首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new Dictyostelium discoideum cyclase gene was identified that encodes a protein (sGC) with 35% similarity to mammalian soluble adenylyl cyclase (sAC). Gene disruption of sGC has no effect on adenylyl cyclase activity and results in a >10-fold reduction in guanylyl cyclase activity. The scg- null mutants show reduced chemotactic sensitivity and aggregate poorly under stringent conditions. With Mn(2+)/GTP as substrate, most of the sGC activity is soluble, but with the more physiological Mg(2+)/GTP the activity is detected in membranes and stimulated by GTPgammaS. Unexpectedly, orthologues of sGC and sAC are present in bacteria and vertebrates, but absent from Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana and Saccharomyces cerevisiae.  相似文献   

2.
Dictyostelium contains two guanylyl cyclases, GCA, a 12-transmembrane enzyme, and sGC, a homologue of mammalian soluble adenylyl cyclase. sGC provides nearly all chemoattractant-stimulated cGMP formation and is essential for efficient chemotaxis toward cAMP. We show that in resting cells the major fraction of the sGC-GFP fusion protein localizes to the cytosol, and a small fraction is associated to the cell cortex. With the artificial substrate Mn2+/GTP, sGC activity and protein exhibit a similar distribution between soluble and particulate fraction of cell lysates. However, with the physiological substrate Mg2+/GTP, sGC in the cytosol is nearly inactive, whereas the particulate enzyme shows high enzyme activity. Reconstitution experiments reveal that inactive cytosolic sGC acquires catalytic activity with Mg2+/GTP upon association to the membrane. Stimulation of cells with cAMP results in a twofold increase of membrane-localized sGC-GFP, which is accompanied by an increase of the membrane-associated guanylyl cyclase activity. In a cAMP gradient, sGC-GFP localizes to the anterior cell cortex, suggesting that in chemotacting cells, sGC is activated at the leading edge of the cell.  相似文献   

3.
DdGCA is a Dictyostelium guanylyl cyclase with a topology typical for mammalian adenylyl cyclases containing 12 transmembrane-spanning regions and two cyclase domain. In Dictyostelium cells heterotrimeric G-proteins are essential for guanylyl cyclase activation by extracellular cAMP. In lysates, guanylyl cyclase activity is strongly stimulated by guanosine 5'-3-O-(thio) triphosphate (GTPgammaS), which is also a substrate of the enzyme. DdGCA was converted to an adenylyl cyclase by introducing three point mutations. Expression of the obtained DdGCA(kqd) in adenylyl cyclase-defective cells restored the phenotype of the mutant. GTPgammaS stimulated the adenylyl cyclase activity of DdGCA(kqd) with properties similar to those of the wild-type enzyme (decrease of K(m) and increase of V(max)), demonstrating that GTPgammaS stimulation is independent of substrate specificity. Furthermore, GTPgammaS activation of DdGCA(kqd) is retained in several null mutants of Galpha and Gbeta proteins, indicating that GTPgammaS activation is not mediated by a heterotrimeric G-protein but possibly by a monomeric G-protein.  相似文献   

4.
Soluble guanylyl cyclase (sGC) regulates several important physiological processes by converting GTP into the second-messenger cGMP. sGC has several structural and functional properties in common with adenylyl cyclases (ACs). Recently, we reported that membranous ACs and sGC are potently inhibited by 2',3'-O-(2,4,6-trinitrophenyl)-substituted purine and pyrimidine nucleoside 5'-triphosphates. Using a highly sensitive high-performance liquid chromatography-tandem mass spectrometry method, we report that highly purified recombinant sGC of rat possesses nucleotidyl cyclase activity. As opposed to GTP, ITP, XTP and ATP, the pyrimidine nucleotides UTP and CTP were found to be sGC substrates in the presence of Mn(2+). When Mg(2+) is used, sGC generates cGMP, cAMP, cIMP, and cXMP. In conclusion, soluble "guanylyl" cyclase possesses much broader substrate specificity than previously assumed. Our data have important implications for cyclic nucleotide-mediated signal transduction.  相似文献   

