首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human cytomegalovirus DNA polymerase consists of a catalytic subunit, UL54, and a presumed processivity factor, UL44. We have solved the crystal structure of residues 1-290 of UL44 to 1.85 A resolution by multiwavelength anomalous dispersion. The structure reveals a dimer of UL44 in the shape of a C clamp. Each monomer of UL44 shares its overall fold with other processivity factors, including herpes simplex virus UL42, which is a monomer that binds DNA directly, and the sliding clamp, PCNA, which is a trimer that surrounds DNA, although these proteins share no obvious sequence homology. Analytical ultracentrifugation and gel filtration measurements demonstrated that UL44 also forms a dimer in solution, and substitution of large hydrophobic residues along the homodimer interface with alanine disrupted dimerization and decreased DNA binding. UL44 represents a hybrid processivity factor as it binds DNA directly like UL42, but forms a C clamp that may surround DNA like PCNA.  相似文献   

2.
The human cytomegalovirus DNA polymerase is composed of a catalytic subunit, UL54, and an accessory protein, UL44, which has a structural fold similar to that of other processivity factors, including herpes simplex virus UL42 and homotrimeric sliding clamps such as proliferating cell nuclear antigen. Several specific residues in the C-terminal region of UL54 and in the "connector loop" of UL44 are required for the association of these proteins. Here, we describe the crystal structure of residues 1-290 of UL44 in complex with a peptide from the extreme C terminus of UL54, which explains this interaction at a molecular level. The UL54 peptide binds to structural elements similar to those used by UL42 and the sliding clamps to associate with their respective binding partners. However, the details of the interaction differ from those of other processivity factor-peptide complexes. Crucial residues include a three-residue hydrophobic "plug" from the UL54 peptide and Ile(135) of UL44, which forms a critical intramolecular hydrophobic anchor for interactions between the connector loop and the peptide. As was the case for the unliganded UL44 structure, the UL44-peptide complex forms a head-to-head dimer that could potentially form a C-shaped clamp on DNA. However, the peptide-bound structure displays subtle differences in the relative orientation of the two subdomains of the protein, resulting in a more open clamp, which we predicted would affect its association with DNA. Indeed, filter binding assays revealed that peptide-bound UL44 binds DNA with higher affinity. Thus, interaction with the catalytic subunit appears to affect both the structure and function of UL44.  相似文献   

3.
Herpes simplex virus DNA polymerase is a heterodimer composed of a catalytic subunit, Pol, and an unusual processivity subunit, UL42, which, unlike processivity factors such as PCNA, directly binds DNA. The crystal structure of a complex of the C-terminal 36 residues of Pol bound to residues 1-319 of UL42 reveals remarkable similarities between UL42 and PCNA despite contrasting biochemical properties and lack of sequence homology. Moreover, the Pol-UL42 interaction resembles the interaction between the cell cycle regulator p21 and PCNA. The structure and previous data suggest that the UL42 monomer interacts with DNA quite differently than does multimeric toroidal PCNA. The details of the structure lead to a model for the mechanism of UL42, provide the basis for drug design, and allow modeling of other proteins that lack sequence homology with UL42 or PCNA.  相似文献   

4.
The oligomeric "sliding clamp" processivity factors, such as PCNA, are thought to rely on a loose, topological association with DNA to slide freely along dsDNA. Unlike PCNA, the processivity subunit of the herpes simplex virus DNA polymerase, UL42, is a monomer and has an intrinsic affinity for dsDNA that is remarkably high for a sequence-independent DNA binding protein. Using a DNase footprinting assay, we demonstrate that UL42 translocates with the catalytic subunit of the polymerase during chain elongation. In addition, footprinting and electrophoretic mobility shift assays show that, despite its tight DNA binding, UL42 is capable of linear diffusion on DNA at a rate of between 17 and 47 bp/s. Our results thus suggest that, despite profound biochemical differences with the sliding clamps, UL42 can freely slide downstream with the catalytic subunit during DNA replication.  相似文献   

