首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The olfactory epithelium (OE) is one of the best sources for obtaining adult stem cells from the nervous system, because it contains neural progenitors that regenerate continuously throughout life. The OE is accessible through the nasal cavity, which facilitates stem cell harvest for examination and transplantation. The mitotic activity of OE progenitors can be stimulated by intranasal irrigation with zinc sulfate (ZnSO4). In the study reported here, we focused on OE from a transgenic mouse line transfected with green fluorescent protein (GFP). Histological examination demonstrated the site of highest yield of OE in the transgenic and wild type littermates. Cultures were established from that site four days in vitro following ZnSO4 exposure. The GFP-derived primary cultures contained a heterogeneous population of fluorescent cells. After 10-12 days, a population of round, mitotically active cells emerged that formed fluorescent neurospheres. The neurosphere forming cells (NSFCs) were collected and subcultured up to four times. The NSFCs were primarily neuronal with only a few cells of glial lineage. Furthermore, the NSFCs were nestin positive and keratin negative, suggesting that they were neural progenitors. The endogenous GFP fluorescence of these cells provides a readily identifiable label that will facilitate their identification following transplantation into nontransfected hosts. They should provide a useful model for evaluating the potential therapeutic utility of OE progenitors in neurodegenerative diseases and neurotrauma repair.  相似文献   

2.
3.
Susceptibility of a moss,Ceratodon purpureus (Hedw.) Brid., to photoinhibition and subsequent recovery of the photochemical efficiency of PSII was studied in the presence and absence of the chloroplast-encoded protein-synthesis inhibitor lincomycin.Ceratodon had a good capacity for repairing the damage to PSII centers induced by strong light. Tolerance against photoinhibition was associated with rapid turnover of the D1 protein, since blocking of D1 protein synthesis more than doubled the photoinhibition rate measured as the decline in the ratio of variable fluorescence to maximal fluorescence (Fv/Fmax). Under exposure to strong light in the absence of lincomycin a net loss of D1 protein occurred, indicating that the degradation of damaged D1 protein inCeratodon was rapid and independent of the resynthesis of the polypeptide. The result suggests that synthesis is the limiting factor in the turnover of D1 protein during photoinhibition of the mossCeratodon. The level of initial fluorescence (Fo) correlated with the production of inactive PSII centers depleted of D1 protein. The higher the Fo level, the more severe was the loss of D1 protein seen in the samples during photoinhibition. Restoration of Fv/Fmax at recovery light consisted of a fast and slow phase. The recovery of fluorescence yield in the presence of lincomycin, which was added at different times in the recovery, indicated that the chloroplast-encoded protein-synthesis-dependent repair of damaged PSII centers took place during the fast phase of recovery. Pulse-labelling experiments with [35S]methionine supported the conclusion drawn from fluorescence measurements, since the rate of D1 protein synthesis after photoinhibition exceeded that of the control plants during the first hours under recovery conditions.  相似文献   

4.
The activity of the ethylene-forming enzyme (EFE) in suspension-cultured tomato (Lycopersicon esculentum Mill.) cells was almost completely abolished within 10 min by 0.4 mM of the metal-chelating agent 1,10-phenanthroline. Subsequent addition of 0.4 mM FeSO4 immediately reversed this inhibition. A partial reversion was also obtained with 0.6 mM CuSO4 and ZnSO4, probably as a consequence of the release of iron ions from the 1,10-phenanthroline complex. The inhibition was not reversed by Mn2+ or Mg2+. Tomato cells starved of iron exhibited a very low EFE activity. Addition of Fe2+ to these cells caused a rapid recovery of EFE while Cu2+, Zn2+ and other bivalent cations were ineffective. The recovery of EFE activity in iron-starved cells was insensitive to cycloheximide and therefore does not appear to require synthesis of new protein. The EFE activity in tomato cells was induced by an elicitor derived from yeast extract. Throughout the course of induction, EFE activity was blocked within 10–20 min by 1,10-phenanthroline, and the induced level was equally rapidly restored after addition of iron. We conclude that iron is an essential cofactor for the conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene in vivo.  相似文献   