5.
In Dictyostelium, chemoattractants induce a fast cGMP response that mediates myosin filament formation in the rear of the cell. The major cGMP signaling pathway consists of a soluble guanylyl cyclase sGC, a cGMP-stimulated cGMP-specific phosphodiesterase, and the cGMP-target protein GbpC. Here we combine published experiments with many unpublished experiments performed in the past 45 years on the regulation and function of the cGMP signaling pathway. The chemoattractants stimulate heterotrimeric Gαβγ and monomeric Ras proteins. A fraction of the soluble guanylyl cyclase sGC binds with high affinity to a limited number of membrane binding sites, which is essential for sGC to become activated by Ras and Gα proteins. sGC can also bind to F-actin; binding to branched F-actin in pseudopods enhances basal sGC activity, whereas binding to parallel F-actin in the cortex reduces sGC activity. The cGMP pathway mediates cell polarity by inhibiting the rear: in unstimulated cells by sGC activity in the branched F-actin of pseudopods, in a shallow gradient by stimulated cGMP formation in pseudopods at the leading edge, and during cAMP oscillation to erase the previous polarity and establish a new polarity axis that aligns with the direction of the passing cAMP wave.  相似文献   

6.
Nitric oxide (NO) is a key mediator in many physiological processes and one of the major receptors through which NO exerts its effects is soluble guanylyl cyclase. Guanylyl cyclase converts GTP to cyclic GMP as part of the cascade that results in physiological processes such as smooth muscle relaxation, neurotransmission, inhibition of platelet aggregation and immune response. The properties of A-350619, a novel soluble guanylyl cyclase activator, were examined to determine the modulatory effect on the catalytic properties of soluble guanylyl cyclase. A-350619 increased V(max) from 0.1 to 14.5 micromol/min/mg (145 fold increase), and lowered K(m) from 300 to 50 microM (6 fold decrease). When YC-1 (another sGC activator) and A-350619 were combined, a 156 fold increase in V(max) and a 5 fold decrease in Km were observed, indicating that the modulation of the enzyme brought about by YC-1 and A-350619 are not additive, suggesting a common binding site. Activation of soluble guanylyl cyclase by A-350619 was partially inhibited by ODQ, a specific inhibitor of soluble guanylyl cyclase by oxidation of the enzyme heme. YC-1 and A-350619 after pre-treatment with N-omega-nitro-L-arginine, an NO-synthase inhibitor, relaxed cavernosum tissue strips in a dose-dependent manner with EC(50) of 50 microM and 80 microM, respectively. Addition of SNP potentiated the relaxation effect of YC-1 and A-350619, shifting the dose-response curve to the left to 3 microM and 10 microM, respectively. Consistent with its biochemical activity, A-350619 (1 micromol/kg) alone induced penile erection in a conscious rat model. Activation of soluble guanylyl cyclase in cavernosum tissue as an alternate method of enhancing the effect of NO may provide a novel treatment of sexual dysfunction.  相似文献   

7.
Previous studies have demonstrated that cGMP is produced by nitric oxide-mediated activation of soluble guanylyl cyclase (sGC) in seminiferous tubules of the human testis. It is not known, however, whether carbon monoxide (CO), another activator of sGC, is also involved in testicular function. To address this issue, testicular probes from 65- to 75-yr-old men have been examined. The CO-generating enzyme, heme oxygenase-1 (HO-1), could be localized by immunohistochemical and immunoblot analyses to Sertoli cells. In these cells, HO-1 is detectable in adluminal cell compartments, whereas sGC immunoreactivity is distributed exclusively in basal compartments. Treatments of isolated tubules with either sodium arsenite, known to induce HO-1, or hematin, an HO substrate, resulted in 4.4- and 1.8-fold, respectively, increases in cGMP levels. ODQ, a specific sGC inhibitor, inhibited completely the sodium arsenite-stimulated cGMP production. Moreover, the HO inhibitor zinc protoporphyrin-IX and the CO scavenger hemoglobin both significantly reduced (77% or 46% of control, respectively) tubular cGMP generation. These findings, demonstrating for the first time a link between HO-1 activity in Sertoli cells and sGC-dependent cGMP production in seminiferous tubules, suggest a functional role of CO in the human testis.  相似文献   

