduced glutathione, is operative in minimizing the potentially harmful effects of O(2)(-), NO, H(2)O(2) and ONOO(-). Nitric oxide and H(2)O(2) participate in cell signaling, through narrow concentration ranges that signal for opposite cellular situations, i.e., proliferation or apoptosis. A mechanism involving mitogen-activated protein kinases is described. The role of mitochondria in apoptosis is well established through the mitochondrion-dependent pathways of cell death, that includes increased NO production, loss of membrane potential, appearance of dysfunctional mitochondria, cytochrome c release and opening of the voltage-dependent anion channel of the outer membrane.  相似文献   

3.
Measurements of nitrite (NO(2)(-)) and nitrate (NO(3)(-)) in biological fluids are proposed as indices of cellular nitric oxide (NO) production. Determination of NO(2)(-) and NO(3)(-) in standard solutions is not difficult, however, determinations which reflect accurately cellular NO synthesis represent a considerable analytical challenge. Problems are often encountered arising from background NO(2)(-)/NO(3)(-) contamination in experimental solutions and laboratory hardware, and with methods for sample extraction. We investigated potential procedures for the extraction and determination of NO(2)(-) and NO(3)(-) in biological samples. Consequently, a protocol was devised which yielded acceptable results regarding extraction efficiency, assay reproducibility, sample throughput and contaminant minimisation. It entailed rigorous washing of all equipment with water of low NO(2)(-) and NO(3)(-) content, sample deproteinisation by centrifugal ultrafiltration through a 3K filter and analysis by high-performance anion-exchange liquid chromatography with UV detection. Retention times for NO(2)(-) and NO(3)(-) in standards and plasma were 4.4 and 5.6 min, respectively. Assay linearity for standards ranged between 31 nM and 1 mM. The limit of detection for NO(2)(-) and NO(3)(-) in standards was 3 pmol. Recoveries of NO(2)(-) and NO(3)(-) from spiked plasma (1-100 microM KNO(2)/KNO(3)) and from extracted standards (1-250 microM) were approximately 100%. Intra-assay and inter-assay RSDs for NO(2)(-) and NO(3)(-) in spiked and unspiked plasma were 10.6% or less. Assays on washed platelet supernatants demonstrated collagen-induced platelet generation of NO products and analysis of murine and rat cardiac perfusates was achieved. Our procedure may be suitable for routine determination of NO(2)(-) and NO(3)(-) in various biological fluids, e.g., plasma.  相似文献   

4.
Eosinophil peroxidase (EPO) has been implicated in promoting oxidative tissue injury in conditions ranging from asthma and other allergic inflammatory disorders to cancer and parasitic/helminthic infections. Studies thus far on this unique peroxidase have primarily focused on its unusual substrate preference for bromide (Br(-)) and the pseudohalide thiocyanate (SCN(-)) forming potent hypohalous acids as cytotoxic oxidants. However, the ability of EPO to generate reactive nitrogen species has not yet been reported. We now demonstrate that EPO readily uses nitrite (NO(2)(-)), a major end-product of nitric oxide ((.)NO) metabolism, as substrate to generate a reactive intermediate that nitrates protein tyrosyl residues in high yield. EPO-catalyzed nitration of tyrosine occurred more readily than bromination at neutral pH, plasma levels of halides, and pathophysiologically relevant concentrations of NO(2)(-). Furthermore, EPO was significantly more effective than MPO at promoting tyrosine nitration in the presence of plasma levels of halides. Whereas recent studies suggest that MPO can also promote protein nitration through indirect oxidation of NO(2)(-) with HOCl, we found no evidence that EPO can indirectly mediate protein nitration by a similar reaction between HOBr and NO(2)(-). EPO-dependent nitration of tyrosine was modulated over a physiologically relevant range of SCN(-) concentrations and was accompanied by formation of tyrosyl radical addition products (e.g. o,o'-dityrosine, pulcherosine, trityrosine). The potential role of specific antioxidants and nucleophilic scavengers on yields of tyrosine nitration and bromination by EPO are examined. Thus, EPO may contribute to nitrotyrosine formation in inflammatory conditions characterized by recruitment and activation of eosinophils.  相似文献   

