首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The arrangements of cortical microtubules (MTs) in a tip-growing protonemal cell of Adiantum capillus-veneris L. and of cellulose microfibrils (MFs) in its wall were examined during blue-light (BL)-induced apical swelling. In most protonemal cells which had been growing in the longitudinal direction under red light, apical swelling was induced within 2 h of the onset of BL irradiation, and swelling continued for at least 8 h. During the longitudinal growth under red light, the arrangement of MFs around the base of the apical hemisphere (the subapical region) was perpendicular to the cell axis, while a random arrangement of MFs was found at the very tip, and a roughly axial arrangement was observed in the cylindrical region of most cells. This orientation of MFs corresponds to that of the cortical MTs reported previously (Murata et al. 1987, Protoplasma 141, 135–138). In cells irradiated with BL, a random rather than transverse arrangement of both MTs and MFs was found in the subapical region. Time-course studies showed that this reorientation occurred within 1 h after the onset of the BL irradiation, i.e. it preceded the change in growth pattern. These results indicate that the orientation of cortical MTs and of cellulose MFs is involved in the regulation of cell diameter in a tip-growing Adiantum protonemal cell.Abbreviations BL blue light - MF(s) microfibril(s) - MT(s) microtubule(s)  相似文献   

2.
T. Kagawa  A. Kadota  M. Wada 《Protoplasma》1992,170(3-4):186-190
Summary The junction between the plasma membrane and the cell wall in the subapical region of tip-growing protonemata of the fernAdiantum capillus-veneris was visualized by plasmolyzing the cells with a 1 M solution of NaCl. When the protonemata were treated with this solution, cells were rapidly plasmolyzed and the plasma membrane became detached from the cell wall around the entire periphery of the cell, with the exception of the subapex. In the subapical region, the connection between the cell wall and the plasma membrane remained undisturbed, whereas the membrane in other regions, as well as at the apex, was detached from the cell wall. As a result, the protoplasm appeared to adhere to the wall by a ringlike band of plasma membrane at the subapex. The location of the junction coincided with that of a circular array of microtubules (MTs) and microfilaments (MFs) at the cell cortex. The subapical junction disappeared when protonemata were treated with colchicine, cytochalasin B (CB), and blue-light irradiation, all of which are known to disrupt circular arrays of MTs. CB and blue light also disrupt the array of MFs but colchicine does not. Thus, the junction depends on the cortical MTs and not on the MFs. This finding indicates that the junction between the plasma membrane and the cell wall is sustained by a cortical array of MTs and suggests the presence of a specific and localized transmembrane structure.Abbreviations CB cytochalasin B - MF microfilament - MT microtubule  相似文献   

3.
A new branch was induced on the side wall of fern protonema by cell centrifugation and subsequent polarized red light irradiation after the induction of cell division under white light. Nuclear behavior during the branch formation was analyzed. Immediately after cell division, the two daughter nuclei moved away from the division site in both red and dark conditions. Under continuous irradiation with polarized red light, cell swelling occurred as an early step of branching near the cell dividing wall, even though the nucleus was localized far from the branching site at the beginning of the swelling. After a new branch started to grow, the nucleus returned to the branching site and moved into the new branch from its basipetal end. When a protonema incubated in the dark was centrifuged again acropetally or basipetally just before the irradiation of polarized red light, the rate of apical growth or branch formation was increased, respectively. Moreover, growth of a branched protonema was altered from its former apex or from the branch again by dislocating the nucleus acropetally or basipetally by centrifugation, respectively. These facts suggest that the nucleus has no polarity physiologically, i.e. head and tail, namely either end of the spindle-shaped nucleus can be the nuclear front in a tip-growing protonema.  相似文献   