8.
Nitric oxide and the other cyclic nucleotide   总被引:3,自引:0,他引:3  
Nitric oxide (NO) participates in the regulation of the daily activities of cells as well as in cytotoxic events. Elucidating the mechanism(s) by which NO carries out its diverse functions has been the goal of numerous laboratories. In the cardiovascular system, evidence indicates that NO mediates its effects via an activation of soluble guanylyl cyclase (sGC). In other tissues, it is not clear if sGC is an exclusive target for NO or what the functions of cGMP might be. It is also unlikely that the diversity of NO actions is explained solely by changes in cGMP. This review focuses on the evidence that NO modulates cAMP signalling, with specific attention to the effects of NO on adenylyl cyclase (AC) as the target of NO regulation.  相似文献   

9.

Background  

The soluble guanylyl cyclase (sGC) is a heterodimeric enzyme that, upon activation by nitric oxide, stimulates the production of the second messenger cGMP. Each sGC subunit harbor four domains three of which are used for heterodimerization: H-NOXA/H-NOBA domain, coiled-coil domain (CC), and catalytic guanylyl cyclase domain. The CC domain has previously been postulated to be part of a larger CC family termed the signaling helix (S-helix) family. Homodimers of sGC have also been observed but are not functionally active yet are likely transient awaiting their intended heterodimeric partner.  相似文献   

10.
We utilized rat fetal lung fibroblasts (RFL-6) to evaluate our PDE5 inhibitors at cellular level and observed a decrease in cGMP accumulation induced by sodium nitroprusside (SNP) and PDE5 inhibitors with passage. To further investigate this observation, we examined cGMP synthesis via soluble guanylyl cyclase (sGC) and degradation via phosphodiesterases (PDEs) at different passages. At passage (p)4, p9, p14, major cGMP and cAMP degradation activities were contributed by PDE5 and PDE4, respectively. The PDE5 activity decreased 50% from p4 to p14, while PDE4 activity doubled. The cGMP accumulation was evaluated in the presence of sodium nitroprusside (SNP) and/or PDE inhibitors in p4 and p14 cells. SNP together with sildenafil, a PDE5 inhibitor, induced dose-dependent increase in cGMP levels in cells at p4, but showed little effect on cells at p14. The possible down regulation of sGC at mRNA level was explored using real-time RT-PCR. The result showed the mRNA level of the alpha1 subunit of sGC decreased about 98% by p9, while the change on beta1 mRNA was minimal. Consistently, sGC activities in cell lysate decreased by 94% at p9. Forskolin stimulated a dramatic increase in cAMP levels in cells at all passages examined. Our results show that sGC activity decreased significantly and rapidly with passage due to a down regulation of the alpha1 subunit mRNA, yet the adenylyl cyclase activity was not compromised. This study further emphasized the importance of considering passage number when using cell culture as a model system to study NO/cGMP pathway.  相似文献   

11.
12.
In a newly characterized cultured porcine pulmonary artery (PA) preparation, 24-h treatment with the nitric oxide (NO) donor (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NO) decreased the response to acutely applied DETA-NO compared with 24-h control (-log EC(50) 6.55 +/- 0.12 and 5.02 +/- 0.21, respectively). Treatment of PA with the cell-permeable superoxide dismutase mimetic, Mn(III) tetra(4-benzoic acid) porphyrin chloride, did not change NO responsiveness in either freshly prepared or 24-h DETA-NO-treated PA. cGMP and cAMP phosphodiesterase activities were approximately equal in PA. Twenty-four-hour DETA-NO treatment did not change either cGMP or cAMP phosphodiesterase activities. Twenty-four hours in culture had no significant effect on soluble guanylyl cyclase (sGC) subunit mRNA expression, but 24-h DETA-NO treatment significantly decreased the expression of both sGCalpha(1) and sGCbeta(1). sGCbeta(1) protein expression was 42 +/- 4 ng/mg soluble protein. Twenty-four hours in culture without and with DETA-NO reduced sGCbeta(1) protein expression (36 +/- 3 and 31 +/- 3 ng/mg soluble protein, respectively, P < 0.025). Basal tissue cGMP [(cGMP)(i)] was significantly increased, and NO-induced (cGMP)(i) was significantly decreased by 24-h DETA-NO treatment. (cGMP)(i) normalized to the amount of sGC protein expressed in PA was significantly lower in PA treated for 24 h with DETA-NO compared with both freshly isolated and 24-h cultured PA. We conclude that prolonged NO treatment induces decreased acute NO responsiveness in part by decreasing both sGC expression and sGC-specific activity.  相似文献   

