首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mice that lack IL-15 or the IL-15R alpha-chain (IL-15Ralpha) are deficient in peripheral CD8(+), but not in CD4(+), T cells. This CD8(+) T cell-specific deficiency has now been investigated further by characterization of a new strain of IL-15Ralpha(-/-) mice. The adult mutant mice exhibited a specific reduction in the percentage of CD8-single positive TCR(high) thymocytes. The expression of Bcl-2 was reduced in both CD8(+) thymocytes and naive T cells of the mutant animals, and the susceptibility of these cells to death was increased. Memory CD8(+) cells were profoundly deficient in IL-15Ralpha(-/-)mice, and the residual memory-like CD8(+) cells contained a high percentage of dead cells and failed to up-regulate Bcl-2 expression compared with naive CD8(+) cells. Moreover, exogenous IL-15 both up-regulated the level of Bcl-2 in and reduced the death rate of wild-type and mutant CD8(+) T cells activated in vitro. These results indicate that IL-15 and IL-15Ralpha regulate the expression of Bcl-2 in CD8(+) T cells at all developmental stages. The reduced Bcl-2 content in CD8(+) cells might result in survival defect and contribute to the reduction of CD8(+) cells in IL-15Ralpha(-/-)mice.  相似文献   

2.
Naive CD4(+) T cells differentiate into two types of helper T cells showing an interferon-gamma-predominant (Th1) or an interleukin-4-predominant (Th2) cytokine secretion profile after repeated antigenic stimulation. Their differentiation can be influenced by slight differences in the interaction between the T cell receptor (TCR) and its ligand at the time of primary activation. However, the primary response of freshly isolated naive CD4(+) T cells to altered TCR ligands is still unclear. Here, we investigated the primary response of splenic naive CD4(+) T cells derived from transgenic mice expressing TCR specific for residues 323-339 of ovalbumin (OVA323-339) bound to I-A(d) molecules. Naive CD4(+) T cells secreted either Th1- or Th2-type cytokines immediately after stimulation with OVA323-339 or its single amino acid-substituted analogs. Helper activity for antibody secretion by co-cultured resting B cells was also found in the primary response, accompanied by either low-level Th2-type cytokine secretion or no apparent cytokine secretion. Our results clearly indicate that dichotomy of the Th1/Th2 cytokine secretion profile can be elicited upon primary activation of naive CD4(+) T cells. We also demonstrate that the helper activity of naive CD4(+) T cells for antibody production does not correspond to the amounts of the relevant cytokines secreted.  相似文献   

3.
4.
The killer cell lectin-like receptor G1 (KLRG1) is the mouse homologue of the rat mast cell function-associated Ag and contains a tyrosine-based inhibitory motif in its cytoplasmic domain. It has been demonstrated that KLRG1 is induced on activated NK cells and that KLRG1 can inhibit NK cell effector functions. In this study, we show that in naive C57BL/6 mice KLRG1 is expressed on a subset of CD44(high)CD62L(low) T cells. KLRG1 expression can be detected on a small number of V(alpha)14i NK T cells but not on CD8alphaalpha(+) intraepithelial T cells that are either TCRgammadelta(+) or TCRalphabeta(+). We also show that KLRG1 expression is dramatically induced on approximately 50% of the CD8(+) T cells during both a viral and a parasitic infection. Interestingly, during Toxoplasma gondii infection, KLRG1 is up-regulated on CD4(+) T cells. Although KLRG1 expression can be induced on both NK cells and T cells, the molecular mechanism leading to the induction of KLRG1 differs in these two subsets of cells. Indeed, the up-regulation of KLRG1 on NK cells can be driven in vivo by cytokines, whereas KLRG1 cannot be induced on CD8(+) T cells by cytokines. In addition, although induction of KLRG1 on T cells appears to require TCR engagement in vivo, TCR engagement is not sufficient for KLRG1 induction in vitro. Taken together, these data suggest that the expression and induction of KLRG1 on T cells are tightly regulated. This could have important biological consequences on T cell activation and homeostasis.  相似文献   