5.
We expanded our region-based model of water and solute exchanges in the rat outer medulla to incorporate the transport of nitric oxide (NO) and superoxide (O(2)(-)) and to examine the impact of NO-O(2)(-) interactions on medullary thick ascending limb (mTAL) NaCl reabsorption and oxygen (O(2)) consumption, under both physiological and pathological conditions. Our results suggest that NaCl transport and the concentrating capacity of the outer medulla are substantially modulated by basal levels of NO and O(2)(-). Moreover, the effect of each solute on NaCl reabsorption cannot be considered in isolation, given the feedback loops resulting from three-way interactions between O(2), NO, and O(2)(-). Notwithstanding vasoactive effects, our model predicts that in the absence of O(2)(-)-mediated stimulation of NaCl active transport, the outer medullary concentrating capacity (evaluated as the collecting duct fluid osmolality at the outer-inner medullary junction) would be ~40% lower. Conversely, without NO-induced inhibition of NaCl active transport, the outer medullary concentrating capacity would increase by ~70%, but only if that anaerobic metabolism can provide up to half the maximal energy requirements of the outer medulla. The model suggests that in addition to scavenging NO, O(2)(-) modulates NO levels indirectly via its stimulation of mTAL metabolism, leading to reduction of O(2) as a substrate for NO. When O(2)(-) levels are raised 10-fold, as in hypertensive animals, mTAL NaCl reabsorption is significantly enhanced, even as the inefficient use of O(2) exacerbates hypoxia in the outer medulla. Conversely, an increase in tubular and vascular flows is predicted to substantially reduce mTAL NaCl reabsorption. In conclusion, our model suggests that the complex interactions between NO, O(2)(-), and O(2) significantly impact the O(2) balance and NaCl reabsorption in the outer medulla.  相似文献   

6.
We screened actinomycete strains for dinitrogen (N(2))-producing activity and discovered that Streptomyces antibioticus B-546 evolves N(2) and some nitrous oxide (N(2)O) from nitrate (NO(3)(-)). Most of the N(2) that evolved from the heavy isotope ([(15)N]NO(3)(-)) was (15)N(14)N, indicating that this nitrogen species consists of two atoms, one arising from NO(3)(-) and the other from different sources. This phenomenon is similar to codenitrification in fungi. The strain also evolved less, but significant, amounts of (15)N(15)N from [(15)N]NO(3)(-) in addition to (15)N(15)NO with concomitant cell growth. Prior to the production of N(2) and N(2)O, NO(3)(-) was rapidly reduced to nitrite (NO(2)(-)) accompanied by distinct cell growth, showing that the actinomycete strain is a facultative anaerobe that depends on denitrification and nitrate respiration for anoxic growth. The cell-free activities of denitrifying enzymes could be reconstituted, supporting the notion that the (15)N(15)N and (15)N(15)NO species are produced by denitrification from NO(3)(-) via NO(2)(-). We therefore demonstrated a unique system in an actinomycete that produces gaseous nitrogen (N(2) and N(2)O) through both denitrification and codenitrification. The predominance of codenitrification over denitrification along with oxygen tolerance is the key feature of nitrate metabolism in this actinomycete.  相似文献   

7.
8.
This study evaluated the associations between biological markers in the nitrate-nitrite-NO pathway and four environmental exposures among subjects examined in the second survey (2003-2007) of the French Epidemiological study on Genetics and Environment of Asthma (EGEA). Total nitrite and nitrate (NO(2)(-) /NO(3)(-)) levels were measured both in plasma and in exhaled breath condensate (EBC) in 949 adults. Smoking, diet and exposure to chlorine products were assessed using standardized questionnaires. Exposure to air pollutants was estimated by using geostatistical models. All estimates were obtained with generalized estimating equations for linear regression models. Median levels of NO(2)(-)/NO(3)(-) were 36.3μM (1st-3rd quartile: 25.7, 51.1) in plasma and 2.0μmol/mg proteins (1st-3rd quartile 0.9, 3.9) in EBC. After adjustment for asthma, age, sex and menopausal status, plasma NO(2)(-)/NO(3)(-) level increased with leafy vegetable consumption (above versus below median=0.04 (95%CI: 0.001, 0.07)) and decreased in smokers (versus non/ex-smokers=-0.08 (95%CI: -0.11, -0.04). EBC NO(2)(-)/NO(3)(-) level decreased in smokers (-0.08 (95%CI: -0.16, -0.001)) and with exposure to ambient O(3) concentration (above versus below median=-0.10 (95%CI: -0.17, -0.03)). Cured meat, chlorine products, PM(10) and NO(2) concentrations were not associated with NO(2)(-)/NO(3)(-) levels. Results suggest that potential modifiable environmental and behavioral risk factors may modify NO(2)(-)/NO(3)(-) levels in plasma and EBC according to the route of exposure.  相似文献   