5.
The effects of CaCO3, Zn sources and levels on the yield of submerged paddy and uptake of Zn, P and N to paddy were studied in green-house at Haryana Agricultural University, Hissar. Powdered CaCO3 was mixed at 0,4 and 8 per cent and Zn was added at 0,5 and 10 ppm through ZnSO4.7H2O, ZnO and Zn EDTA separately. Dry weight at tillering and heading and grain and straw at maturity decreased significantly with 4 and 8 per cent CaCO3 in comparison to the control. Increasing Zn application increased the dry weight and grain yield. Zn EDTA gave highest yield of paddy followed by ZnSO4.7H2O and ZnO.Increasing the application of CaCO3 from 0–8 per cent decreased the concentration and uptake of Zn and increasing Zn application from 0–10 ppm increased concentration and uptake of Zn in paddy at tillering, heading and maturity. Zn EDTA gave the highest concentration and uptake of Zn followed by ZnSO4.7H2O and ZnO. There was interaction between Zn sources and CaCO3.The concentration and uptake of N and P in paddy dry matter at tillering and heading and straw and grain at maturity decreased as compared to control with increasing CaCO3 addition. The concentration and uptake of N increased and that of P decreased in paddy dry matter straw and grain with increasing Zn application. The highest concentration of N was observed with ZnO, followed by ZnSO4.7H2O and Zn EDTA. But highest uptake of N was observed with Zn EDTA followed by ZnSO4.7H2O and ZnO. As regards concentration and uptake of P, it was highest with ZnO followed by ZnSO4.7H2O and Zn EDTA.  相似文献   

6.
Brassica rapa L. is an important vegetable crop in eastern Asia. The objective of this study was to investigate the genetic variation in leaf Zn, Fe and Mn accumulation, Zn toxicity tolerance and Zn efficiency in B. rapa. In total 188 accessions were screened for their Zn-related characteristics in hydroponic culture. In experiment 1, mineral assays on 111 accessions grown under sufficient Zn supply (2 μM ZnSO4) revealed a variation range of 23.2–155.9 μg g−1 dry weight (d. wt.) for Zn, 60.3–350.1 μg g−1 d. wt. for Fe and 20.9–53.3 μg g−1 d. wt. for the Mn concentration in shoot. The investigation of tolerance to excessive Zn (800 μM ZnSO4) on 158 accessions, by using visual toxicity symptom parameters (TSPs), identified different levels of tolerance in B. rapa. In experiment 2, a selected sub-set of accessions from experiment 1 was characterized in more detail for their mineral accumulation and tolerance to excessive Zn supply (100 μM and 300 μM ZnSO4). In this experiment Zn tolerance (ZT) determined by relative root or shoot dry biomass varied about 2-fold. The same six accessions were also examined for Zn efficiency, determined as relative growth under 0 μM ZnSO4 compared to 2 μM ZnSO4. Zn efficiency varied 1.8-fold based on shoot dry biomass and 2.6-fold variation based on root dry biomass. Zn accumulation was strongly correlated with Mn and Fe accumulation both under sufficient and deficient Zn supply. In conclusion, there is substantial variation for Zn accumulation, Zn toxicity tolerance and Zn efficiency in Brassica rapa L., which would allow selective breeding for these traits.  相似文献   

7.
Retinoic acid (RA), a member of the steroid/thyroid superfamily of signaling molecules, is an essential regulator of morphogenesis, differentiation, and regeneration in the mammalian olfactory pathway. RA-mediated teratogenesis dramatically alters olfactory pathway development, presumably by disrupting retinoid-mediated inductive signaling that influences initial olfactory epithelium (OE) and bulb (OB) morphogenesis. Subsequently, RA modulates the genesis, growth, or stability of subsets of OE cells and OB interneurons. RA receptors, cofactors, and synthetic enzymes are expressed in the OE, OB, and anterior subventricular zone (SVZ), the site of neural precursors that generate new OB interneurons throughout adulthood. Their expression apparently accommodates RA signaling in OE cells, OB interneurons, and slowly dividing SVZ neural precursors. Deficiency of vitamin A, the dietary metabolic RA precursor, leads to cytological changes in the OE, as well as olfactory sensory deficits. Vitamin A therapy in animals with olfactory system damage can accelerate functional recovery. RA-related pathology as well as its potential therapeutic activity may reflect endogenous retinoid regulation of neuronal differentiation, stability, or regeneration in the olfactory pathway from embryogenesis through adulthood. These influences may be in register with retinoid effects on immune responses, metabolism, and modulation of food intake.  相似文献   