4.
Soon-Ok Cho  Susan M. Wick 《Protoplasma》1990,157(1-3):154-164
Summary The dynamics of actin distribution during stomatal complex formation in leaves of winter rye was examined by means of immunofluorescence microscopy of epidermal sheets. This method results in actin localization patterns that are the same as those seen with rhodamine-phalloidin staining, but are more stable. During stomatal development MFs are extensively rearranged, and most of the time the orientation or placement of MFs is distinctly different from that of MTs, the exception being co-localization of MTs and MFs in phragmoplasts. Although MFs show an orientation similar to that of MTs in interphase guard mother cells, no banding of MFs into anything resembling the interphase MT band is observed. From prophase to telophase, a distinct, dense concentration of MFs is found in subsidiary cell mother cells (SMCs) between the nucleus and the region of the cell cortex facing the guard mother cell. Cytochalasin B treatment causes incorrect positioning of the SMC nucleus/daughter nuclei and abarrent placement and orientation of the new cell wall that forms the boundary of the subsidiary cell at cytokinesis. These results suggest that MFs are involved in maintaining the SMC nucleus in its correct position and the SMC spindle in the correct orientation relative to the division site previously delineated by the preprophase band. Because these MFs thus appear to assure that the SMC phragmoplast begins to form in the correct orientation near the division site to which it needs to grow, we suggest that MFs are involved in control of correct placement and orientation of the new cell wall of the subsidiary cell.Abbreviations CB cytochalasin B - DIC differential interference contrast - DMSO dimethylsulfoxide - MBS m-maleimidobenzoyl-N-hydroxylsuccinimide ester - MF microfilament - MT microtubule - PBS phosphate buffered saline - SMC subsidiary cell mother cell Dedicated to the memory of Professor Oswald Kiermayer  相似文献   

5.
BACKGROUND: Morphogenesis on a cellular level includes processes in which cytoskeleton and cell wall expansion are strongly involved. In brown algal zygotes, microtubules (MTs) and actin filaments (AFs) participate in polarity axis fixation, cell division and tip growth. Brown algal vegetative cells lack a cortical MT cytoskeleton, and are characterized by centriole-bearing centrosomes, which function as microtubule organizing centres. SCOPE: Extensive electron microscope and immunofluorescence studies of MT organization in different types of brown algal cells have shown that MTs constitute a major cytoskeletal component, indispensable for cell morphogenesis. Apart from participating in mitosis and cytokinesis, they are also involved in the expression and maintenance of polarity of particular cell types. Disruption of MTs after Nocodazole treatment inhibits cell growth, causing bulging and/or bending of apical cells, thickening of the tip cell wall, and affecting the nuclear positioning. Staining of F-actin using Rhodamine-Phalloidin, revealed a rich network consisting of perinuclear, endoplasmic and cortical AFs. AFs participate in mitosis by the organization of an F-actin spindle and in cytokinesis by an F-actin disc. They are also involved in the maintenance of polarity of apical cells, as well as in lateral branch initiation. The cortical system of AFs was found related to the orientation of cellulose microfibrils (MFs), and therefore to cell wall morphogenesis. This is expressed by the coincidence in the orientation between cortical AFs and the depositing MFs. Treatment with cytochalasin B inhibits mitosis and cytokinesis, as well as tip growth of apical cells, and causes abnormal deposition of MFs. CONCLUSIONS: Both the cytoskeletal elements studied so far, i.e. MTs and AFs are implicated in brown algal cell morphogenesis, expressed in their relationship with cell wall morphogenesis, polarization, spindle organization and cytokinetic mechanism. The novelty is the role of AFs and their possible co-operation with MTs.  相似文献   