9.
Widely distributed flavohemoglobins (flavoHbs) function as NO dioxygenases and confer upon cells a resistance to NO toxicity. FlavoHbs from Saccharomyces cerevisiae, Alcaligenes eutrophus, and Escherichia coli share similar spectra, O(2), NO, and CO binding kinetics, and steady-state NO dioxygenation kinetics. Turnover numbers (V(max)) for S. cerevisiae, A. eutrophus, and E. coli flavoHbs are 112, 290, and 365 NO heme(-1) s(-1), respectively, at 37 degrees C with 200 microm O(2). The K(M) values for NO are low and range from 0.1 to 0.25 microm. V(max)/K(M)(NO) ratios of 900-2900 microm(-1) s(-1) indicate an extremely efficient dioxygenation mechanism. Approximate K(M) values for O(2) range from 60 to 90 microm. NO inhibits the dioxygenases at NO:O(2) ratios of > or =1:100 and makes true K(M)(O(2)) values difficult to determine. High and roughly equal second order rate constants for O(2) and NO association with the reduced flavoHbs (17-50 microm(-1) s(-1)) and small NO dissociation rate constants suggest that NO inhibits the dioxygenase reaction by forming inactive flavoHbNO complexes. Carbon monoxide also binds reduced flavoHbs with high affinity and competitively inhibits NO dioxygenases with respect to O(2) (K(I)(CO) = approximately 1 microm). These results suggest that flavoHbs and related hemoglobins evolved as NO detoxifying components of nitrogen metabolism capable of discriminating O(2) from inhibitory NO and CO.  相似文献   

10.
Peripheral arterial disease (PAD) results in a failure to adequately supply blood and oxygen (O(2)) to working tissues and presents as claudication pain during walking. Nitric oxide (NO) bioavailability is essential for vascular health and function. Plasma nitrite (NO(2)(-)) is a marker of vascular NO production but may also be a protected circulating "source" that can be converted to NO during hypoxic conditions, possibly aiding perfusion. We hypothesized that dietary supplementation of inorganic nitrate in the form of beetroot (BR) juice would increase plasma NO(2)(-) concentration, increase exercise tolerance, and decrease gastrocnemius fractional O(2) extraction, compared with placebo (PL). This was a randomized, open-label, crossover study. At each visit, subjects (n = 8) underwent resting blood draws, followed by consumption of 500 ml BR or PL and subsequent blood draws prior to, during, and following a maximal cardiopulmonary exercise (CPX) test. Gastrocnemius oxygenation during the CPX was measured by near-infrared spectroscopy. There were no changes from rest for [NO(2)(-)] (152 ± 72 nM) following PL. BR increased plasma [NO(2)(-)] after 3 h (943 ± 826 nM; P ≤ 0.01). Subjects walked 18% longer before the onset of claudication pain (183 ± 84 s vs. 215 ± 99 s; P ≤ 0.01) and had a 17% longer peak walking time (467 ± 223 s vs. 533 ± 233 s; P ≤ 0.05) following BR vs. PL. Gastrocnemius tissue fractional O(2) extraction was lower during exercise following BR (7.3 ± 6.2 vs. 10.4 ± 6.1 arbitrary units; P ≤ 0.01). Diastolic blood pressure was lower in the BR group at rest and during CPX testing (P ≤ 0.05). These findings support the hypothesis that NO(2)(-)-related NO signaling increases peripheral tissue oxygenation in areas of hypoxia and increases exercise tolerance in PAD.  相似文献   

11.
The production of NO by heart mitochondria was 0.7-1.1 nmol NO/min.mg protein, an activity similar to the ones observed in mitochondrial membranes from other organs. Heart mtNOS seems to contribute with about 56% of the total cellular NO production. The immunological nature of the mtNOS isoform of cardiac tissue remains unclear; in our laboratory, heart mtNOS reacted with an anti-iNOS anti-body. Heart mtNOS expression and activity are regulated by physiological and pharmacological effectors. The state 4/state 3 transition regulates heart mtNOS activity and NO release in intact respiring mitochondria: NO production rates in state 3 were 40% lower than in state 4. Heart mtNOS expression was selectively regulated by O(2) availability in hypobaric conditions and the activity was 20-60% higher in hypoxic rats than in control animals, depending on age. In contrast, NADH-cytochrome c reductase and cytochrome oxidase activities were not affected by hypoxia. The activity of rat heart mtNOS decreased 20% on aging from 12 to 72 weeks of age. On the pharmacological side, mitochondrial NO production was increased after enalapril treatment (the inhibitor of the angiotensin converting enzyme) with modification of heart mtNOS functional activity in the regulation of mitochondrial O(2) uptake and H(2)O(2) production. Thus, heart mtNOS is a highly regulated mitochondrial enzyme, which in turn, plays a regulatory role through mitochondrial NO steady state levels that modulate O(2) uptake and O(2)(-) and H(2)O(2) production rates. Nitric oxide and H(2)O(2) constitute signals for metabolic control that are involved in the regulation of cellular processes, such as proliferation and apoptosis.  相似文献   