5.
Activated T lymphocytes modulate the level of many molecules on their cell surface, including cytokine receptors. This regulation of cytokine receptor expression affects the ability of T cells to respond to cytokines and thus influences the outcome of an immune response. The receptor for IFN-gamma, a proinflammatory cytokine, consists of two copies of a ligand binding chain (IFN-gammaR1) as well as two copies of a second chain (IFN-gammaR2) required for signal transduction. The expression of IFN-gammaR2 is down-regulated at the mRNA level on CD4+ T cells when they differentiate into the Th1, but not the Th2, phenotype. This down-regulation has been demonstrated to depend on the ligand, IFN-gamma, which is produced by Th1 but not Th2 T cells. The regulation of the cell-surface expression of IFN-gamma receptors during primary T cell activation has not been reported. Naive and differentiated T lymphocytes express IFN-gammaR1 at the mRNA level and as a cell-surface protein. In this study, we present evidence that cell-surface expression of IFN-gammaR1 is transiently down-regulated on the surface of naive CD4+ T cells shortly after TCR engagement. Furthermore, this down-regulation is not mediated by the ligand, IFN-gamma, but results from TCR engagement and can be inhibited by cyclosporin A.  相似文献   

6.
7.
Thymic stromal lymphopoietin (TSLP) is a cytokine that promotes CD4(+) T cell homeostasis and contributes to allergic and inflammatory responses. TSLP can act directly on mouse CD4(+) T cells, but in humans, the available data have indicated that TSLP receptors are not expressed on CD4(+) T cells and that TSLP instead activates dendritic cells, which in turn promote the proliferation and differentiation of CD4(+) T cells. We now unexpectedly demonstrate the presence of TSLP receptors on activated human CD4(+) T cells. Strikingly, whereas freshly isolated peripheral blood human T cells show little if any response to TSLP, TCR stimulation allows a potent response to this cytokine. Moreover, TSLP increases the sensitivity of human CD4(+) T cells to low doses of IL-2, augmenting responsiveness of these cells to TCR engagement. Our results establish that human CD4(+) T cells are direct targets for TSLP.  相似文献   

8.
Th cell differentiation from naive precursors is a tightly controlled process; the most critical differentiation factor is the action of the driving cytokine: IL-12 for Th1 development, IL-4 for Th2 development. We found that CD4(+) T cells from nonobese diabetic mice spontaneously differentiate into IFN-gamma-producing Th1 cells in response to polyclonal TCR stimulation in the absence of IL-12 and IFN-gamma. Instead, IL-2 was necessary and sufficient to direct T cell differentiation to the Th1 lineage by nonobese diabetic CD4(+) T cells. Its ability to direct Th1 differentiation of both naive and memory CD4(+) T cells was clearly uncoupled from its ability to stimulate cell division. Autocrine IL-2-driven Th1 differentiation of nonobese diabetic T cells may represent a genetic liability that favors development of IFN-gamma-producing autoreactive T cells.  相似文献   

9.
We found a tight correlation among the levels of H4/inducible costimulator (ICOS) expression, IL-4 production, and GATA-3 induction, using activated CD4(+) T cells obtained from six different murine strains. BALB/c-activated CD4(+) T cells expressed approximately 10-fold more H4/ICOS on their surfaces and produced approximately 10-fold more IL-4 upon restimulation than C57BL/6-activated CD4(+) T cells. BALB/c naive CD4(+) T cells were shown to produce much higher amounts of IL-2 and IL-4 upon primary stimulation than C57BL/6 naive CD4(+) T cells. Neutralization of IL-4 with mAbs in culture of BALB/c naive CD4(+) T cells strongly down-regulated both H4/ICOS expression on activated CD4(+) T cells and IL-4 production upon subsequent restimulation. Conversely, exogenous IL-4 added to the culture of BALB/c or C57BL/6 naive CD4(+) T cells up-regulated H4/ICOS expression and IL-4 production upon restimulation. In addition, retroviral expression of GATA-3 during the stimulation of naive CD4(+) T cells from C57BL/6 or IL-4(-/-) mice increased H4/ICOS expression on activated CD4(+) T cells. A similar effect of IL-2 in the primary culture of BALB/c naive CD4(+) T cells appeared to be mediated by IL-4, the production of which was regulated by IL-2. These data suggest that IL-4 induced by IL-2 is critical to the maintenance of high H4/ICOS expression on BALB/c-activated CD4(+) T cells.  相似文献   