6.
Summary The reorganization of the actin and microtubule (MT) cytoskeleton was immunocytochemically visualized by confocal laser scanning microscopy throughout the photomorphogenetic differentiation of tip-growing characean protonemata into multicellular green thalli. After irradiating dark-grown protonemata with blue or white light, decreasing rates of gravitropic tip-growth were accompanied by a series of events leading to the first cell division: the nucleus migrated towards the tip; MTs and plastids invaded the apical cytoplasm; the polar zonation of cytoplasmic organelles and the prominent actin patch at the cell tip disappeared and the tip-focused actin microfilaments (MFs) were reorganized into a homogeneous network. During prometaphase and metaphase, extranuclear spindle microtubules formed between the two spindle poles. Cytoplasmic MTs associated with the apical spindle pole decreased in number but did not disappear completely during mitosis. The basal cortical MTs represent a discrete MT population that is independent from the basal spindle poles and did not redistribute during mitosis and cytokinesis. Preprophase MT bands were never detected but cytokinesis was characterized by higher-plant-like phragmoplast MT arrays. Cytoplasmic actin MFs persisted as a dense network in the apical cytoplasm throughout the first cell division. They were not found in close contact with spindle MTs, but actin MFs were clearly coaligned along the MTs of the early phragmoplast. The later belt-like phragmoplast was completely depleted of MFs close to the time of cell plate fusion except for a few actin MF bundles that extended to the margin of the growing cell plate. The cell plate itself and young anticlinal cell walls showed strong actin immunofluorescence. After several anticlinal cell divisions, basal cells of the multicellular protonema produced nodal cell complexes by multiple periclinal divisions. The apical-dome cell of the new shoot which originated from a nodal cell becomes the meristem initial that regularly divides to produce a segment cell. The segment cell subsequently divides to produce a single file of alternating internodal cells and multicellular nodes which together form the complexly organized characean thallus. The actin and MT distribution of nodal cells resembles that of higherplant meristem cells, whereas the internodal cells exhibit a highly specialized cortical system of MTs and streaming-generating actin bundles, typical of highly vacuolated plant cells. The transformation from the asymmetric mitotic spindle of the polarized tip-growing protonema cell to the symmetric, higher-plant-like spindle of nodal thallus cells recapitulates the evolutionary steps from the more primitive organisms to higher plants.Abbreviations FITC fluorescein isothiocyanate - MF microfilament - MT microtubule - MSB microtubule-stabilizing buffer - PBS phosphate-buffered saline  相似文献   

7.
The mechanism of the toxic effects on plant cells of sulfite, a product of the air pollutant sulfur dioxide, is not well understood. Therefore, changes in the fine structure and organization of microtubules and microfibrils induced by sulfite were studied by electron and light microscopy in the protonemata of the fernAdiantum capillusveneris L. Under red-light conditions, growing protonemata fumigated with 0.05 or 0.1 μ1/1 SO2 for 1 to 4 days showed abnormalities, such as apical swelling, and they sometimes burst at the apex. The incidence of abnormalities seemed to be correlated with the concentration of the sulfite dissolved in the culture medium. At an appropriate concentration (3.3–6.6. mM) of sulfite (applied as K2SO3), cell swelling at the apical region of protonema was also induced. When the concentration of sulfite was as high as 6.6 mM, more than 60% of protonemata burst at the tip. During the apical swelling, no distinct changes were observed in the fine structure of organelles, such as the chloroplasts, mitochondria, microbodies, Golgi bodies and nucleus. However, the arrangement of cortical microtubules and that of the innermost layer of microfibrils around the subapical region of protonemata were changed from transverse to the cell axis (i.e., circular) to random and the cell wall was thickened. These observations suggest that sulfite may influence the mechanisms that maintain the transverse orientation of microtubules in the subapical region of a protonema and that the resultant random arrangement of microtubules induces the random arrangement of microfibrils and leads to apical swelling.  相似文献   

