首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: Humans are exposed to aluminum from environmental sources and therapeutic treatments. However, aluminum is neurotoxic and is considered a possible etiologic factor in Alzheimer's disease and other neurological disorders. The molecular mechanism of aluminum neurotoxicity is not understood. We tested the effects of aluminum on the glutamate-nitric oxide-cyclic GMP pathway in cultured neurons. Neurons were exposed to 50 µ M aluminum in culture medium for short-term (4 h) or long-term (8–14 days) periods, or rats were prenatally exposed, i.e., 3.7% aluminum sulfate in the drinking water, during gestation. Chronic (but not short-term) exposure of neurons to aluminum decreased glutamate-induced activation of nitric oxide synthase by 38% and the formation of cyclic GMP by 77%. The formation of cyclic GMP induced by the nitric oxide-generating agent S -nitroso- N -acetylpenicillamine was reduced by 33%. In neurons from rats prenatally exposed to aluminum but not exposed to it during culture, glutamate-induced formation of cyclic GMP was inhibited by 81%, and activation of nitric oxide synthase was decreased by 85%. The formation of cyclic GMP induced by S -nitroso- N -acetylpenicillamine was not affected. These results indicate that chronic exposure to aluminum impairs glutamate-induced activation of nitric oxide synthase and nitric oxide-induced activation of guanylate cyclase. Impairment of the glutamate-nitric oxide-cyclic GMP pathway in neurons may contribute to aluminum neurotoxicity.  相似文献   

2.
The role of nitric oxide (NO) production on metallothionein (MT) regulation in the liver and the brain has been studied in mice by means of the administration of nitric oxide synthase (NOS) inhibitors. Mice injected with either the arginine analog NG-monomethyl-L-arginine (L-NMMA) or the heme binding compound 7-nitro indazole (7-NI) showed consistently increased liver MT-I mRNA and MT-I+II total protein levels, suggesting that NO is involved in the hepatic MT regulation. In agreement with the liver results, in situ hybridization analysis demonstrated a significant upregulation of the brain MT-I isoform in areas such as the cerebrum cortex, neuronal CA1-CA3 layers and dentate gyrus of the hippocampus, and Purkinje cell layer of the cerebellum, in 7-NI treated mice. The same trend was observed for the brain specific isoform, MT-III, but to a much lower extent. The effect of NOS inhibition was also evaluated in a MT-inducing condition, namely during immobilization stress. In both the liver and the brain, stress upregulated the MT-I isoform, and 7-NI significantly reduced or even blunted the MT-I response to stress, suggesting a mediating role of NO on MT-I regulation during stress. Stress also increased the MT-III mRNA levels in some brain areas, an effect blunted by the concomitant administration of 7-NI, which in some areas even decreased MT-III mRNA levels below the saline injected mice. Results in primary culture of neurons and astrocytes demonstrate significant effects of the NOS inhibitors in some experimental conditions. The present results suggest that NO may have some role on MT regulation in both the liver and the brain.  相似文献   