10.
The high-affinity chain of the IL-7 receptor, IL-7Ralpha (CD127), is expressed by effector CD8 T cells that have the capacity to become memory cells. IL-7Ralpha expression is uniformly high on naive CD8 T cells, and the majority of these cells down-regulate expression upon antigenic challenge. At the peak of expansion, the fraction of effectors expressing high IL-7Ralpha varies depending on the response examined. The signals that a CD8 T cell receives during a response to Ag that lead to altered expression of IL-7Ralpha have not been fully defined. In vitro experiments demonstrated that Ag alone is sufficient to down-regulate IL-7Ralpha on all cells and most of the cells rapidly re-express the receptor upon removal from Ag. Expression was not altered by the B7.1 costimulatory ligand or when IL-12 was present to provide the signal needed for development of effector functions, indicating that TCR engagement is sufficient to regulate IL-7Ralpha expression. Consistent with this, in vivo priming with peptide Ag resulted in IL-7Ralpha expression that inversely correlated with Ag levels, and expression levels were not changed when IL-12 or adjuvant were administered with Ag. A large fraction of the cells present at the peak of expansion had re-expressed IL-7Ralpha, but most of these cells failed to survive; those that did survive expressed high IL-7Ralpha levels. Thus, Ag-dependent signals regulate IL-7Ralpha levels on responding CD8 T cells, and this occurs whether the responding cells become fully activated or are rendered tolerant by administration of peptide Ag alone.  相似文献   

11.
TCR activation of naive T cells in the presence of IL-12 drives polarization toward a Th1 phenotype and synthesis of P- and E-selectin ligands. Fucosyltransferase VII (Fuc-T VII) and core 2 beta-1,6-N-acetylglucosaminyltransferase (C2GnT) are critical for biosynthesis of selectin ligands. P-selectin glycoprotein ligand-1 is the best characterized ligand for P-selectin and also binds E-selectin. The contributions of TCR and cytokine signaling pathways to up-regulate Fuc-T VII and C2GnT during biosynthesis of E- and P-selectin ligands, such as P-selectin glycoprotein ligand 1, are unknown. IL-12 signals via the STAT4 pathway. Here, naive DO11.10 TCR transgenic and STAT4(-/-) TCR transgenic CD4(+) T cells were stimulated with Ag and IL-12 (Th1 condition), IL-4 (Th2), or neutralizing anti-IL-4 mAb only (Th0). The levels of Fuc-T VII and C2GnT mRNA in these cells were compared with their adhesive interactions with P- and E-selectin in vitro under flow. The data show IL-12/STAT4 signaling is necessary for induction of C2GnT, but not Fuc-TVII mRNA, and that STAT4(-/-) Th1 cells do not traffic normally to sites of inflammation in vivo, do not interact with P-selectin, and exhibit a partial reduction of E-selectin interactions under shear stress in vitro. Ag-specific TCR activation in CD4(+) T cells was sufficient to trigger induction of Fuc-TVII, but not C2GnT, mRNA and expression of E-selectin, but not P-selectin, ligands. Thus, Fuc-T VII and C2GnT are regulated by different signals during Th cell differentiation, and both cytokine and TCR signals are necessary for the expression of E- and P-selectin ligands.  相似文献   

12.
In anergic T cells, T-cell receptor (TCR)-mediated responses are functionally inactivated by negative regulatory signals whose mechanisms are poorly understood. Here, we show that CD4(+) T cells anergized in vivo by superantigen Mls-1(a) express a scaffolding protein, transforming growth factor beta-activated protein kinase 1-binding protein 1 (TAB1), that negatively regulates TCR signaling through the activation of mitogen-activated protein kinase p38 alpha. TAB1 was not expressed in naive and activated CD4(+) T cells. Inhibition of p38 activity in anergic T cells by a chemical inhibitor resulted in the recovery of interleukin 2 (IL-2) and the inhibition of IL-10 secretion. T-cell hybridoma 2B4 cells transduced with TAB1-containing retrovirus (TAB1-2B4 cells) showed activated p38 alpha, inhibited extracellular signal-regulated kinase (ERK) activity, culminating in reduced IL-2 levels and increased IL-10 production. The use of a p38 inhibitor or cotransfection of a dominant-negative form of p38 in TAB1-2B4 cells resulted in the recovery of ERK activity and IL-2 production. These results imply that TAB1-mediated activation of p38 alpha in anergic T cells regulates the maintenance of T-cell unresponsiveness both by inhibiting IL-2 production and by promoting IL-10 production.  相似文献   