8.
The organization of the microtubule (MT) and actin microfilament (MF) cytoskeleton of tip-growing rhizoids and protonemata of characean green algae was examined by confocal laser scanning microscopy. This analysis included microinjection of fluorescent tubulin and phallotoxins into living cells, as well as immunofluorescence labeling of fixed material and fluorescent phallotoxin labeling of unfixed material. Although the morphologically very similar positively gravitropic (downward growing) rhizoids and negatively gravitropic (upward growing) protonemata show opposite gravitropic responses, no differences were detected in the extensive three-dimensional distribution of actin MFs and MTs in both cell types. Tubulin microinjection revealed that in contrast to internodal cells, fluorescent tubulin incorporated very slowly into the MT arrays of rhizoids, suggesting that MT dynamics are very different in tip-growing and diffusely expanding cells. Microtubules assembled from multiple sites at the plasma membrane in the basal zone, and a dense subapical array emerged from a diffuse nucleation centre on the basal side of the nuclear envelope. Immunofluorescence confirmed these distribution patterns but revealed more extensive MT arrays. In the basal zone, short branching clusters of MTs form two cortical hemicylinders. Subapical, axially oriented MTs are distributed in equal density throughout the peripheral and inner cytoplasm and are closely associated with subapical organelles. Microtubules, however, are completely absent from the apical zones of rhizoids and protonemata. Actin MFs were found in all zones of rhizoids and protonemata including the apex. Two files of axially oriented bundles of subcortical actin MFs and ring-like actin structures in the streaming endoplasm of rhizoids were detected in the basal zones by microinjection or rhodamine-phalloidin labeling. The subapical zone contains a dense array of mainly axially oriented actin MFs that co-distribute with the subapical MT array. In the apex, actin MFs form thicker bundles that converge into a remarkably distinct actin patch in the apical dome, whose position coincides with the position of the endoplasmic reticulum aggregate in the centre of the Spitzenk?rper. Actin MFs radiate from the actin patch towards the apical membrane. Together with results from previous inhibitor studies (Braun and Sievers, 1994, Eur J Cell Biol 63: 289–298), these results suggest that MTs have a stabilizing function in maintaining the polar cytoplasmic and cytoskeletal organization. The motile processes, however, are mediated by actin. In particular, the actin cytoskeleton appears to be involved in the structural and functional organization of the Spitzenk?rper and thus is responsible for controlling cell shape and growth direction. Despite the similar structural arrangements of the actin cytoskeleton, major differences in the function of actin MFs have been observed in rhizoids and protonemata. Since actin MFs are more directly involved in the gravitropic response of protonemata than of rhizoids, the opposite gravitropism in the two cell types seems to be based mainly on different properties and activities of the actin cytoskeleton. Received: 14 September 1997 / Accepted: 16 October 1997  相似文献   

9.
A. Kadota  N. Yoshizaki  M. Wada 《Protoplasma》1999,207(3-4):195-202
Summary Nongrowing, two-celled protonemata of the fernAdiantum capillus-veneris L. resume tip growth within the apical cell upon irradiation with red light. In this study, the phenomenon of growth resumption was analyzed with reference to changes in cytoskeletal organization. Continuous observations of apical cells with time lapse video-microscopy revealed that the nucleus migrated toward the tip ca. 1.9 h after the onset of red light, much earlier than the initiation of tip growth, which took place ca. 8.5 h after irradiation. Cytoskeletal organization was observed at various time points during growth resumption by fluorescent staining of microfilaments (MFs) and microtubules (MTs) with rhodamine-phalloidin and anti-tubulin antibodies. At 2 h after red-light irradiation, endoplasmic MF and MT strands appeared at the apical end of nucleus. These strands extended into the apical endoplasm, where filaments were rare prior to irradiation. Many fine filaments branched from the strands to the cell periphery, including the cortex of the apical-dome region. At this time, cortical circular arrays of MTs and MFs, normally found in the growing apex of protonemal cells, were absent. Both MT and MF circular arrays appeared during the resumption of tip growth concomitantly. The half-maximum appearance of MT and MF circular arrays within a population occurred at 5.4 h and 5.8 h after red-light irradiation, respectively. Thus, the process of red-light-induced resumption of tip growth in fern protonemal cell is composed of a series of events. These events include: (1) the appearance of strands extending from the nucleus toward the apical cortex and the migration of nucleus toward the apex; (2) the formation of circular MT and MF arrays at the sub-apical cortex; and (3) the initiation of cell growth at the apex. These results reflect the significant roles of MF and MT cytoskeleton in the resumption of tip growth.Abbreviations MBS m-maleimidobenzoic acid N-hydroxysuccinimide ester - MF microfilament - MT microtubule  相似文献   