3.
HIV-1 infection commonly leads to neuronal cell death and a debilitating syndrome known as AIDS-related dementia complex. The HIV-1 protein Tat is neurotoxic, and because cell survival is affected by the intracellular calcium concentration ([Ca2+]i), we determined mechanisms by which Tat increased [Ca2+]i and the involvement of these mechanisms in Tat-induced neurotoxicity. Tat increased [Ca2+]i dose-dependently in cultured human fetal neurons and astrocytes. In neurons, but not astrocytes, we observed biphasic increases of [Ca2+]i. Initial transient increases were larger in astrocytes than in neurons and in both cell types were significantly attenuated by antagonists of inositol 1,4,5-trisphosphate (IP3)-mediated intracellular calcium release [8-(diethylamino)octyl-3,4,5-trimethoxybenzoate HCI (TMB-8) and xestospongin], an inhibitor of receptor-Gi protein coupling (pertussis toxin), and a phospholipase C inhibitor (neomycin). Tat significantly increased levels of IP3 threefold. Secondary increases of neuronal [Ca2+]i in neurons were delayed and progressive as a result of excessive calcium influx and were inhibited by the glutamate receptor antagonists ketamine, MK-801, (+/-)-2-amino-5-phosphonopentanoic acid, and 6,7-dinitroquinoxaline-2,3-dione. Secondary increases of [Ca2+]i did not occur when initial increases of [Ca2+]i were prevented with TMB-8, xestospongin, pertussis toxin, or neomycin, and these inhibitors as well as thapsigargin inhibited Tat-induced neurotoxicity. These results suggest that Tat, via pertussis toxin-sensitive phospholipase C activity, induces calcium release from IP3-sensitive intracellular stores, which leads to glutamate receptor-mediated calcium influx, dysregulation of [Ca2+]i, and Tat-induced neurotoxicity.  相似文献   

4.
Using primary cultures of cerebral cortical neurons, it has been demonstrated that the antihyperthermia drug dantrolene completely protects against glutamate-induced neurotoxicity. Furthermore, in the presence of extracellular calcium, dantrolene reduced the glutamate-induced increase in the intracellular calcium concentration by 70%. In the absence of extracellular calcium, this glutamate response was completely blocked by dantrolene. Dantrolene did not affect the kinetics of [3H]glutamate binding to membranes prepared from similar cultures. These results indicate that release of calcium from intracellular stores is essential for the propagation of glutamate-induced neuronal damage. Because it is likely that glutamate is involved in neuronal degeneration associated with ischemia and hypoxia, the present findings might suggest that dantrolene and possibly other drugs affecting intracellular calcium pools might be of therapeutic interest.  相似文献   

5.
6.
Microglial activation as part of a chronic inflammatory response is a prominent component of Alzheimer's disease. Secreted forms of the beta-amyloid precursor protein (sAPP) previously were found to activate microglia, elevating their neurotoxic potential. To explore neurotoxic mechanisms, we analyzed microglia-conditioned medium for agents that could activate glutamate receptors. Conditioned medium from primary rat microglia activated by sAPP caused a calcium elevation in hippocampal neurons, whereas medium from untreated microglia did not. This response was sensitive to the NMDA receptor antagonist, aminophosphonovaleric acid. Analysis of microglia-conditioned by HPLC revealed dramatically higher concentrations of glutamate in cultures exposed to sAPP. Indeed, the glutamate levels in sAPP-treated cultures were substantially higher than those in cultures treated with amyloid beta-peptide. This sAPP-evoked glutamate release was completely blocked by inhibition of the cystine-glutamate antiporter by alpha-aminoadipate or use of cystine-free medium. Furthermore, a sublethal concentration of sAPP compromised synaptic density in microglia-neuron cocultures, as evidenced by neuronal connectivity assay. Finally, the neurotoxicity evoked by sAPP in microglia-neuron cocultures was attenuated by inhibitors of either the neuronal nitric oxide synthase (N(G)-propyl-L-arginine) or inducible nitric oxide synthase (1400 W). Together, these data indicate a scenario by which microglia activated by sAPP release excitotoxic levels of glutamate, probably as a consequence of autoprotective antioxidant glutathione production within the microglia, ultimately causing synaptic degeneration and neuronal death.  相似文献   