5.
DNA polymerase requires two processing factors, sliding clamps and clamp loaders, to direct rapid and accurate duplication of genomic DNA. In eukaryotes, proliferating cell nuclear antigen (PCNA), the ring-shaped sliding clamp, encircles double-stranded DNA within its central hole and tethers the DNA polymerases onto DNA. Replication factor C (RFC) acts as the clamp loader, which correctly installs the sliding clamp onto DNA strands in an ATP-dependent manner. Here we report the three-dimensional structure of an archaeal clamp-loading complex (RFC-PCNA-DNA) determined by single-particle EM. The three-dimensional structure of the complex, reconstituted in vitro using a nonhydrolyzable ATP analog, reveals two components, a closed ring and a horseshoe-shaped element, which correspond to PCNA and RFC, respectively. The atomic structure of PCNA fits well into the closed ring, suggesting that this ternary complex represents a state just after the PCNA ring has closed to encircle the DNA duplex.  相似文献   

6.
7.
Kaposi''s sarcoma-associated herpesvirus is an emerging pathogen whose mechanism of replication is poorly understood. PF-8, the presumed processivity factor of Kaposi''s sarcoma-associated herpesvirus DNA polymerase, acts in combination with the catalytic subunit, Pol-8, to synthesize viral DNA. We have solved the crystal structure of residues 1 to 304 of PF-8 at a resolution of 2.8 Å. This structure reveals that each monomer of PF-8 shares a fold common to processivity factors. Like human cytomegalovirus UL44, PF-8 forms a head-to-head dimer in the form of a C clamp, with its concave face containing a number of basic residues that are predicted to be important for DNA binding. However, there are several differences with related proteins, especially in loops that extend from each monomer into the center of the C clamp and in the loops that connect the two subdomains of each protein, which may be important for determining PF-8''s mode of binding to DNA and to Pol-8. Using the crystal structures of PF-8, the herpes simplex virus catalytic subunit, and RB69 bacteriophage DNA polymerase in complex with DNA and initial experiments testing the effects of inhibition of PF-8-stimulated DNA synthesis by peptides derived from Pol-8, we suggest a model for how PF-8 might form a ternary complex with Pol-8 and DNA. The structure and the model suggest interesting similarities and differences in how PF-8 functions relative to structurally similar proteins.Most if not all organisms with DNA genomes have mechanisms to ensure processive DNA synthesis. In bacteria, archaea, and eukaryotes, DNA polymerase subunits include a catalytic subunit and a processivity factor, often referred to as a “sliding clamp.” In these organisms, a clamp loader protein is required to assemble the processivity factor onto the DNA (27, 37). The bacterial sliding (beta) clamp is made up of homodimers of a subunit that comprises three structurally similar subdomains (26), whereas archaeal and eukaryotic proliferating cell nuclear antigen (PCNA) is composed of homotrimers that comprise two structurally similar subdomains (27, 37). For both of these clamps, the monomers assemble head-to-tail to form a closed homodimeric or homotrimeric ring, respectively, around the DNA. In these organisms, a clamp loader protein is required to efficiently load the clamp onto DNA, using an ATP-dependent process. Once loaded on DNA, the processivity factor is capable of binding directly to the DNA polymerase, conferring extended strand synthesis without falling off of the template (50).Herpesviruses encode their own DNA polymerases. However, unlike bacteria, archaea, and eukaryotes, herpesviruses do not encode clamp loaders to assemble their processivity factors onto the DNA. Yet, the accessory subunits of the herpesvirus DNA polymerases still associate with DNA with nanomolar affinity to enable long-chain DNA synthesis (9, 16, 23, 25, 29, 35, 44, 46, 53, 56). Human herpesviruses are divided into three classes, namely, the alpha-, beta-, and gammaherpesviruses, based on homologies found in their genomic organization as well as in protein sequences and function (45). Crystal structures have been determined for the processivity factor UL42 from the alphaherpesvirus herpes simplex virus type 1 (HSV-1) and for