10.
A. Kadota  M. Wada 《Protoplasma》1992,166(1-2):35-41
Summary Circular arrays of cortical microtubules (MTs) and microfilaments (MFs) are found in the subapical region of tip-growing protonemal cells of the fernAdiantum capillus-veneris. Reorganization of the two cytoskeletal structures during phytochrome-mediated phototropism and blue light-induced apical swelling was investigated by double-staining of MTs and MFs with rhodaminephalloidin and an indirect immunofluorescence method with tubulinspecific antibody. Before any growth responses were detectable, the MF and MT structures were reorganized according to similar patterns in both photoresponses, that is, oblique orientation and transient disappearance of the structures occurred during the phototropic response, and the disappearance of the structures occurred during apical swelling. The reorganization of MF structures clearly preceded that of the MT structures in the phototropic response. In the case of apical swelling, both types of circular array disappeared with an almost identical time course.These results provide evidence for the significant role of the circular organization of MFs as well as of MTs, in the light-induced growth responses of tip-growing fern protonemal cells. Possible roles of the circular array of MFs in the regulation of tip growth are discussed.Abbreviations DMSO dimethylsulfoxide - PIPES piperazine-N,N-bis(2-ethane-sulfonic acid) - EGTA ethyleneglycol-bis-(-aminoethylether)-N,N,N,N-tetraacetic acid - PMSF phenylmethylsulfonyl fluoride - MF microfilament - MT microtubule - Rh-Phal rhodaminelabeled phalloidin  相似文献   

11.
The arrangement of cortical microtubules (MTs) in differentiating tracheids of Abies sachalinensis Masters was examined by confocal laser scanning microscopy after immunofluorescent staining. The arrays of MTs in the tracheids during formation of the primary wall were not well ordered and the predominant orientation changed from longitudinal to transverse. During formation of the secondary wall, the arrays of MTs were well ordered and their orientation changed progressively from a flat S-helix to a steep Z-helix and then to a flat S-helix as the differentiation of tracheids proceeded. The orientation of cellulose microfibrils (MFs) on the innermost surface of cell walls changed in a similar manner to that of the MTs. These results provide strong evidence for the co-alignment of MTs and MFs during the formation of the semi-helicoidal texture of the cell wall in conifer tracheids.Abbreviations MT cortical microtubule - MF cellulose microfibril - S1, S2 and S3 the outer, middle and inner layers of the secondary wall The authors thank Mr. T. Itoh of the Electron Microscope Laboratory, Faculty of Agriculture, Hokkaido University, for his technical assistance. This work was supported in part by a Grant-in-Aid from the Ministry of Education, Science and Culture, Japan (no. 06404013).  相似文献   

12.
Yuan HY  Yao LL  Jia ZQ  Li Y  Li YZ 《Protoplasma》2006,229(1):75-82
Summary. In plant cells, cytoskeletons play important roles in response to biotic and abiotic stresses. However, little is known about the dynamics of cytoskeletons when cells are attacked by unphysical stress factors such as elicitors and toxins. We report here that the toxin of Verticillium dahliae (VD toxin) induced changes of microfilaments (MFs) and microtubules (MTs) in Arabidopsis thaliana suspension-cultured cells. When cells were treated with a low concentration of VD toxin, MFs were disrupted ordinally from the cortex to the perinuclear region, and then recovered spontaneously; but the MTs persisted. The MFs in the perinuclear region showed more resistance to VD toxin than the cortical ones. In contrast, when cells were treated with a high concentration of VD toxin, MFs and MTs were disrupted sooner and more severely and did not recover spontaneously. Treatments with high concentrations of VD toxin also induced changes of nucleoli. At the early stages of treatment, a nucleus had a single ring-shaped nucleolus. At the later stages, multiple smaller and more brightly fluorescing nucleoli emerged in a single nucleus. Disrupted MFs could be recovered by removing the VD toxin before the ringshaped nucleoli appeared. All these results showed that MFs and MTs play important roles in the early defense responses against VD toxin in Arabidopsis suspension cells. The cytoskeletons may be used as sensors and effectors monitoring the defense reactions. The changes of nucleoli induced by VD toxin should be important characteristics of cell death. Correspondence and reprints: Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100094, People’s Republic of China.  相似文献   