13.
TNF-related activation-induced cytokine (TRANCE) is a member of the TNF family recently identified in activated T cells. We report here that TRANCE mRNA is constitutively expressed in memory, but not naive, T cells and in single-positive thymocytes. Upon TCR/CD3 stimulation, TRANCE mRNA and surface protein expression are rapidly up-regulated in CD4+ and CD8+ T cells, which can be further enhanced on CD4+ T cells by CD28-mediated costimulation. However, TRANCE induction is significantly suppressed when cells are stimulated in the presence of IL-4, but is not modified in the presence of IFN-alpha, IFN-gamma, TGF-beta, TNF-alpha, or IL-2. High levels of TRANCE receptor expression are found on mature dendritic cells (DCs). In this study we show that activated T and B cells also express TRANCE receptor, but only at low levels. TRANCE, however, does not exert any significant effect on the proliferation, activation, or survival of those cells. In DCs, TRANCE induces the expression of proinflammatory cytokines (IL-6, IL-1) and T cell growth and differentiation factors (IL-12, IL-15) in addition to enhancing DC survival. Moreover, TRANCE cooperates with CD40 ligand or TNF-alpha to further increase the viability of DCs, suggesting that several TNF-related molecules on activated T cells may cooperatively regulate the function and survival of DCs to enhance T cell-mediated immune responses.  相似文献   

14.
Murine CD4(+)CD25(+) T regulatory (Treg) cells were cocultured with CD4(+)CD25(-) Th cells and APCs or purified B cells and stimulated by anti-CD3 mAb. Replacement of APCs by B cells did not significantly affect the suppression of CD4(+)CD25(-) Th cells. When IL-4 was added to separate cell populations, this cytokine promoted CD4(+)CD25(-) Th and CD4(+)CD25(+) Treg cell proliferation, whereas the suppressive competence of CD4(+)CD25(+) Treg cells was preserved. Conversely, IL-4 added to coculture of APCs, CD4(+)CD25(-) Th cells, and CD4(+)CD25(+) Treg cells inhibited the suppression of CD4(+)CD25(-) Th cells by favoring their survival through the induction of Bcl-2 expression. At variance, suppression was not affected by addition of IL-13, although this cytokine shares with IL-4 a receptor chain. When naive CD4(+)CD25(-) Th cells were replaced by Th1 and Th2 cells, cell proliferation of both subsets was equally suppressed, but suppression was less pronounced compared with that of CD4(+)CD25(-) Th cells. IL-4 production by Th2 cells was also inhibited. These results indicate that although CD4(+)CD25(+) Treg cells inhibit IL-4 production, the addition of IL-4 counteracts CD4(+)CD25(+) Treg cell-mediated suppression by promoting CD4(+)CD25(-) Th cell survival and proliferation.  相似文献   

15.
Stimulation of the costimulatory receptor CD27 by its ligand CD70 has proved important for the generation of primary and memory CD8(+) T cell responses in various models of antigenic challenge. CD27/CD70-mediated costimulation promotes the survival of primed T cells and thereby increases the size of effector and memory populations. In this paper, we reveal molecular mechanisms underlying the prosurvival effect of CD27. CD27 signaling upregulated expression of the antiapoptotic Bcl-2 family member Bcl-x(L). However, genetic reconstitution of Cd27(-/-) CD8(+) T cells with Bcl-x(L) alone or in combination with the related protein Mcl-1 did not compensate for CD27 deficiency in the response to influenza virus infection. This suggested that CD27 supports generation of the CD8(+) effector T cell pool not only by counteracting apoptosis via Bcl-2 family members. Genome-wide mRNA expression profiling indicated that CD27 directs expression of the Pim1 gene. Pim-1 is a serine/threonine kinase that sustains survival of rapidly proliferating cells by antiapoptotic and prometabolic effects that are independent of the mammalian target of rapamycin (mTOR) pathway. In TCR-primed CD8(+) T cells, CD27 could increment Pim-1 protein expression and promote cell survival throughout clonal expansion independent of the mTOR and IL-2R pathways. In addition, introduction of the Pim1 gene in Cd27(-/-) CD8(+) T cells partially corrected their defect in clonal expansion and formation of an effector pool. We conclude that CD27 may contribute to the survival of primed CD8(+) T cells by the upregulation of antiapoptotic Bcl-2 family members but also calls the Pim-1 kinase survival pathway into action.  相似文献   

16.
17.
Activation of naive Th lymphocytes by the TCR and the costimulatory molecule, CD28, is believed to provide competent signals for differentiation to effector cells. Such activated cells proliferated and expressed IL-2, but arrested in an immature state maintained by CTLA-4. Although unresponsive to restimulation by TCR/CD28 alone, restimulation with TCR/CD28 and either Stat4- or Stat6-mediated cytokine signals rescued cells to proliferate and differentiate to the appropriately matched canonical Th subsets. Addition of IL-4 at defined periods revealed that naive T cells were receptive to IL-4-mediated differentiation for up to 3 days after their initial priming. A Stat-dependent anergic checkpoint between clonal expansion and effector cell differentiation may defer the cytokine profile to be instructed at the site of infection, thus preventing the unregulated development of potentially damaging effector cells.  相似文献   