UL44 from the betaherpesvirus human cytomegalovirus (HCMV) (2, 3, 58). Despite having little if any sequence homology with processivity factors outside of their herpesvirus subfamily, these structures all share the “processivity fold” originally seen in the structure of the bacterial beta clamp (26). Interestingly, some of these processivity factors have a different quaternary structure. PCNA forms a head-to-tail trimeric ring (18, 27), HSV-1 UL42 is a monomer (10, 14, 16, 46, 58) equivalent to one-third of the PCNA complex, and HCMV UL44 is a head-to-head dimer in the form of a C-shaped clamp (2, 3, 9).Both HSV-1 UL42 and HCMV UL44 have a basic face that has been shown to be important for interacting with DNA (25, 35). In the case of dimeric HCMV UL44, the basic surface of each monomer faces inward, toward the center of the C clamp, and includes a basic loop, called the “gap loop,” that is thought to wrap around DNA (24). Recently the crystal structure of the bacterial beta clamp was determined in complex with DNA (15). In that structure, DNA was found to be located in the central pore of the clamp. Amino acid residues that interacted with DNA were in positions structurally homologous to those found on the positively charged faces of UL42 and UL44.UL42 and UL44 each also has a surface, facing away from the DNA binding face, that is important for interacting with the catalytic subunit of the viral DNA polymerase. Indeed, both of these proteins have been crystallized in complex with C-terminal peptides from their respective catalytic subunits, HSV-1 UL30 and HCMV UL54 (2, 58). Together with biochemical and mutational analyses, these crystal structures indicated that, although the details of the interaction are different, the catalytic subunit of the polymerase binds to a region including and in close proximity to a long loop that connects the N- and C-terminal subdomains, called the interdomain connector loop (32-34). The corresponding region of PCNA is also important for polymerase attachment and mediates the interactions of PCNA with many other cellular proteins (40). Both UL54 and UL30 were shown to attach to their respective subunits, UL44 and UL42, by way of their extreme C termini. The C-terminal residues responsible for this interaction correspond to amino acids that are not detectably conserved, either by sequence or by structure, among herpesvirus catalytic subunits. The HSV-1 UL30-UL42 interaction involves a groove to one side of the UL42 connector loop, with hydrophilic interactions being critical (58). The HCMV UL54-UL44 interaction involves a crevice near the UL44 connector loop, and hydrophobic interactions are crucial (2, 32, 33). Moreover, the HCMV UL44 crevice is on the opposite side of the connector loop with respect to the HSV-1 UL42 groove.Kaposi''s sarcoma-associated herpesvirus (KSHV), a gammaherpesvirus, encodes a viral DNA polymerase catalytic subunit, Pol-8, and an accessory subunit, PF-8 (4, 7, 8, 29, 48, 57). PF-8 can bind to Pol-8 directly and specifically (8, 29) and is required for long-chain DNA synthesis in vitro (29). Similarly to UL44, PF-8 forms dimers in solution and when bound to DNA (9). Although it is likely that UL44 and PF-8 are the processivity factors for HCMV and KSHV, respectively, rigorous experiments demonstrating this have not been performed. However, for the sake of brevity and clarity, we will refer to these proteins as processivity factors.Here we present the crystal structure of PF-8 and show that PF-8 forms a head-to-head homodimer akin to UL44 but lacking the long gap loops which are thought to wrap around DNA. This suggests that PF-8 binds DNA differently than does UL44 or UL42. Because Pol-8 appears to lack a long, flexible C-terminal tail with a length comparable to those of other herpesvirus Pols, we expect the mode of binding of the catalytic subunit to be different as well. Based on structural data, information from homologs, and initial biochemical results, we were able to identify possible sites for interactions with DNA and Pol-8 and to propose a model for the simultaneous interaction of all three components of the complex. Further, the availability of crystal structures for all three herpesvirus classes provides new insights into comparative structure, function, and evolution.  相似文献   