13.
Purified soluble guanylyl cyclase consists of two subunits (70 and 73 kDa) whose primary structures were recently determined. The availability of cDNA clones coding for either subunit allowed to study the question of the functional roles of the two subunits in expression experiments. Enzyme subunits were expressed in COS-7 cells by transfection with expression vectors containing the coding region for the 70 of 73 kDa subunit of the enzyme. No significant elevation in the activity of soluble guanylyl cyclase was observed in cells transfected with cDNA coding for one of the subunits. In contrast, transfection of cells with cDNAs coding for both subunits resulted in a marked increase in activity of soluble guanylyl cyclase. Enzyme activity was stimulated about 50-fold by sodium nitroprusside. The results indicate that formation of cyclic GMP by soluble guanylyl cyclase requires both 70 and 73 kDa subunits.  相似文献   

14.
We have identified a novel Ras-interacting protein from Dictyostelium, RIP3, whose function is required for both chemotaxis and the synthesis and relay of the cyclic AMP (cAMP) chemoattractant signal. rip3 null cells are unable to aggregate and lack receptor activation of adenylyl cyclase but are able, in response to cAMP, to induce aggregation-stage, postaggregative, and cell-type-specific gene expression in suspension culture. In addition, rip3 null cells are unable to properly polarize in a cAMP gradient and chemotaxis is highly impaired. We demonstrate that cAMP stimulation of guanylyl cyclase, which is required for chemotaxis, is reduced ~60% in rip3 null cells. This reduced activation of guanylyl cyclase may account, in part, for the defect in chemotaxis. When cells are pulsed with cAMP for 5 h to mimic the endogenous cAMP oscillations that occur in wild-type strains, the cells will form aggregates, most of which, however, arrest at the mound stage. Unlike the response seen in wild-type strains, the rip3 null cell aggregates that form under these experimental conditions are very small, which is probably due to the rip3 null cell chemotaxis defect. Many of the phenotypes of the rip3 null cell, including the inability to activate adenylyl cyclase in response to cAMP and defects in chemotaxis, are very similar to those of strains carrying a disruption of the gene encoding the putative Ras exchange factor AleA. We demonstrate that aleA null cells also exhibit a defect in cAMP-mediated activation of guanylyl cyclase similar to that of rip3 null cells. A double-knockout mutant (rip3/aleA null cells) exhibits a further reduction in receptor activation of guanylyl cyclase, and these cells display almost no cell polarization or movement in cAMP gradients. As RIP3 preferentially interacts with an activated form of the Dictyostelium Ras protein RasG, which itself is important for cell movement, we propose that RIP3 and AleA are components of a Ras-regulated pathway involved in integrating chemotaxis and signal relay pathways that are essential for aggregation.  相似文献   