7.
The pathogenesis of various acute and chronic neurodegenerative disorders has been linked to excitotoxic processes and excess generation of nitric oxide. We investigated the deleterious effects of calpain activation in nitric oxide-elicited neuronal apoptosis. In this model, nitric oxide triggers apoptosis of murine cerebellar granule cells by an excitotoxic mechanism requiring glutamate exocytosis and receptor-mediated intracellular calcium overload. Here, we found that calcium-dependent cysteine proteases, calpains, were activated early in apoptosis of cerebellar granule cells exposed to nitric oxide. Release of the proapoptogenic factors cytochrome c and apoptosis-inducing factor from mitochondria preceded neuronal death. However, caspases-3 was not activated. We observed that procaspase-9 was cleaved by calpains to proteolytically inactive fragments. Inhibition of calpains by different synthetic calpain inhibitors or by adenovirally mediated expression of the calpastatin inhibitory domain prevented mitochondrial release of cytochrome c and apoptosis-inducing factor, calpain-specific proteolysis and neuronal apoptosis. We conclude that (i) signal transduction pathways exist that prevent the entry of neurons into a caspase-dependent death after mitochondrial release of cytochrome c and (ii) that calpain activation links nitric oxide-triggered excitotoxic events with the execution of caspase-independent apoptosis in neurons.  相似文献   

8.
Superfused rat cerebral cortex slices were submitted to a continuous electrical (5 Hz) stimulation and treated with sodium azide (1-10 mM) in the presence of 2 mM 2-deoxyglucose ("chemical ischemia"). Presynaptic cholinergic activity, evaluated as acetylcholine release, was inhibited depending on the sodium azide concentrations and on the length of application (5-30 min). Following a 5-min treatment with 10 mM sodium azide, acetylcholine release was reduced to 45+/-2.3%; simultaneously, there was a 15- and 10-fold increase in glutamate and nitric oxide effluxes, respectively. After restoring normal superfusion conditions, acetylcholine release recovered to 70+/-3.1% of the controls; the N-methyl-D-aspartate receptor antagonist MK-801 (10 microM) as well as the nitric oxide scavengers, haemoglobin (20 microM) and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-l-oxyl-3-oxide (150 microM), improved the recovery in presynaptic activity, showing that both glutamate and nitric oxide play detrimental roles in chemical ischemia. On the other hand, the post-ischemic recovery was worsened by the guanylylcyclase inhibitor 1H-[l,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (10 microM), suggesting that the activation of such a pathway plays a neuroprotective role and that the nitric oxide-induced harmful effects depend on different mechanisms. Chemical ischemia-evoked nitric oxide efflux partly derived from its calcium-dependent endogenous synthesis, since both the intracellular calcium chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (1 mM), and the nitric oxide synthase inhibitor, N(omega)-nitro-L-arginine methyl ester (100 microM), substantially prevented sodium azide effects. Nitric oxide efflux was only weakly reduced by MK-801 and was not modified by either the L-type calcium channel blocker, nifedipine (10 microM) or the N-type calcium channel blocker omega-conotoxin (0.5 microM), thus suggesting a prevailing intracellular calcium-dependence of nitric oxide production, although a partial extracellular calcium source cannot be ruled out. These findings show that sodium azide plus 2-deoxyglucose treatment is a useful protocol to induce brain ischemia in vitro and underline the involvement of nitric oxide in the complex events following the ischemic insult.  相似文献   

9.
Neuronal systems for calcium homeostasis are crucial for neuronal development and function and may also contribute to selective neuronal vulnerability in adverse conditions such as exposure to excitatory amino acids or anoxia, and in neurodegenerative diseases. Previous work demonstrated the presence and differential distribution of calcium-binding proteins in the CNS. We now report that a subpopulation of neurons in dissociated cell cultures of embryonic rat hippocampus expresses calbindin-D28k (Mr 28,000 calcium-binding protein) immunoreactivity and that these neurons are relatively resistant to neurotoxicity induced by either glutamate or calcium ionophore. Direct comparisons of dynamic aspects of intracellular calcium levels and calbindin-D28k immunoreactivity in the same neurons revealed that calbindin-D28k-positive neurons were better able to reduce free intracellular calcium levels than calbindin-D28k-negative neurons. These findings indicate that the differential expression of calbindin-D28k in hippocampal neurons occurs early in development and may be one determinant of selective neuronal vulnerability to excitotoxic insults.  相似文献   