12.
There is an increasing interest in the measurement of nitric oxide (NO.) in the airways. NO. is a free radical that reacts rapidly with reactive oxygen species in aqueous solution to form peroxynitrite which can then break down to nitrite (NO(2)(-)) and nitrate (NO(3)(-)). NO(3)(-) is considered a stable oxidative end product of NO. metabolism. The aim of this study was to assay NO(3)(-) in exhaled breath condensate (EBC) of normal nonsmoking and smoking subjects, asthmatics, patients with obstructive pulmonary disease (COPD), and patients with community-acquired pneumonia (CAP). EBC was collected using a glass condenser and samples were assayed for NO(3)(-) by ion chromatography followed by conductivity measurement. NO(3)(-) was detectable in EBC of all subjects. NO(3)(-) was elevated in smokers [median (range)] [62.5 (9.6-158.0) microM] and in asthmatics [68.0 (25.8-194.6) microM] compared to controls [9.6 (2.6-119.4) microM; p=0.003 and p=0.006, respectively], whereas NO(3)(-) was not elevated in COPD patients [24.1 (1.9-337.0 microM]. The concentration of NO(3)(-) in patients with CAP [243.4 (26.1-584.5) microM] was higher than that in controls (p=0.002) and NO(3)(-) values decreased after treatment and recovery from illness [40.0 (4.1-167.0) microM, p=0.009]. This study shows that NO(3)(-) is detectable in EBC of healthy subjects and it varies in patients with inflammatory airway diseases.  相似文献   

13.
Schmitt D  Shen Z  Zhang R  Colles SM  Wu W  Salomon RG  Chen Y  Chisolm GM  Hazen SL 《Biochemistry》1999,38(51):16904-16915
The initiation of lipid peroxidation and the concomitant formation of biologically active oxidized lipids and sterols is believed to play a central role in the pathogenesis of inflammatory and vascular disorders. Here we explore the role of neutrophil- and myeloperoxidase (MPO)-generated nitrating intermediates as a physiological catalyst for the initiation of lipid peroxidation and the formation of biologically active oxidized lipids and sterols. Activation of human neutrophils in media containing physiologically relevant levels of nitrite (NO(2)(-)), a major end product of nitric oxide (nitrogen monoxide, NO) metabolism, generated an oxidant capable of initiating peroxidation of lipids. Formation of hydroxy- and hydroperoxyoctadecadienoic acids [H(P)ODEs], hydroxy- and hydroperoxyeicosatetraenoic acids [H(P)ETEs], F(2)-isoprostanes, and a variety of oxysterols was confirmed using on-line reverse phase HPLC tandem mass spectrometry (LC/MS/MS). Lipid oxidation by neutrophils required cell activation and NO(2)(-), occurred in the presence of metal chelators and superoxide dismutase, and was inhibited by catalase, heme poisons, and free radical scavengers. LC/MS/MS studies demonstrated formation of additional biologically active lipid and sterol oxidation products known to be enriched in vascular lesions, such as 1-hexadecanoyl-2-oxovalaryl-sn-glycero-3-phosphocholine, which induces upregulation of endothelial cell adhesion and chemoattractant proteins, and 5-cholesten-3beta-ol 7beta-hydroperoxide, a potent cytotoxic oxysterol. In contrast to the oxidant formed during free metal ion-catalyzed reactions, the oxidant formed during MPO-catalyzed oxidation of NO(2)(-) readily promoted lipid peroxidation in the presence of serum constituents. Collectively, these results suggest that phagocytes may employ MPO-generated reactive nitrogen intermediates as a physiological pathway for initiating lipid peroxidation and forming biologically active lipid and sterol oxidation products in vivo.  相似文献   