15.
Mammals express nine membranous adenylyl cyclase isoforms (ACs 1-9), a structurally related soluble guanylyl cyclase (sGC) and a soluble AC (sAC). Moreover, Bacillus anthracis and Bacillus pertussis produce the AC toxins, edema factor (EF), and adenylyl cyclase toxin (ACT), respectively. 2'(3')-O-(N-methylanthraniloyl)-guanosine 5'-[gamma-thio]triphosphate is a potent competitive inhibitor of AC in S49 lymphoma cell membranes. These data prompted us to study systematically the effects of 24 nucleotides on AC in S49 and Sf9 insect cell membranes, ACs 1, 2, 5, and 6, expressed in Sf9 membranes and purified catalytic subunits of membranous ACs (C1 of AC5 and C2 of AC2), sAC, sGC, EF, and ACT in the presence of MnCl(2). N-Methylanthraniloyl (MANT)-GTP inhibited C1.C2 with a K(i) of 4.2 nm. Phe-889 and Ile-940 of C2 mediate hydrophobic interactions with the MANT group. MANT-inosine 5'-[gamma-thio]triphosphate potently inhibited C1.C2 and ACs 1, 5, and 6 but exhibited only low affinity for sGC, EF, ACT, and G-proteins. Inosine 5'-[gamma-thio]triphosphate and uridine 5'-[gamma-thio]triphosphate were mixed G-protein activators and AC inhibitors. AC5 was up to 15-fold more sensitive to inhibitors than AC2. EF and ACT exhibited unique inhibitor profiles. At sAC, 2',5'-dideoxyadenosine 3'-triphosphate was the most potent compound (IC(50), 690 nm). Several MANT-adenine and MANT-guanine nucleotides inhibited sGC with K(i) values in the 200-400 nm range. UTP and ATP exhibited similar affinities for sGC as GTP and were mixed sGC substrates and inhibitors. The exchange of MnCl(2) against MgCl(2) reduced inhibitor potencies at ACs and sGC 1.5-250-fold, depending on the nucleotide and cyclase studied. The omission of the NTP-regenerating system from cyclase reactions strongly reduced the potencies of MANT-ADP, indicative for phosphorylation to MANT-ATP by pyruvate kinase. Collectively, AC isoforms and sGC are differentially inhibited by purine and pyrimidine nucleotides.  相似文献   

16.
It is well established that G protein-coupled receptors stimulate nitric oxide-sensitive soluble guanylyl cyclase by increasing intracellular Ca(2+) and activating Ca(2+)-dependent nitric-oxide synthases. In pituitary cells receptors that stimulated adenylyl cyclase, growth hormone-releasing hormone, corticotropin-releasing factor, and thyrotropin-releasing hormone also stimulated calcium signaling and increased cGMP levels, whereas receptors that inhibited adenylyl cyclase, endothelin-A, and dopamine-2 also inhibited spontaneous calcium transients and decreased cGMP levels. However, receptor-controlled up- and down-regulation of cyclic nucleotide accumulation was not blocked by abolition of Ca(2+) signaling, suggesting that cAMP production affects cGMP accumulation. Agonist-induced cGMP accumulation was observed in cells incubated in the presence of various phosphodiesterase and soluble guanylyl cyclase inhibitors, confirming that G(s)-coupled receptors stimulated de novo cGMP production. Furthermore, cholera toxin (an activator of G(s)), forskolin (an activator of adenylyl cyclase), and 8-Br-cAMP (a permeable cAMP analog) mimicked the stimulatory action of G(s)-coupled receptors on cGMP production. Basal, agonist-, cholera toxin-, and forskolin-stimulated cGMP production, but not cAMP production, was significantly reduced in cells treated with H89, a protein kinase A inhibitor. These results indicate that coupling seven plasma membrane-domain receptors to an adenylyl cyclase signaling pathway provides an additional calcium-independent and cAMP-dependent mechanism for modulating soluble guanylyl cyclase activity in pituitary cells.  相似文献   