13.
T. Hogetsu  Y. Oshima 《Planta》1985,166(2):169-175
The microtubule (MT) arrangement in Closterium acerosum cells was observed by indirect immunofluorescence microscopy both during and following cell division, and during cell expansion without cell division. (During the division period, some cells of this alga divide whereas other cells expand in their middle region without division.) Before septum formation, all cells had a ring-like MT bundle (MT ring) in their middle. Both septum formation and expansion without cell division occurred at the position of this ring. During the periods of division, short, hair-like MTs appeared around the nucleus in some of the cells, in addition to the MT ring. In dividing cells, spindle MTs appeared as the chromosomes were condensed. During the early stages of expansion of the semicells, after cell division, the spindle MTs assumed a radial arrangement, moved, and settled in a position between the daughter chloroplasts. These MTs disappeared about 1.5 h after septum formation. As the new semicells were growing, wall MTs appeared, arranged transversely along the expanding wall. These transverse MTs disappeared gradually 4–5 h after septum formation, and only an MT ring remained near the boundary between the new and old semicells. The MT ring was present until the next cell division or expansion without cell division. During the latter course of development, transverse wall MTs were present only at the band-like expanding region. At the earlier stage of expansion without cell division, the short, hair-like MTs remained around the nucleus, but as time passed, both the hair-like MTs and, somewhat later, the transverse ones disappeared and only the MT rings remained. The remaining MT ring was not always positioned at the boundary between the expanding and the old cell region. The temporal relationships between the changes in MT arrangement, and the orientation and localization of cellulose-microfibril deposition are discussed.Abbreviations DAPI 46-diamino-2-phenylindole - EGTA ethyleneglycol-bis-(-aminoethylether)-N, N, N, N-tetraacetic acid - MT mierotubule - PMSF phenylmethylsulfonyl fruoride  相似文献   

14.
Summary The ultrastructure of the cytoskeleton inNicotiana alata pollen tubes grownin vitro has been examined after rapid freeze fixation and freeze substitution (RF-FS). Whereas cytoplasmic microtubules (MTs) and especially microfilaments (MFs) are infrequently observed after conventional chemical fixation, they occur in all samples prepared by RF-FS. Cortical MTs are oriented parallel to the long axis of the pollen tube and usually appear evenly spaced around the circumference of the cell. They are always observed with other components in a structural complex that includes the following: 1. a system of MFs, in which individual elements are aligned along the sides of the MTs and crossbridged to them; 2. a system of cooriented tubular endoplasmic reticulum (ER) lying beneath the MTs, and 3. the plasma membrane (PM) to which the MTs appear to be extensively linked. The cortical cytoskeleton is thus structurally complex, and contains elements such as MFs and ER that must be considered together with the MTs in any attempt to elucidate cytoskeletal function. MTs are also observed within the vegetative cytoplasm either singly or in small groups. Observations reveal that some of these may be closely associated with the envelope of the vegetative nucleus. MTs of the generative cell, in contrast to those of the vegetative cytoplasm, occur tightly clustered in bundles and show extensive cross-bridging. These bundles, especially in the distal tail of the generative cell, are markedly undulated. MFs are observed commonly in the cytoplasm of the vegetative cell. They occur in bundles oriented predominantly parallel to the pollen tube axis. Although proof is not provided, we suggest that they are composed of actin and are responsible for generating the vigorous cytoplasmic streaming characteristic of living pollen tubes.Abbreviations EGTA ethylene glycol bis-(-aminoethyl ether), N,N,N,N-tetraacetic acid - ER endoplasmic reticulum - MF microfilament - MT microtubule - PEG polyethylene glycol - PM plasma membrane - RF-FS rapid freeze fixation-freeze substitution  相似文献   

15.
R. Jarosch 《Protoplasma》1990,157(1-3):38-51
Summary Rotating filaments produce far reaching lateral streams in a thick medium and localized negative pressure when placed adjacent a wall. Freely movable filaments can roll on a wall. Pairs of counterrotating filaments are stabilized. When rotating components of the cytoskeleton generate these lateral hydrodynamic effects many hitherto mysterious features can be explained, including positioning of organelles and morphogenesis of plant cells. It is postulated that MTs and MFs roll laterally to positions of equilibrium, these being, for example, the preprophase band site and the cortical site that controls local thickening of the secondary wall. The orientation of microfibrils in the cell wall may also depend on the lateral effects of rotation. Different streaming patterns can move and shape the nucleus and other organelles and bring them in appropriate positions. Morphogenetic events as septum and lobe formation in desmids could result. Time-dependent reversal of the rotational directions are required for the transformation of the patterns.Dedicated to the memory of my friend and fellow student Oswald Kiermayer  相似文献   