10.
Chen Y  Irie Y  Keung WM  Maret W 《Biochemistry》2002,41(26):8360-8367
Metallothionein (MT) is a two-domain protein with zinc thiolate clusters that bind and release zinc depending on the redox states of the sulfur ligands. Since S-nitrosylation of cysteine is considered a prototypic cellular redox signaling mechanism, we here investigate the reactions of S-nitrosothiols with different isoforms of MT. MT-III is significantly more reactive than MT-I/II toward S-nitrosothiols, whereas the reactivity of all three isoforms toward reactive oxygen species is comparable. A cellular system, in which all three MTs are similarly effective in protecting rat embryonic cortical neurons in primary culture against hydrogen peroxide but where MT-III has a much more pronounced effect of protecting against S-nitrosothiols, confirms this finding. MT-III is the only isoform with consensus acid-base sequence motifs for S-nitrosylation in both domains. Studies with synthetic and zinc-reconstituted domain peptides demonstrate that S-nitrosothiols indeed release zinc from both the alpha- and the beta-domain of MT-III. S-Nitrosylation occurs via transnitrosation, a mechanism that differs fundamentally from that of previous studies of reactions of MT with NO*. Our data demonstrate that zinc thiolate bonds are targets of S-nitrosothiol signaling and further indicate that MT-III is biologically specific in converting NO signals to zinc signals. This could bear importantly on the physiological action of MT-III, whose biological activity as a neuronal growth inhibitory factor is unique, and for brain diseases that have been related to oxidative or nitrosative stress.  相似文献   

11.
Disruption of intracellular calcium homeostasis precedes the neurodegeneration that occurs in Alzheimer disease (AD). Of the many neuronal calcium-regulating proteins, we focused on endoplasmic reticulum (ER)-resident ryanodine receptors (RyRs) because they are increased in the hippocampus of mice expressing mutant presenilin-1 and are associated with neurotoxicity. Others have observed that ryanodine binding is elevated in human postmortem hippocampal regions suggesting that RyR(s) are involved in AD pathogenesis. Here we report that extracellular amyloid-beta(Abeta)-(1-42) specifically increased RyR-3, but not RyR-1 or RyR-2, gene expression in cortical neurons from C57Bl6 mice. Furthermore, endogenously produced Abeta-(1-42) increased RyR-3 mRNA and protein in cortical neurons from transgenic (Tg)CRND8 mice, a mouse model of AD. Increased RyR-3 mRNA and protein was also observed in brain tissue from 4- to 4.5-month-old Tg animals compared with non-Tg littermate controls. In experiments performed in nominal extracellular calcium, neurons from Tg mice had significant increases in intracellular calcium following ryanodine or glutamate treatment compared with littermate controls, which was abolished by treatment with small interfering RNA directed to RyR-3, indicating that the higher levels of calcium originated from RyR-3-regulated stores. Taken together, these observations suggest that Abeta-(1-42)-mediated changes in intracellular calcium homeostasis is regulated in part through a direct increase of RyR-3 expression and function.  相似文献   

12.
The possible neuroprotective effect of D-glucose against glutamate-mediated neurotoxicity was studied in rat cortical neurons in primary culture. Brief (5-min) exposure of neurons to glutamate (100 microM) increased delayed (24-h) necrosis and apoptosis by 3- and 1.8-fold, respectively. Glutamate-mediated neurotoxicity was accompanied by a D-(-)-2-amino-5-phosphonopentanoate (100 microM) and N(omega)-nitro-L-arginine methyl ester (1 mM)-inhibitable, time-dependent ATP depletion (55% at 24 h), confirming the involvement of NMDA receptor stimulation followed by nitric oxide synthesis in this process. Furthermore, the presence of D-glucose (20 mM), but not its inactive enantiomer, L-glucose, fully prevented glutamate-mediated delayed ATP depletion, necrosis, and apoptosis. Succinate- cytochrome c reductase activity, but not the activities of NADH-coenzyme Q(1) reductase or cytochrome c oxidase, was inhibited by 32% by glutamate treatment, an effect that was abolished by incubation with D-glucose. Lactate accumulation in the culture medium was unmodified by any of these treatments, ruling out the possible involvement of the glycolysis pathway in either glutamate neurotoxicity or D-glucose neuroprotection. In contrast, D-glucose, but not L-glucose, abolished glutamate-mediated glutathione oxidation and NADPH depletion. Our results suggest that NADPH production from D-glucose accounts for glutathione regeneration and protection from mitochondrial dysfunction. This supports the notion that the activity of the pentose phosphate pathway may be an important factor in protecting neurons against glutamate neurotoxicity.  相似文献   