17.
The nitric oxide receptor soluble guanylyl cyclase (sGC) exists in multimeric protein complexes, including heat shock protein (HSP) 90 and endothelial nitric oxide synthase. Inhibition of HSP90 by geldanamycin causes proteasomal degradation of sGC protein. In this study, we have investigated whether COOH terminus of heat shock protein 70-interacting protein (CHIP), a co-chaperone molecule that is involved in protein folding but is also a chaperone-dependent ubiquitin E3 ligase, could play a role in the process of degradation of sGC. Transient overexpression of CHIP in COS-7 cells degraded heterologous sGC in a concentration-related manner; this downregulation of sGC was abrogated by the proteasome inhibitor MG-132. Transfection of tetratricopeptide repeats and U-box domain CHIP mutants attenuated sGC degradation, suggesting that both domains are indispensable for CHIP function. Results from immunoprecipitation and indirect immunofluorescent microscopy experiments demonstrated that CHIP is associated with sGC, HSP90, and HSP70 in COS-7 cells. Furthermore, CHIP increased the association of HSP70 with sGC. In in vitro ubiquitination assays using purified proteins and ubiquitin enzymes, E3 ligase CHIP directly ubiquitinated sGC; this ubiquitination was potentiated by geldanamycin in COS-7 cells, followed by proteasomal degradation. In rat aortic smooth muscle cells, endogenous sGC was also degraded by adenovirus-infected wild-type CHIP but not by the chaperone interaction-deficient K30A CHIP, whereas CHIP, but not K30A, attenuated sGC expression in, and nitric oxide donor-induced relaxation of, rat aortic rings, suggesting that CHIP plays a regulatory role under physiological conditions. This study reveals a new mechanism for the regulation of sGC, an important mediator of cellular and vascular function.  相似文献   

18.
19.
Previous studies have shown that endothelial nitric oxide (NO) synthase (eNOS)-derived NO is an important signaling molecule in ischemia-reperfusion (I-R) injury. Deficiency of eNOS-derived NO has been shown to exacerbate injury in hepatic and myocardial models of I-R. We hypothesized that transgenic overexpression of eNOS (eNOS-TG) would reduce hepatic I-R injury. We subjected two strains of eNOS-TG mice to 45 min of hepatic ischemia and 5 h of reperfusion. Both strains were protected from hepatic I-R injury compared with wild-type littermates. Because the mechanism for this protection is still unclear, additional studies were performed by using inhibitors and activators of both soluble guanylyl cyclase (sGC) and heme oxygenase-1 (HO-1) enzymes. Blocking sGC with 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and HO-1 with zinc (III) deuteroporphyrin IX-2,4-bisethyleneglycol (ZnDPBG) in wild-type mice increased hepatic I-R injury, whereas pharmacologically activating these enzymes significantly attenuated I-R injury in wild-type mice. Interestingly, ODQ abolished the protective effects of eNOS overexpression, whereas ZnDPBG had no effect. These results suggest that hepatic protection in eNOS-TG mice may be mediated in part by NO signaling via the sGC-cGMP pathway and is independent of HO-1 signal transduction pathways.  相似文献   

20.
Exotoxin Y (ExoY) is a type III secretion system effector found in ~ 90% of the Pseudomonas aeruginosa isolates. Although it is known that ExoY causes inter-endothelial gaps and vascular leak, the mechanisms by which this occurs are poorly understood. Using both a bacteria-delivered and a codon-optimized conditionally expressed ExoY, we report that this toxin is a dual soluble adenylyl and guanylyl cyclase that results in intracellular cAMP and cGMP accumulation. The enzymatic activity of ExoY caused phosphorylation of endothelial Tau serine 214, accumulation of insoluble Tau, inter-endothelial cell gap formation, and increased macromolecular permeability. To discern whether the cAMP or cGMP signal was responsible for Tau phosphorylation and barrier disruption, pulmonary microvascular endothelial cells were engineered for the conditional expression of either wild-type guanylyl cyclase, which synthesizes cGMP, or a mutated guanylyl cyclase, which synthesizes cAMP. Sodium nitroprusside stimulation of the cGMP-generating cyclase resulted in transient Tau serine 214 phosphorylation and gap formation, whereas stimulation of the cAMP-generating cyclase induced a robust increase in Tau serine 214 phosphorylation, gap formation, and macromolecular permeability. These results indicate that the cAMP signal is the dominant stimulus for Tau phosphorylation. Hence, ExoY is a promiscuous cyclase and edema factor that uses cAMP and, to some extent, cGMP to induce the hyperphosphorylation and insolubility of endothelial Tau. Because hyperphosphorylated and insoluble Tau are hallmarks in neurodegenerative tauopathies such as Alzheimer disease, acute Pseudomonas infections cause a pathophysiological sequela in endothelium previously recognized only in chronic neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号