14.
To investigate the possible cellular mechanisms of the ischemia-induced impairments of cerebral microcirculation, we investigated the effects of hypoxia/reoxygenation on the intracellular Ca(2+) concentration ([Ca(2+)](i)) in bovine brain microvascular endothelial cells (BBEC). In the cells kept in normal air, ATP elicited Ca(2+) oscillations in a concentration-dependent manner. When the cells were exposed to hypoxia for 6 h and subsequent reoxygenation for 45 min, the basal level of [Ca(2+)](i) was increased from 32.4 to 63.3 nM, and ATP did not induce Ca(2+) oscillations. Hypoxia/reoxygenation also inhibited capacitative Ca(2+) entry (CCE), which was evoked by thapsigargin (Delta[Ca(2+)](i-CCE): control, 62.3 +/- 3.1 nM; hypoxia/reoxygenation, 17.0 +/- 1.8 nM). The impairments of Ca(2+) oscillations and CCE, but not basal [Ca(2+)](i), were restored by superoxide dismutase and the inhibitors of mitochondrial electron transport, rotenone and thenoyltrifluoroacetone (TTFA). By using a superoxide anion (O(2)(-))-sensitive luciferin derivative MCLA, we confirmed that the production of O(2)(-) was induced by hypoxia/reoxygenation and was prevented by rotenone and TTFA. These results indicate that hypoxia/reoxygenation generates O(2)(-) at mitochondria and impairs some Ca(2+) mobilizing properties in BBEC.  相似文献   

15.
Vascular intimal hyperplasia (IH) limits the long term efficacy of current surgical and percutaneous therapies for atherosclerotic disease. There are extensive changes in gene expression and cell signaling in response to vascular therapies, including changes in nitric oxide (NO) signaling. NO is well recognized for its vasoregulatory properties and has been investigated as a therapeutic treatment for its vasoprotective abilities. The circulating molecules nitrite (NO(2)(-)) and nitrate (NO(3)(-)), once thought to be stable products of NO metabolism, are now recognized as important circulating reservoirs of NO and represent a complementary source of NO in contrast to the classic L-arginine-NO-synthase pathway. Here we review the background of IH, its relationship with the NO and nitrite/nitrate pathways, and current and future therapeutic opportunities for these molecules.  相似文献   

16.
We investigated the effects of a cysteine residue on tyrosine nitration in several model peptides treated with myeloperoxidase (MPO), H(2)O(2), and nitrite anion (NO(2)(-)) and with horseradish peroxidase and H(2)O(2). Sequences of model peptides were acetyl-Tyr-Cys-amide (YC), acetyl-Tyr-Ala-Cys-amide (YAC), acetyl-Tyr-Ala-Ala-Cys-amide (YAAC), and acetyl-Tyr-Ala-Ala-Ala-Ala-Cys-amide (YAAAAC). Results indicate that nitration and oxidation products of tyrosyl residue in YC and other model peptides were barely detectable. A major product detected was the corresponding disulfide (e.g. YCysCysY). Spin trapping experiments with 5,5'-dimethyl-1-pyrroline N-oxide (DMPO) revealed thiyl adduct (e.g. DMPO-SCys-Tyr) formation from peptides (e.g. YC) treated with MPO/H(2)O(2) and MPO/H(2)O(2)/NO(2)(-). The steady-state concentrations of DMPO-thiyl adducts decreased with increasing chain length of model peptides. Blocking the sulfydryl group in YC with methylmethanethiosulfonate (that formed YCSSCH(3)) totally inhibited thiyl radical formation as did substitution of Tyr with Phe (i.e. FC) in the presence of MPO/H(2)O(2)/NO(2)(-). However, increased tyrosine nitration, tyrosine dimerization, and tyrosyl radical formation were detected in the MPO/H(2)O(2)/NO(2)(-)/YCSSCH(3) system. Increased formation of S-nitrosated YC (YCysNO) was detected in the MPO/H(2)O(2)/(*)NO system. We conclude that a rapid intramolecular electron transfer reaction between the tyrosyl radical and the Cys residue impedes tyrosine nitration and induces corresponding thiyl radical and nitrosocysteine product. Implications of this novel intramolecular electron transfer mechanism in protein nitration and nitrosation are discussed.  相似文献   