13.
The neurotoxicity of the amyloid-β peptide (Aβ) appears to be, at least in part, related to pathological activation of glutamate receptors by Aβ aggregates. However, the downstream signaling pathways leading to neurodegeneration are still incompletely understood. Hyperactivation of nitric oxide synthase (NOS) and increased nitric oxide (NO) production have been implicated in excitotoxic neuronal damage caused by overactivation of glutamate receptors, and it has been suggested that increased NO levels might also play a role in neurotoxicity in Alzheimer’s disease. We have examined the effect of blockade of NO production on the neurotoxicity instigated by Aβ42 and by elevated concentrations of glutamate in chick embryo retinal neurons in culture. Results showed that l-nitroarginine methyl ester, a potent inhibitor of all NOS isoforms, had no protective effect against neuronal death induced by either Aβ42 (20 μM) or glutamate (1 mM). Surprisingly, at short incubation times both Aβ and glutamate decreased NO production in retinal neuronal cultures in the absence of neuronal death. Thus, excitotoxic insults induced by Aβ and glutamate cause inhibition rather than activation of NO synthase in retinal neurons, suggesting that cell death induced by Aβ or glutamate is not related to increased NO production. On the other hand, considering the role of NO in long term potentiation and synaptic plasticity, the decrease in NO levels instigated by Aβ and glutamate suggests a possible mechanism leading to synaptic failure in AD.  相似文献   

14.
Aberrant glutamate and calcium signalings are neurotoxic to specific neuronal populations. Calcium/calmodulin-dependent kinase II (CaMKII), a multifunctional serine/threonine protein kinase in neurons, is believed to regulate neurotransmission and synaptic plasticity in response to calcium signaling produced by neuronal activity. Importantly, several CaMKII substrates control neuronal structure, excitability, and plasticity. Here, we demonstrate that CaMKII inhibition for >4 h using small molecule and peptide inhibitors induces apoptosis in cultured cortical neurons. The neuronal death produced by prolonged CaMKII inhibition is associated with an increase in TUNEL staining and caspase-3 cleavage and is blocked with the translation inhibitor cycloheximide. Thus, this neurotoxicity is consistent with apoptotic mechanisms, a conclusion that is further supported by dysregulated calcium signaling with CaMKII inhibition. CaMKII inhibitory peptides also enhance the number of action potentials generated by a ramp depolarization, suggesting increased neuronal excitability with a loss of CaMKII activity. Extracellular glutamate concentrations are augmented with prolonged inhibition of CaMKII. Enzymatic buffering of extracellular glutamate and antagonism of the NMDA subtype of glutamate receptors prevent the calcium dysregulation and neurotoxicity associated with prolonged CaMKII inhibition. However, in the absence of CaMKII inhibition, elevated glutamate levels do not induce neurotoxicity, suggesting that a combination of CaMKII inhibition and elevated extracellular glutamate levels results in neuronal death. In sum, the loss of CaMKII observed with multiple pathological states in the central nervous system, including epilepsy, brain trauma, and ischemia, likely exacerbates programmed cell death by sensitizing vulnerable neuronal populations to excitotoxic glutamate signaling and inducing an excitotoxic insult itself.  相似文献   