8.
The participation of the DNA ligase (hLigI) encoded by the human LIG1 gene in DNA replication and repair is mediated by an interaction with proliferating cell nuclear antigen (PCNA), a homotrimeric DNA sliding clamp. Interestingly, the catalytic fragment of hLigI encircles a DNA nick forming a ring that is similar in size and shape to the PCNA ring. Here we show that the DNA binding domain (DBD) within the hLigI catalytic fragment interacts with both PCNA and the heterotrimeric cell-cycle checkpoint clamp, hRad9-hRad1-hHus1 (9-1-1). The DBD preferentially binds to trimeric PCNA and the hRad1 subunit of 9-1-1. Unlike the majority of PCNA interacting proteins, the DBD does not interact with the interdomain connector loop region of PCNA but instead appears to interact with regions adjacent to the intersubunit interfaces within the PCNA trimer. Notably, the DBD not only binds specifically to DNA nicks but also mediates the formation of DNA protein complexes with PCNA. Based on these results, we suggest that the interface between the DBD and PCNA acts as a pivot facilitating the transition of the hLigI catalytic region fragment from an extended conformation to a ring structure when it engages a DNA nick.  相似文献   

9.
The human cytomegalovirus DNA polymerase includes an accessory protein, UL44, which has been proposed to act as a processivity factor for the catalytic subunit, UL54. How UL44 interacts with UL54 has not yet been elucidated. The crystal structure of UL44 revealed the presence of a connector loop analogous to that of the processivity subunit of herpes simplex virus DNA polymerase, UL42, which is crucial for interaction with its cognate catalytic subunit, UL30. To investigate the role of the UL44 connector loop, we replaced each of its amino acids (amino acids 129 to 140) with alanine. We then tested the effect of each substitution on the UL44-UL54 interaction by glutathione S-transferase pulldown and isothermal titration calorimetry assays, on the stimulation of UL54-mediated long-chain DNA synthesis by UL44, and on the binding of UL44 to DNA-cellulose columns. Substitutions that affected residues 133 to 136 of the connector loop measurably impaired the UL44-UL54 interaction without altering the ability of UL44 to bind DNA. One substitution, I135A, completely disrupted the binding of UL44 to UL54 and inhibited the ability of UL44 to stimulate long-chain DNA synthesis by UL54. Thus, similar to the herpes simplex virus UL30-UL42 interaction, a residue of the connector loop of the accessory subunit is crucial for UL54-UL44 interaction. However, while alteration of a polar residue of the UL42 connector loop only partially reduced binding to UL30, substitution of a hydrophobic residue of UL44 completely disrupted the UL54-UL44 interaction. This information may aid the discovery of small-molecule inhibitors of the UL44-UL54 interaction.  相似文献   

10.
The processivity subunit of the herpes simplex virus DNA polymerase, UL42, is a monomer in solution. However, UL42 is structurally similar to sliding clamp processivity factors, such as PCNA, which encircle DNA as a multimeric ring. We used chemical crosslinking and electrophoretic mobility-shift assays to investigate whether UL42 oligomerizes upon DNA binding. UL42 did not form intermolecular crosslinks upon treatment with glutaraldehyde in the presence of DNA, whereas proteins that are known to be multimers in solution were successfully crosslinked by this treatment. This result suggests that UL42 does not form multimers on DNA. We next analyzed the composition of UL42:DNA complexes using electrophoretic mobility-shift assays. UL42 was mixed with a maltose-binding protein-UL42 fusion protein before being added to DNA. The patterns of electrophoretic mobility of the resultant protein:DNA complexes were those predicted if each isoform of UL42 binds to DNA as a monomer. From this result and the failure of UL42 to form crosslinks, we infer that UL42 binds DNA as a monomer.  相似文献   

11.
The way that UL42, the processivity subunit of the herpes simplex virus DNA polymerase, interacts with DNA and promotes processivity remains unclear. A positively charged face of UL42 has been proposed to participate in electrostatic interactions with DNA that would tether the polymerase to a template without preventing its translocation via DNA sliding. An alternative model proposes that DNA binding by UL42 is not important for processivity. To investigate these issues, we substituted alanine for each of four conserved arginine residues on the positively charged surface. Each single substitution decreased the DNA binding affinity of UL42, with 14- to 30-fold increases in apparent dissociation constants. The mutant proteins exhibited no meaningful change in affinity for binding to the C terminus of the catalytic subunit of the polymerase, indicating that the substitutions exert a specific effect on DNA binding. The substitutions decreased UL42-mediated long-chain DNA synthesis by the polymerase in the same rank order in which they affected DNA binding, consistent with a role for DNA binding in polymerase processivity. Combining these substitutions decreased DNA binding further and impaired the complementation of a UL42 null virus in transfected cells. Additionally, using a revised mathematical model to analyze rates of dissociation of UL42 from DNAs of various lengths, we found that dissociation from internal sites, which would be the most important for tethering the polymerase, was relatively slow, even at ionic strengths that permit processive DNA synthesis by the holoenzyme. These data provide evidence that the basic surface of UL42 interacts with DNA and support a model in which DNA binding by UL42 is important for processive DNA synthesis.  相似文献   