8.
Summary Neurons displaying FMRFamide(Phe-Met-Arg-Phe-NH2)-like immunoreactivity have recently been implicated in neural plasticity in salmon. We now extend these findings by describing the extent of the FMRF-like immunoreactive (FMRF-IR) system in the brain, retina and olfactory system of sockeye salmon parr using the indirect peroxidase anti-peroxidase technique. FMRF-IR perikarya were found in the periventricular hypothalamus, mesencephalic laminar nucleus, nucleus nervi terminalis and retina (presumed amacrine cells), and along the olfactory nerves. FMRF-IR fibers were distributed throughout the brain with highest densities in the ventral area of the telencephalon, in the medial forebrain bundle, and at the borders between layers III/IV and IV/V in the optic tectum. High densities of immunoreactive fibers were also observed in the area around the torus semicircularis, in the medial hypothalamus, median raphe, ventromedial tegmentum, and central gray. In the retina, immunopositive fibers were localized to the inner plexiform layer, but several fiber elements were also found in the outer plexiform layer. The olfactory system displayed FMRF-IR fibers in the epithelium and along the olfactory nerves. These findings differ from those reported in other species as follows: (i) FMRF-IR cells in the retina have not previously been reported in teleosts; (ii) the presence of FMRF-IR fibers in the outer plexiform layer of the retina is a new finding for any species; (iii) the occurrence of immunopositive cells in the mesencephalic laminar nucleus has to our knowledge not been demonstrated previously.  相似文献   

9.
The olfactory epithelium (OE) is derived from the olfactory placode (OP) during mouse development. At embryonic day (E) 10.0-E10.5, “early neurogenesis” occurs in the OE, which includes production of pioneer neurons that emigrate out of the OE and other early-differentiated neurons. Around E12.5, the OE becomes organized into mature pseudostratified epithelium and shows “established neurogenesis,” in which olfactory receptor neurons (ORNs) are differentiated from basal progenitors. Little is known about the molecular pathway of early neurogenesis. The homeodomain protein Six1 is expressed in all OP cells and neurogenic precursors in the OE. Here we show that early neurogenesis is severely disturbed despite the unaltered expression of Mash1 at E10.5 in the Six1-deficient mice (Six1−/−). Expression levels of neurogenin1 (Ngn1) and NeuroD are reduced and those of Hes1 and Hes5 are augmented in the OE of Six1/− at E10.5. Pioneer neurons and cellular aggregates, which are derived from the OP/OE and situated in the mesenchyme between the OE and forebrain, are completely absent in Six1−/−. Moreover, ORN axons and the gonadotropin-releasing hormone-positive neurons fail to extend and migrate to the forebrain, respectively. Our study indicates that Six1 plays critical roles in early neurogenesis by regulating Ngn1, NeuroD, Hes1, and Hes5.  相似文献   

10.
1.The rat olfactory system contains numerous target sites for 1,25-dihydroxyvitamin D3, as determined by receptor protein (VDR) immunocytochemistry and in situ hybidization.2.Nuclear and cytoplasmic VDR immunoreactivity as well as the corresponding hybridization signal was observed in neurons in the olfactory epithelium, the olfactory bulb, and throughout the limbic system in locations also known to be glucocorticoid targets.3.The widespread distribution of VDR indicates the distinct functional importance of 1,25-dihydroxyvitamin D3 for olfactory perception.  相似文献   

11.
The olfactory mucosa of the catfish (Ictulurus punctatus) has been briefly exposed to various concentrations of the non-ionic detergent Triton X-100. At high concentrations (1–4%) the upper layer of cells constituting the sensory and non-sensory areas of the lamellae is extensively damaged and new receptor cells do not appear in significant number before 2 months after treatment. Respiratory cells regenerate first followed by sustentacular and olfactory receptors. The regenerative process is very similar to that described previously after prolonged contact between the mucosa and ZnSO4. Low detergent concentrations 0.03 – 0.1% affect only the sensory area. Olfactory and sustentacular microvilli and cilia, are immediately severed by the chemical. Regeneration occurs within the next 4 days. The cellular membranes appear also to be affected. From anatomical, electrophysiological and biochemical studies both in vivo and in vitro, it can be hypothesized that receptors involved in the transduction process are solubilized by the detergent but reappear at a level corresponding to 50–60% of their original activity within 2 h.Proteins, having an amino acid binding effectiveness correlated to the amino acid electrophysiological activities measured in vivo, can be isolated from the solubilized material. Further studies will be necessary to confirm that some of these molecules are involved in the olfactory transduction mechanism.  相似文献   

12.
13.
Neurons of the vertebrate olfactory epithelium (OE) regenerate continuously throughout life. The capacity of these neurons to regenerate and make new and precise synaptic connections in the olfactory bulb provides a useful model to study factors that may control or mediate neuronal regeneration. Expression and in vitro studies have suggested potential roles for the neurotrophins in the olfactory system. To directly examine whether neurotrophins are required for olfactory neuron development, we characterized in vivo the role of the neurotrophins in the primary olfactory system. For this, we generated mutant mice for TrkA, TrkB, TrkC, and also for BDNF and NT3 together with P2-IRES-tau-LacZ trangenic mice. Histochemical staining for beta-galactosidase at birth allowed in vivo analysis of the P2 subpopulation of olfactory neurons as well as their projections to the olfactory bulb. Our data indicate that Trk signaling is not required for normal embryonic development of the olfactory system.  相似文献   