16.
S. Hasezawa  T. Sano  T. Nagata 《Protoplasma》1998,202(1-2):105-114
Summary During cell cycle transition from M to G1 phase, micro-tubules (MTs), organized on the perinuclear region, reached the cell cortex. Microfilaments (MFs) were not involved in this process, however, MFs accumulated to form a ring-like structure in the division plane and from there they elongated toward the distal end in the cell cortex. Subsequently, when MTs elongated along the long axis of the cells, towards the distal end, the MTs ran into and then associated with the predeveloped MFs in the cell cortex, suggesting the involvement of MFs in organizing the parallel oriented MTs in the cell cortex. When cortical MTs were formed in the direction transverse to the long axis of cells, the two structures were again closely associated. Therefore, with regards to the determination of the direction of organizing MTs, predeveloped MFs may have guided the orientation of MTs at the initial stage. Disorganization of MFs in this period, by cytochalasins, prevented the organization of cortical MTs, and resulted in the appearance of abnormal MT configurations. We thus demonstrate the involvement of MFs in determining the orientation and organization of cortical MTs, and discuss the possible role of MFs during this process.Abbreviations CB cytochalasin B - CD cytochalasin D - CLSM confocal laser scanning microscopy - DAPI 4,6-diamidino-2-phenylindole - EF-1 elongation factor 1 - MF microfilament - MT microtubule  相似文献   

17.
The orientation of cellulose microfibrils (MFs) and the arrangement of cortical microtubules (MTs) in the developing tension-wood fibres of Japanese ash (Fraxinus mandshurica Rupr. var. japonica Maxim.) trees were investigated by electron and immunofluorescence microscopy. The MFs were deposited at an angle of about 45° to the longitudinal axis of the fibre in an S-helical orientation at the initiation of secondary wall thickening. The MFs changed their orientation progressively, with clockwise rotation (viewed from the lumen side), from the S-helix until they were oriented approximately parallel to the fibre axis. This configuration can be considered as a semihelicoidal pattern. With arresting of rotation, a thick gelatinous (G-) layer was developed as a result of the repeated deposition of parallel MFs with a consistent texture. Two types of gelatinous fibre were identified on the basis of the orientation of MFs at the later stage of G-layer deposition. Microfibrils of type 1 were oriented parallel to the fibre axis; MFs of type 2 were laid down with counterclockwise rotation. The counterclockwise rotation of MFs was associated with a variation in the angle of MFs with respect to the fibre axis that ranged from 5° to 25° with a Z-helical orientation among the fibres. The MFs showed a high degree of parallelism at all stages of deposition during G-layer formation. No MFs with an S-helical orientation were observed in the G-layer. Based on these results, a model for the orientation and deposition of MFs in the secondary wall of tension-wood fibres with an S1 + G type of wall organization is proposed. The MT arrays changed progressively, with clockwise rotation (viewed from the lumen side), from an angle of about 35–40° in a Z-helical orientation to an angle of approximately 0° (parallel) to the fibre axis during G-layer formation. The parallelism between MTs and MFs was evident. The density of MTs in the developing tension-wood fibres during formation of the G-layer was about 17–18 per m of wall. It appears that MTs with a high density play a significant role in regulating the orientation of nascent MFs in the secondary walls of wood fibres. It also appears that the high degree of parallelism among MFs is closely related to the parallelism of MTs that are present at a high density.Abbreviations FE-SEM field emission scanning electron microscopy - G gelatinous layer - MF cellulose microfibril - MT cortical microtubule - S1 outermost layer of the secondary wall - TEM transmission electron microscopy We thank Dr. Y. Akibayashi, Mr. Y. Sano and Mr. T. Itoh of the Faculty of Agriculture, Hokkaido University, for their experimental or technical assistance.  相似文献   