12.
13.
The human cytomegalovirus DNA polymerase contains a catalytic subunit, UL54, and an accessory protein, UL44. Recent studies suggested that UL54 might interact via its extreme C terminus with UL44 (A. Loregian, R. Rigatti, M. Murphy, E. Schievano, G. Palu', and H. S. Marsden, J. Virol. 77:8336-8344, 2003). To address this hypothesis, we quantitatively measured the binding of peptides corresponding to the extreme C terminus of UL54 to UL44 by using isothermal titration calorimetry. A peptide corresponding to the last 22 residues of UL54 was sufficient to bind specifically to UL44 in a 1:1 complex with a dissociation constant of ca. 0.7 microM. To define individual residues in this segment that are crucial for interacting with UL44, we engineered a series of mutations in the C-terminal region of UL54. The UL54 mutants were tested for their ability to interact with UL44 by glutathione S-transferase pulldown assays, for basal DNA polymerase activity, and for long-chain DNA synthesis in the presence of UL44. We observed that deletion of the C-terminal segment or substitution of alanine for Leu1227 or Phe1231 in UL54 greatly impaired both the UL54-UL44 interaction in pulldown assays and long-chain DNA synthesis without affecting basal polymerase activity, identifying these residues as important for subunit interaction. Thus, like the herpes simplex virus UL30-UL42 interaction, a few specific side chains in the C terminus of UL54 are crucial for UL54-UL44 interaction. However, the UL54 residues important for interaction with UL44 are hydrophobic and not basic. This information might aid in the rational design of new drugs for the treatment of human cytomegalovirus infection.  相似文献   

14.
Proliferating cell nuclear antigen (PCNA) is an essential component of the DNA replication and repair machinery in the domain Eucarya. We cloned the gene encoding a PCNA homolog (PfuPCNA) from an euryarchaeote, Pyrococcus furiosus, expressed it in Escherichia coli, and characterized the biochemical properties of the gene product. The protein PfuPCNA stimulated the in vitro primer extension abilities of polymerase (Pol) I and Pol II, which are the two DNA polymerases identified in this organism to date. An immunological experiment showed that PfuPCNA interacts with both Pol I and Pol II. Pol I is a single polypeptide with a sequence similar to that of family B (alpha-like) DNA polymerases, while Pol II is a heterodimer. PfuPCNA interacted with DP2, the catalytic subunit of the heterodimeric complex. These results strongly support the idea that the PCNA homolog works as a sliding clamp of DNA polymerases in P. furiosus, and the basic mechanism for the processive DNA synthesis is conserved in the domains Bacteria, Eucarya, and Archaea. The stimulatory effect of PfuPCNA on the DNA synthesis was observed by using a circular DNA template without the clamp loader (replication factor C [RFC]) in both Pol I and Pol II reactions in contrast to the case of eukaryotic organisms, which are known to require the RFC to open the ring structure of PCNA prior to loading onto a circular DNA. Because RFC homologs have been found in the archaeal genomes, they may permit more efficient stimulation of DNA synthesis by archaeal DNA polymerases in the presence of PCNA. This is the first stage in elucidating the archaeal DNA replication mechanism.  相似文献   