18.
In the neonate, cellular immunity has generally been hypothesized as being incompetent. Accumulating evidence from several recent studies, together with our present report, contradicts this hypothesis. T-helper cell and T cytotoxic type 1 and 2 (Th1/Th2 and Tc1/Tc2, respectively) cytokine responses to polyclonal T cell receptor (TCR) activation were assessed in medium-term cultures of human cord blood T cells using intracellular cytokine staining, which could measure the frequencies of cytokine-producing cells. In this study, we examined the responses of cord blood CD4(+) and CD8(+) T cells in regard to the production of interferon (IFN)-gamma and interleukin (IL)-4 and compared the responses with those obtained from T cells of healthy adults. We found that the responses in cord blood T cells activated with TCR stimulation were comparable to those of their adult counterparts. Moreover, the Th/Tc cells that developed in cord blood were as competent as adult cells for both IFN-gamma and IL-4 secretion. In addition, IL-12 production, which is critical for both Th1 and Tc1 responses, was equally comparable in the two groups. The production of two major cross-regulatory cytokines, tumor necrosis factor-alpha and IL-10, was similarly comparable and not significantly different between the two groups. Taken together, these results indicate that, though naive, the neonatal T cell is competent to respond to TCR-mediated stimulation and to produce both type 1 and type 2 cytokines.  相似文献   

19.
During activation in vivo, naive CD4(+) T cells are exposed to various endogenous ligands, such as cytokines and the neurotransmitter norepinephrine (NE). To determine whether NE affects naive T cell differentiation, we used naive CD4(+) T cells sort-purified from either BALB/c or DO11.10 TCR-transgenic mouse spleens and activated these cells with either anti-CD3/anti-CD28 mAbs or APC and OVA(323-329) peptide, respectively, under Th1-promoting conditions. RT-PCR and functional assays using selective adrenergic receptor (AR) subtype antagonists showed that naive CD4(+) T cells expressed only the beta 2AR subtype to bind NE and that stimulation of this receptor generated Th1 cells that produced 2- to 4-fold more IFN-gamma. This increase was due to more IFN-gamma produced per cell upon restimulation instead of more IFN-gamma-secreting cells, as determined by IFN-gamma-specific immunofluorescence and enzyme-linked immunospot. In contrast, Th1 cell differentiation was unaffected when naive T cells were exposed to NE and activated either in the presence of a neutralizing anti-IL-12 mAb or by APC from IL-12-deficient mice. Moreover, the addition of IL-12 to the IL-12-deficient APC cultures restored the ability of NE to increase Th1 differentiation. Taken together, these results indicate that a possible link may exist between the signaling pathways used by NE and IL-12 to increase naive CD4(+) T cell differentiation to a Th1 cell.  相似文献   

20.
In the present study, we have aimed at clarifying the CD4-dependent molecular mechanisms that regulate human memory T cell susceptibility to both Fas (CD95)-dependent and Bcl-2-dependent apoptotic pathways following antigenic challenge. To address this issue, we used an experimental system of viral and alloantigen-specific T cell lines and clones and two ligands of CD4 molecules, Leu-3a mAb and HIV gp120. We demonstrate that CD4 engagement before TCR triggering suppresses the TCR-mediated neosynthesis of the Flice-like inhibitory protein and transforms memory T cells from a CD95-resistant to a CD95-susceptible phenotype. Moreover, evidence that the apoptotic programs were executed while Fas ligand mRNA expression was inhibited led us to analyze Bcl-2-dependent pathways. The data show that the engagement of CD4 separately from TCR influences the expression of the proapoptotic protein Bax independently of the anti-apoptotic protein Bcl-2, whereas Ag activation coordinately modulates both Bax and Bcl-2. The increased expression of Bax and the consequent dissipation of the mitochondrial transmembrane potential (DeltaPsim) suggest a novel immunoregulatory function of CD4 and demonstrate that both passive cell death and activation-induced cell death are operative in CD4+ memory T cells. Furthermore, analysis of the mechanisms by which IL-2 and IL-4 cytokines exert their protective function on CD4+ T cells in the presence of soluble CD4 ligands shows that they were able to revert susceptibility to Bax-mediated but not to CD95-dependent apoptotic pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号