15.
The activation of the transient receptor potential vanilloid type 1 channel (TRPV1) has been correlated with oxidative and nitrosative stress and cell death in the nervous system. Our previous results indicate that TRPV1 activation in the adult retina can lead to constitutive and inducible nitric oxide synthase-dependent protein nitration and apoptosis. In this report, we have investigated the potential effects of TRPV1 channel activation on nitric oxide synthase (NOS) expression and function, and the putative participation of ionotropic glutamate receptors in retinal TRPV1-induced protein nitration, lipid peroxidation, and DNA fragmentation. Intravitreal injections of the classical TRPV1 agonist capsaicin up-regulated the protein expression of the inducible and endothelial NOS isoforms. Using 4,5-diaminofluorescein diacetate for nitric oxide (NO) imaging, we found that capsaicin also increased the production of NO in retinal blood vessels. Processes and perikarya of TRPV1-expressing neurons in the inner nuclear layer of the retina were found in the vicinity of nNOS-positive neurons, but those two proteins did not colocalize. Retinal explants exposed to capsaicin presented high protein nitration, lipid peroxidation, and cell death, which were observed in the inner nuclear and plexiform layers and in ganglion cells. This effect was partially blocked by AP-5, a NMDA glutamate receptor antagonist, but not by CNQX, an AMPA/kainate receptor antagonist. These data support a potential role for TRPV1 channels in physiopathological retinal processes mediated by NO, which at least in part involve glutamate release.  相似文献   

16.
Toxic effects of HIV-1 proteins contribute to altered function and decreased survival of select populations of neurons in HIV-1-infected brain. One such HIV-1 protein, Tat, can activate calcium release from IP3-sensitive intracellular pools, induce calcium influx in neural cells, and, as a result, can increase neuronal cell death. Here, we provide evidence that Tat potentiates excitatory amino acid (glutamate and NMDA) triggered calcium flux, as well as glutamate- and staurosporine-mediated neurotoxicity. Calcium flux in cultured rat hippocampal neurons triggered by the transient application of glutamate or NMDA was facilitated by pre-exposure to Tat. Facilitation of glutamate-triggered calcium flux by Tat was prevented by inhibitors of ADP-ribosylation of G(i)/G(o) proteins (pertussis toxin), protein kinase C (H7 and bisindolymide), and IP3-mediated calcium release (xestospongin C), but was not prevented by an activator of G(s) (cholera toxin) or an inhibitor of protein kinase A (H89). Facilitation of NMDA-triggered calcium flux by Tat was reversed by inhibitors of tyrosine kinase (genestein and herbimycin A) and by an inhibitor of NMDA receptor function (zinc). Tat increased 32P incorporation into NMDA receptor subunits NR2A and NR2B and this effect was blocked by genestein. Subtoxic concentrations of Tat combined with subtoxic concentrations of glutamate or staurosporine increased neuronal cell death significantly. Together, these findings suggest that NMDA receptors play an important role in Tat neurotoxicity and the mechanisms identified may provide additional therapeutic targets for the treatment of HIV-1 associated dementia.  相似文献   

17.
Glutamate uptake by high affinity glutamate transporters is essential for preventing excitotoxicity and maintaining normal synaptic function. We have discovered a novel role for presenilin-1 (PS1) as a regulator of glutamate transport. PS1-deficient neurons showed a decrease in glutamate uptake of approximately 50% compared to wild-type neurons. Gamma-secretase inhibitor treatment mimicked the effects of PS1 deficiency on glutamate uptake. PS1 loss-of-function, accomplished by PS1 deficiency or gamma-secretase inhibitor treatment, caused a corresponding decrease in cell surface expression of the neuronal glutamate transporter, EAAC1. PS1 deficiency is known to reduce intracellular calcium stores. To explore the possibility that PS1 influences glutamate uptake via regulation of intracellular calcium stores, we examined the effects of treating neurons with caffeine, thapsigargin, and SKF-96365. These compounds depleted intracellular calcium stores by distinct means. Nonetheless, each treatment mimicked PS1 loss-of-function by impairing glutamate uptake and reducing EAAC1 expression at the cell surface. Blockade of voltage-gated calcium channels, activation and inhibition of protein kinase C (PKC), and protein kinase A (PKA) all had no effect on glutamate uptake in neurons. Taken together, these findings indicate that PS1 and intracellular calcium stores may play a significant role in regulating glutamate uptake and therefore may be important in limiting glutamate toxicity in the brain.  相似文献   