17.
Oxidative modifications of amino acids in proteins can serve to regulate enzyme activity. This emerging field of redox regulation is related to other cellular signaling pathways, however, neither the chemical mechanisms in the cellular environment nor the affected metabolic and physiological changes are well understood. From data on endotoxin action in vascular tissue and reports on thiol modifications and tyrosine nitrations a unified scheme with five key components is proposed, governed solely by variations in the fluxes of nitrogen monoxide (NO) and superoxide (O(2)(-)). Crucial to the interactions is the formation of peroxynitrite which at concentrations of 10(-9)-10(-6)M elicits events like activation of prostanoid formation, metal catalyzed nitrations and two electron oxidations at cysteines and methionines. As a new concept we postulate that peroxynitrite formed in situ from NO and O(2)(-) is in rapid equilibrium with excess NO to form a nitrosating species that transfers NO(+). The resulting S-nitrosations occur prior to oxidative peroxynitrite action and seem to be involved in the down-regulation of reductive pathways. As the flux of O(2)(-) exceeds the one of NO, cellular damage develops induced by one-electron oxidations caused by nitrogen dioxide and by the Fenton reaction.  相似文献   

18.
Spectroscopic and electrochemical study of the [Fe(4)(mu(3)-S)(3)(NO)(7)](-) photochemical reaction and thermodynamic calculations of relevant systems demonstrate the redox character of this process. The photoinduced electron transfer between substrate clusters in excited and ground state (probably via exciplex formation) results in dismutation yielding unstable [Fe(4)(mu(3)-S)(3)(NO)(7)](2-) and [Fe(4)(mu(3)-S)(3)(NO)(7)](0). Back electron transfer between the primary products is responsible for fast reversibility of the photochemical reaction in deoxygenated solutions. In the presence of an electron acceptor (such as O(2), MV(2+) or NO) an oxidative quenching of the (*)[Fe(4)(mu(3)-S)(3)(NO)(7)](-) is anticipated, although NO seems to participate as well in the reductive quenching. The electron acceptors can also regenerate the substrate from its reduced form ([Fe(4)(mu(3)-S)(3)(NO)(7)](2-)), whereas the other primary product ([Fe(4)(mu(3)-S)(3)(NO)(7)](0)) decomposes to the final products. The suggested mechanism fits well to all experimental observations and shows the thermodynamically favored pathways and explains formation of all major (Fe(2+), S(2-), NO) and minor products (N(2)O, Fe(3+)). The photodissociation of nitrosyl ligands suggested earlier as the primary photochemical step cannot be, however, definitely excluded and may constitute a parallel pathway of [Fe(4)(mu(3)-S)(3)(NO)(7)](-) photolysis.  相似文献   

19.
20.
Intermittent hypoxia (IH) resulting from sleep apnea can lead to pulmonary hypertension. IH causes oxidative stress that may limit bioavailability of the endothelium-derived vasodilator nitric oxide (NO) and thus contribute to this hypertensive response. We therefore hypothesized that increased vascular superoxide anion (O(2)(-)) generation reduces NO-dependent pulmonary vasodilation following IH. To test this hypothesis, we examined effects of the O(2)(-) scavenger tiron on vasodilatory responses to the endothelium-dependent vasodilator ionomycin and the NO donor S-nitroso-N-acetylpenicillamine in isolated lungs from hypocapnic-IH (H-IH; 3 min cycles of 5% O(2)/air flush, 7 h/day, 4 wk), eucapnic-IH (E-IH; cycles of 5% O(2), 5% CO(2)/air flush), and sham-treated (air/air cycled) rats. Next, we assessed effects of endogenous O(2)(-) on NO- and cGMP-dependent vasoreactivity and measured O(2)(-) levels using the fluorescent indicator dihydroethidium (DHE) in isolated, endothelium-disrupted small pulmonary arteries from each group. Both E-IH and H-IH augmented NO-dependent vasodilation; however, enhanced vascular smooth muscle (VSM) reactivity to NO following H-IH was masked by an effect of endogenous O(2)(-). Furthermore, H-IH and E-IH similarly increased VSM sensitivity to cGMP, but this response was independent of either O(2)(-) generation or altered arterial protein kinase G expression. Finally, both H-IH and E-IH increased arterial O(2)(-) levels, although this response was more pronounced following H-IH, and H-IH exposure resulted in greater protein tyrosine nitration indicative of increased NO scavenging by O(2)(-). We conclude that IH increases pulmonary VSM sensitivity to NO and cGMP. Furthermore, endogenous O(2)(-) limits NO-dependent vasodilation following H-IH through an apparent reduction in bioavailable NO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号