15.
The interactions of the herpes simplex virus processivity factor UL42 with the catalytic subunit of the viral polymerase (Pol) and DNA are critical for viral DNA replication. Previous studies, including one showing that substitution of glutamine residue 282 with arginine (Q282R) results in an increase of DNA binding in vitro, have indicated that the positively charged back surface of UL42 interacts with DNA. To investigate the biological consequences of increased DNA binding by UL42 mutations, we constructed two additional UL42 mutants, including one with a double substitution of alanine for aspartic acid residues (D270A/D271A) and a triple mutant with the D270A/D271A and Q282R substitutions. These UL42 mutants exhibited increased and prolonged DNA binding without an effect on binding to a peptide corresponding to the C terminus of Pol. Plasmids expressing any of the three UL42 mutants with an increased positive charge on the back surface of UL42 were qualitatively competent for complementation of growth and DNA replication of a UL42 null mutant on Vero cells. We then engineered viruses expressing these mutant proteins. The UL42 mutants were more resistant to detergent extraction than wild-type UL42, suggesting that they are more tightly associated with DNA in infected cells. All three UL42 mutants formed smaller plaques on Vero cells and replicated to reduced yields compared with results for a control virus expressing wild-type UL42. Moreover, mutants with double and triple mutations, which contain D270A/D271A mutations, exhibited increased mutation frequencies, and mutants containing the Q282R mutation exhibited elevated ratios of virion DNA copies per PFU. These results suggest that herpes simplex virus has evolved so that UL42 neither binds DNA too tightly nor too weakly to optimize virus production and replication fidelity.Processivity factors of DNA polymerases promote long-chain DNA synthesis by preventing dissociation of the DNA polymerase from the primer/template. Processivity factors also can influence DNA replication fidelity, as indicated by numerous in vivo and in vitro studies (1-3, 5, 6, 11, 12, 18, 28, 36). A major class of processivity factors known as “sliding clamps” includes proliferating cell nuclear antigen (PCNA) of eukaryotic cells (23) and gp45 of T4 bacteriophage (27). Sliding clamps are homodimers or homotrimers that encircle DNA and interact with the catalytic subunits (Pols) of their cognate DNA polymerases to promote processive DNA synthesis.A second class of processivity factors includes those encoded by herpesviruses and is exemplified by herpes simplex virus (HSV) UL42. UL42 forms a heterodimer with the HSV Pol. Both subunits are essential for production of infectious virus and for viral DNA replication (20, 26). UL42 can stimulate long-chain DNA synthesis by Pol, and template challenge experiments established that this stimulation is due to increased processivity (15). In addition to its interaction with Pol, which is mediated by the C terminus of Pol, UL42 also binds DNA directly with high affinity (14, 15, 30, 37). This mode of DNA binding differs from that of sliding clamps, which do not form high-affinity direct interactions with DNA (13) but must be loaded onto DNA with the aid of ATP-dependent clamp loaders for their normal functioning (16). Nevertheless, the structure of UL42 is very similar to a monomer of the sliding clamp PCNA (39). Like other processivity factors, UL42 also plays a role in maintaining DNA replication fidelity both in vivo and in vitro (5, 18).The “back face” (opposite face to the side that binds Pol) of a UL42 molecule contains several positively charged residues. By titrating the effects of cations on UL42 DNA binding, it was determined that charge-charge interactions are involved in the interaction (22). Substitutions of alanine for any of four arginine residues on the back face of UL42 resulted in substantial reductions in DNA binding without affecting the binding to peptide corresponding to the C terminus of Pol in vitro (31), while substitutions of lysine for arginine had little or no effect on DNA binding affinity (22). A UL42 mutant (Q282R) containing a substitution of arginine for a negatively charged glutamine residue on the back face of UL42 exhibited a fourfold increase in DNA binding without altering the interaction with the Pol C-terminal peptide in vitro (22). Therefore, the positively charged surface of UL42 is important for the interaction between UL42 and DNA. A question raised by these studies is whether UL42 could bind DNA so tightly as to affect HSV replication.Mutant viruses engineered to encode individual arginine-to-alanine substitution mutations in UL42 exhibit several phenotypes, including a delayed onset of viral DNA replication, reduced virus yields, and reduced fidelity of DNA replication (18). Recombinant viruses expressing UL42 with multiple substitutions of alanine for arginine residues exhibit even greater effects on viral DNA replication and virus yields (19). Thus, reducing DNA binding by UL42 deleteriously affects viral growth and DNA replication fidelity. However, these studies did not address whether increasing DNA binding by UL42 would have any effects on viral DNA replication, replication fidelity, or virus production.In this study we engineered two new UL42 mutant proteins (with the D270A/D271A or Q282R/D270A/D271A mutations) that contain less negative charge on the back face and examined the effects of these substitutions on DNA and Pol peptide binding. In addition, recombinant viruses were constructed to examine the effect of these multiple substitutions and the single Q282R substitution on virus production, DNA replication, and the fidelity of DNA replication.  相似文献   

16.
The Escherichia coli beta dimer is a ring-shaped protein that encircles DNA and acts as a sliding clamp to tether the replicase, DNA polymerase III holoenzyme, to DNA. The gamma complex (gammadeltadelta'chipsi) clamp loader couples ATP to the opening and closing of beta in assembly of the ring onto DNA. These proteins are functionally and structurally conserved in all cells. The eukaryotic equivalents are the replication factor C (RFC) clamp loader and the proliferating cell nuclear antigen (PCNA) clamp. The delta subunit of the E. coli gamma complex clamp loader is known to bind beta and open it by parting one of the dimer interfaces. This study demonstrates that other subunits of gamma complex also bind beta, although weaker than delta. The gamma subunit like delta, affects the opening of beta, but with a lower efficiency than delta. The delta' subunit regulates both gamma and delta ring opening activities in a fashion that is modulated by ATP interaction with gamma. The implications of these actions for the workings of the E. coli clamp loading machinery and for eukaryotic RFC and PCNA are discussed.  相似文献   