18.
BACKGROUND: The recent literature suggests that free radicals and reactive oxygen species may account for many pathologies, including those of the nervous system. MATERIALS AND METHODS: The influence of various reactive oxygen species on the rate of glutamate uptake by astrocytes was investigated on monolayers of primary cultures of mouse cortical astrocytes. RESULTS: Hydrogen peroxide and peroxynitrite inhibited glutamate uptake in a concentration-dependent manner. Addition of copper ions and ascorbate increased the potency and the efficacy of the hydrogen peroxide effect, supporting the potential neurotoxicity of the hydroxyl radical. The free radical scavenger dimethylthiourea effectively eliminated the inhibitory potential of a mixture containing hydrogen peroxide, copper sulphate, and ascorbate on the rate of glutamate transport into astrocytes. The inhibitory effect of hydrogen peroxide on glutamate uptake was not altered by the inhibition of glutathione peroxidase, whereas the inhibition of catalase by sodium azide clearly potentiated this effect. Superoxide and nitric oxide had no effect by themselves on the rate of glutamate uptake by astrocytes. The absence of an effect of nitric oxide is not due to an inability of astrocytes to respond to this substance, since the same cultures did respond to nitric oxide with a sustained increase in cytoplasmic free calcium. CONCLUSION: These results confirm that reactive oxygen species have a potential neurotoxicity by means of impairing glutamate transport into astrocytes, and they suggest that preventing the accumulation of hydrogen peroxide in the extracellular space of the brain, especially during conditions that favor hydroxyl radical formation, could be therapeutic.  相似文献   

19.
20.
Abstract: Tryptophan hydroxylase, the initial and rate-limiting enzyme in the biosynthesis of the neurotransmitter serotonin, is inactivated by the nitric oxide generators sodium nitroprusside, diethylamine/nitric oxide complex, and S -nitroso- N -acetylpenicillamine. Physiological concentrations of tetrahydrobiopterin, the natural and endogenous cofactor for the hydroxylase, significantly enhance the inactivation of the enzyme caused by each of these nitric oxide generators. The substrate tryptophan does not have this effect. The chemically reduced (tetrahydro-) form of the pterin is required for the enhancement, because neither biopterin nor dihydrobiopterin is effective. The 6 S -isomer of tetrahydrobiopterin, which has little cofactor efficacy for tryptophan hydroxylase, does not enhance enzyme inactivation as does the natural 6 R -isomer. A number of synthetic, reduced pterins share with tetrahydrobiopterin the ability to enhance nitric oxide-induced inactivation of tryptophan hydroxylase. The tetrahydrobiopterin effect is not prevented by agents known to scavenge hydrogen peroxide, superoxide radicals, peroxynitrite anions, hydroxyl radicals, or singlet oxygen. On the other hand, cysteine partially protects the enzyme from both the nitric oxide-induced inactivation and the combined pterin/nitric oxide-induced inactivation. These results suggest that the tetrahydrobiopterin cofactor enhances the nitric oxide-induced inactivation of tryptophan hydroxylase via a mechanism that involves attack on free protein sulfhydryls. Potential in vivo correlates of a tetrahydrobiopterin participation in the inactivation of tryptophan hydroxylase can be drawn to the neurotoxic amphetamines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号