18.
T. Hogetsu 《Planta》1986,167(4):437-443
Immunofluorescence microscopy was used to examine the re-formation of microtubules (MT), after cold-induced depolymerization, in Closterium ehrenbergii. The C. ehrenbergii cells undergo cell division followed by semicell expansion in the dark period of daily light-dark cycles. Five types of MTs, namely the MT ring, hair-like MTs around the nuclei, spindle MTs, radially arranged MTs and transverse wall MTs, appeared and disappeared sequentially during and following cell division. The wall MTs were distributed transversely only in the expanding new semicells. When cells were chilled in ice water, wall MTs in expanding cells were fragmented, and then disappeared as did the other types of MTs, within 5 min. When cells were warmed at 20°C after 2 h chilling, wall MTs and the other types of MTs re-formed. At the early stage of wall-MT re-formation in expanding cells, small, star-like MTs were formed, and then randomly oriented MTs developed in both the expanding new and the old semicells. The MT ring was also re-formed at the boundary between the new and old semicells. There were no obvious MT-organizing centers in the random arrangement. As time passed, the randomly oriented wall MTs in the old semicells disappeared and those in the expanding new semicells gradually assumed a transverse orientation. These results indicate that wall MTs can be rearranged transversely after they have been re-formed and that nucleation of wall MTs is separable from the mechanism for ordering them.Abbreviations MT(s) microtubule(s) - MTOC(s) microtubule-organizing center(s)  相似文献   

19.
Summary Microtubule (MT) arrays in stomatal complexes ofLolium have been studied using cryosectioning and immunofluorescence microscopy. This in situ analysis reveals that the arrangement of MTs in pairs of guard cells (GCs) or subsidiary cells (SCs) within a complex is very similar, indicating that MT deployment is closely coordinated during development. In premitotic guard mother cells (GMCs), MTs of the transverse interphase MT band (IMB) are reorganized into a longitudinal array via a transitory array in which the MTs appear to radiate from the cell edges towards the centre of the walls. Following the longitudinal division of GMCs, cortical MTs are reinstated in the GCs at the edge of the periclinal and ventral walls. The MTs become organized into arrays which radiate across the periclinal walls, initially from along the length of the ventral wall and later only from the pore site. As the GCs elongate, the organization of MTs and the patterns of wall expansion differ on the internal and external periclinal walls. A final reorientation of MTs from transverse to longitudinal is associated with the elongation and constriction of GCs to produce mature complexes. During cytokinesis in the subsidiary mother cells (SMCs), MTs appear around the reforming nucleus in the daughter epidermal cells but appear in the cortex of the SC once division is complete. Our results are thus consistent with the idea that interphase MTs are nucleated in the cell cortex in all cells of the stomatal complex but not in adjacent epidermal cells.Abbreviations GMC guard mother cell - GC guard cell - IMB interphase microtubule band - MT microtubule - PPB preprophase band - SMC subsidiary mother cell - SC subsidiary cell  相似文献   

20.
A mycorrhizal fungus changes microtubule orientation in tobacco root cells   总被引:1,自引:0,他引:1  
A. Genre  P. Bonfante 《Protoplasma》1997,199(1-2):30-38
Summary Cortical cells of mycorrhizal roots undergo drastic morphological changes, such as vacuole fragmentation, nucleus migration, and deposition of cell wall components at the plant-fungus interface. We hypothesized that the cytoskeleton is involved in these mechanisms leading to cell reorganization. We subjected longitudinal, meristem to basal zone, sections of uninfectedNicotiana tabacum roots to immunofluorescence methods to identify the microtubular (MT) structures associated with root cells. Similar sections were obtained from tobacco roots grown in the presence ofGigaspora margarita, an arbuscular mycorrhizal fungus which penetrates the root via the epidermal cells, but mostly develops in the inner cortical cells. While the usual MT structures were found in uninfected roots (e.g., MTs involved in mitosis in the meristem and cortical hoops in differentiated parenchyma cells), an increase in complexity of MT structures was observed in infected tissues. At least three new systems were identified: (i) MTs running along large intracellular hyphae, (ii) MTs linking hyphae, (iii) MTs binding the hyphae to the host nucleus. The experiments show that mycorrhizal infection causes reorganization of root MTs, suggesting their involvement in the drastic morphological changes shown by the cortical cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号