17.
Herpes simplex virus DNA polymerase is a heterodimer composed of UL30, a catalytic subunit, and UL42, a processivity subunit. Mutations that decrease DNA binding by UL42 decrease long chain DNA synthesis by the polymerase. The crystal structure of UL42 bound to the C terminus of UL30 revealed an extensive positively charged surface ("back face"). We tested two hypotheses, 1) the C terminus of UL30 affects DNA binding and 2) the positively charged back face mediates DNA binding. Addressing the first hypothesis, we found that the presence of a peptide corresponding to the UL30 C terminus did not result in altered binding of UL42 to DNA. Addressing the second hypothesis, previous work showed that substitution of four conserved arginine residues on the basic face with alanines resulted in decreased DNA affinity. We tested the affinities for DNA and the stimulation of long chain DNA synthesis of mutants in which the four conserved arginine residues were substituted individually or together with lysines and also a mutant in which a conserved glutamine residue was substituted with an arginine to increase positive charge on the back face. We also engineered cysteines onto this surface to permit disulfide cross-linking studies. Last, we assayed the effects of ionic strength on DNA binding by UL42 to estimate the number of ions released upon binding. Our results taken together strongly suggest that the basic back face of UL42 contacts DNA and that positive charge on this surface is important for this interaction.  相似文献   

18.
The mechanisms of processivity factors of herpesvirus DNA polymerases remain poorly understood. The proposed processivity factor for human cytomegalovirus DNA polymerase is a DNA-binding protein, UL44. Previous findings, including the crystal structure of UL44, have led to the hypothesis that UL44 binds DNA as a dimer via lysine residues. To understand how UL44 interacts with DNA, we used filter-binding and electrophoretic mobility shift assays and isothermal titration calorimetry (ITC) analysis of binding to oligonucleotides. UL44 bound directly to double-stranded DNA as short as 12bp, with apparent dissociation constants in the nanomolar range for DNAs >18bp, suggesting a minimum DNA length for UL44 interaction. UL44 also bound single-stranded DNA, albeit with lower affinity, and for either single- or double-stranded DNA, there was no apparent sequence specificity. ITC analysis revealed that UL44 binds to duplex DNA as a dimer. Binding was endothermic, indicating an entropically driven process, likely due to release of bound ions. Consistent with this hypothesis, analysis of the relationship between binding and ionic strength indicated that, on average, 4±1 monovalent ions are released in the interaction of each monomer of UL44 with DNA. The results taken together reveal interesting implications for how UL44 may mediate processivity.  相似文献   

19.
PCNA (proliferating-cell nuclear antigen) is a ring-shaped protein that encircles duplex DNA and plays an essential role in many DNA metabolic processes. The PCNA protein interacts with a large number of cellular factors and modulates their enzymatic activities. In the present paper, we summarize the structures, functions and interactions of the archaeal PCNA proteins.  相似文献   

20.
Nuclear dynamics of PCNA in DNA replication and repair   总被引:7,自引:0,他引:7       下载免费PDF全文
The DNA polymerase processivity factor proliferating cell nuclear antigen (PCNA) is central to both DNA replication and repair. The ring-shaped homotrimeric PCNA encircles and slides along double-stranded DNA, acting as a "sliding clamp" that localizes proteins to DNA. We determined the behavior of green fluorescent protein-tagged human PCNA (GFP-hPCNA) in living cells to analyze its different engagements in DNA replication and repair. Photobleaching and tracking of replication foci revealed a dynamic equilibrium between two kinetic pools of PCNA, i.e., bound to replication foci and as a free mobile fraction. To simultaneously monitor PCNA action in DNA replication and repair, we locally inflicted UV-induced DNA damage. A surprisingly longer residence time of PCNA at damaged areas than at replication foci was observed. Using DNA repair mutants, we showed that the initial recruitment of PCNA to damaged sites was dependent on nucleotide excision repair. Local accumulation of PCNA at damaged regions was observed during all cell cycle stages but temporarily disappeared during early S phase. The reappearance of PCNA accumulation in discrete foci at later stages of S phase likely reflects engagements of PCNA in distinct genome maintenance processes dealing with stalled replication forks, such as translesion synthesis (TLS). Using a ubiquitination mutant of GFP-hPCNA that is unable to participate in TLS, we noticed a significantly shorter residence time in damaged areas. Our results show that changes in the position of PCNA result from de novo assembly of freely mobile replication factors in the nucleoplasmic pool and indicate different binding affinities for PCNA in DNA replication and repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号