14.
M. de Agazio  R. Federico  S. Grego 《Planta》1989,177(3):388-392
The inhibition of K+ uptake through the plasma membrane resulting from injury caused by cutting, or from application of polyamines (PAs), has been investigated in root segments of maize (Zea mays L.) and pea (Pisum sativum L.). It was found, for both treatments, that K+ uptake recovered if the segments were washed for 2 h. The K+ uptake inhibited by cutting and that inhibited by spermidine treatment were stimulated to the same extent by fusicoccin. In addition, there was a correlation between the extent of the recovery of K+ uptake caused by washing and the distribution, along the root axis, of both PAs and the activities of enzymes responsible for PA degradation. In apical segments of maize, where the PA content and the activity of the degradative enzyme polyamine oxidase (EC 1.5.3.3) were higher than in the more distal segments, the recovery of K+ uptake caused by washing was also higher. On the other hand, the opposite trend was observed in root segments of pea, where the PA content and the activity of the degradative enzyme diamine oxidase (EC 1.4.3.6) were higher in distal segments in which K+ uptake was greatly stimulated by washing. The effect of the amine-oxidase inhibitor, aminoguanidine, indicates that the degradation products of PAs are involved in the mechanism of inhibition of K+ uptake by PAs. The data also seem to indicate that PAs and their degradation products are responsible for the inhibition of K+ uptake occurring as a result of injury sustained by cutting roots into segments.Abbreviations DAO diamine oxidase - FC fusicoccin - PA polyamine - PAO polyamine oxidase - PUT putrescine - SPD spermidine  相似文献   

15.
Zhang XD  Guo ZF  Liu N  Roisen FJ 《生理学报》2000,52(3):193-198
在成熟神经系统中,嗅觉上皮(OE)很特殊,它能不断产生新的神经元。本文用细胞培养、组织化学和免疫细胞化学技术对成年小鼠的OE进行了研究。实验显示:双极细胞NF、NSE、MAP2、OMP和tau蛋白免疫染色为阳性,但keratin免疫染色为阴性,说明双极细胞是神经元。用不同浓度血清的培养基。离体培养成年小鼠的OE,观察碱性成纤维细胞生长因子(bFGF)和脑源神经营养因子(BDNF)对OE细胞数量和突  相似文献   

16.
In consideration of their origin the adaptive strategies of the evergreen species of the Mediterranean maquis were analysed. Rosmarinus officinalis L., Erica arborea L., and Erica multiflora L. had the lowest net photosynthetic rate (PN) in the favourable period [7.8±0.6 mol(CO2) m–2s–1, mean value], the highest PN decrease (on an average 86 % of the maximum) but the highest recovery capacity (>70 % of the maximum) at the first rainfall in September. Cistus incanus L. and Arbutus unedo L. had the highest PN during the favourable period [15.5±5.2 mol(CO2) m–2s–1, mean value], 79 % decrease during drought, and a lower recovery capacity (on an average 54 %). Quercus ilex L., Phillyrea latifolia L., and Pistacia lentiscus L. had an intermediate PN in the favourable period [9.2±1.3 mol(CO2) m–2s–1, mean value], a lower reduction during drought (on an average 63 %), and a range from 62 % (Q. ilex and P. latifolia) to 39 % (P. lentiscus) of recovery capacity. The Mediterranean species had higher decrease in PN and stomatal conductance during drought and a higher recovery capacity than the pre-Mediterranean species. Among the pre-Mediterranean species, P. latifoliahad the best adaptation to long drought periods also by its higher leaf mass per area (LMA) which lowered leaf temperature thus decreasing transpiration rate during drought. Moreover, its leaf longevity determined a more stable leaf biomass during the year. Among the Mediteranean species, R. officinalis was the best adapted species to short drought periods by its ability to rapidly recover. Nevertheless, R. officinalis had the lowest tolerance to high temperatures by its PN dropping below half its maximum value when leaf temperature was over 33.6°C. R. officinalismay be used as a bioindicator species of global change.This revised version was published online in March 2005 with corrections to the page numbers.  相似文献   

17.
Neurogenesis continues throughout adulthood in the mammalian olfactory epithelium (OE), and both neurons as well as nonneuronal cells are reconstituted following experimental injury. Underlying the capacity of the OE to replenish its mature elements is a population of progenitor basal cells. Although the precise lineage relationships among progenitor and mature cell types are incompletely understood, the population of globose basal cells (GBCs) contains immediate precursors to neurons as well as amplifying progenitors, and retroviral lineage analyses suggest that multipotential GBCs are activated following direct injury to the OE. To assess the controls on the process of epithelial regeneration, we have characterized a cell line derived from rat OE and studied the effects of serum and tissue extracts, fibroblast growth factor-2 (FGF2) and transforming growth factor-α (TGFα) on the cells. Using a panel of cell type-specific markers whose patterns of labeling in the OE are well defined, including recently developed markers for GBCs, we characterized the phenotype of the cell line under differing culture conditions. In complete medium, which contains serum and tissue extracts, the cell line displayed characteristics of GBCs that are prominent during regeneration. Serum and extract withdrawal induced the cells to differentiate into neurons. In contrast, FGF2 prevented neuronal differentiation and maintained a GBC phenotype. TGFα had a mitogenic or differentiative effect that was context dependent. Finally, we demonstrate here that FGF2 is contained in mature olfactory neurons and sustentacular cells in vivo, suggesting a physiologic role for this growth factor in OE cell regulation. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 411–428, 1997  相似文献   

18.
The glia-derived serine protease inhibitor and neurite outgrowth promotor protease nexin-1 (PN-1) is expressed in Schwann cell precursors and astroblasts during embryogenesis. In the adult nervous system, PN-1 persists in the Schwann cells and olfactory glia only. Light-microscopic immunohistochemistry has revealed the presence of PN-1 in the olfactory mucosa and in the nerve fiber layer of the olfactory bulb. The present electron-microscopic study of the gerbil olfactory bulb confirms the occurrence of PN-1 in ensheathing cells of the olfactory nerve fiber layer, a special type of glia which envelops olfactory axons. In addition, PN-1 is contained in typical astrocytes of the nerve fiber layer and of the glomerular layer. It is inferred that synthesis of PN-1 in the olfactory bulbs is maintained throughout adulthood because its neurite outgrowth promoting action is required for the continuous renewal of olfactory receptor neurons.  相似文献   

19.
R. C. Miller  D. J. Bowles 《Planta》1985,165(3):377-382
Field-grown wheat (Triticum aestivum L.) has been used as a developmental system to study the appearance of wheat-germ agglutinin during grain maturation. The lectin appears at the mid-grain growth period (30–34 days post-anthesis) and continues to be synthesised throughout the late stages of maturation and desiccation. An acidic endopeptidase activity, inhibited by pepstatin-phenanthroline is present in extracts of embryo and endosperm throughout maturation. After in-vivo labelling of immature embryos with [35S]methionine for 3 h and extraction in the presence of proteinase inhibitors, immunoprecipitates with anti-wheat-germ agglutinin were analysed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography, and found to contain three 35S-labelled polypeptides of Mr 46000, 18000 and 13000. Comparison of two-dimensional tryptic maps of 125I-labelled peptides indicate the three polypeptides are closely related.Abbreviations dpa days post-anthesis - PBS phosphate-buffered saline - RIA radioimmunoassay - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - WGA wheat-germ agglutinin  相似文献   

20.
The rodent olfactory epithelium (OE) is a good model system for studying the principles of stem and progenitor cell biology, because of its capacity for continuous neurogenesis throughout life and relatively well-characterized neuronal lineage. The development of mouse OE is divided into two stages, early and established neurogenesis. In established neurogenesis, which starts at embryonic day (E) 12.5, sustentacular cells and olfactory receptor neurons (ORNs) are produced from apical and basal progenitors, respectively. We previously reported that Six1(-/-) shows a lack of mature ORNs throughout development and disorganization of OE after E12.5. However, the molecular bases for these defects have not been addressed. Here, we show that Six1 is expressed in both apical and basal progenitors. In Six1(-/-) mice, apical proliferating cells were absent and no morphologically identifiable sustentacular cells were observed. Consistently, the expression of Notch2 and Jagged1 in the apical layer was absent in Six1(-/-) mice. On the other hand, basal proliferating cells were observed in Six1(-/-) animals, but the expression of Ngn1, NeuroD, Notch1, and Jagged2 in the basal layer was absent. The expression of Mash1, the determination gene for ORNs, and Hes genes was enhanced in Six1(-/-) mice. The present findings suggest that Six1 regulates production of functional apical and basal progenitors during OE development, through the regulation of various genes, such as neuronal basic helix-loop-helix (bHLH), neuronal repressor bHLH, and genes involved in the Notch signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号