首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Metastasis, tumor relapse, and drug resistance remain major obstacles in the treatment of cancer. Therefore, more research on the mechanisms of these processes in disease is warranted for improved treatment options. Recent evidence suggests that the capability to sustain tumor growth and metastasis resides in a subpopulation of cells, termed cancer stem cells or tumor-initiating cells. Continuous proliferation and self-renewal are characteristics of stem/progenitor cells. Telomerase and the maintenance of telomeres are key players in the ability of stem and cancer cells to bypass senescence and be immortal. Therefore, telomerase inhibitors have the therapeutic potential for reducing tumor relapse by targeting cancer stem cells and other processes involved in metastasis. Herein we review the role of telomerase in the immortal phenotype of cancer and cancer stem cells, targeting telomerase in cancer, and discuss other opportunities for telomerase inhibitors to target critical steps in cancer metastasis and recurrence.  相似文献   

3.
4.
5.
6.
7.
Hybrids between immortal cells that express telomerase and normal cells that lack telomerase have a limited lifespan. We demonstrate that telomerase is repressed in such hybrids. Treatment of immortal human cell lines with certain oligonucleotides resulted in telomere elongation. We took advantage of this observation to test the hypothesis that elongation of telomeres would extend the lifespan of cells in culture. An immortal human cell line was treated with an oligonucleotide to lengthen its telomeres and then was fused with mortal cells. The lifespan of these hybrid cells was longer than that of the hybrids in which telomeres had not been elongated. These observations provide the first direct evidence supporting the hypothesis that telomere length determines proliferative capacity of human cells.  相似文献   

8.
Solid tumor cells are often exposed to hypoxia in vivo, which has been suggested to promote genetic instability in those cells. Telomere elongation by telomerase is implicated in chromosome stabilization in immortal cells. Here we found that hypoxia enhanced telomerase activity in the solid tumor A2780 and HT-29 cells but not in the leukemia U937 cells. The telomerase activation correlated with activation of mitogen-activated protein kinase (MAPK) and c-fos expression. The MEK1 inhibitor PD98059 repressed telomerase activation in the hypoxic cells. Consistently, a dominant negative MEK1 inhibited telomerase activation by hypoxia. Finally, we found a good correlation between telomerase activation and resistance to apoptotic cell death under hypoxic conditions. These findings indicate that hypoxia up-regulates telomerase activity via MAPK cascade signaling especially in solid tumor cells and suggest that solid tumor cells might enhance the telomerase activity as a stress response against genotoxicity induced by hypoxia.  相似文献   

9.
A general feature of stem cells is the ability to routinely proliferate to build, maintain, and repair organ systems. Accordingly, embryonic and germline, as well as some adult stem cells, produce the telomerase enzyme at various levels of expression. Our results show that, while muscle is a largely postmitotic tissue, the muscle stem cells (satellite cells) that maintain this biological system throughout adult life do indeed display robust telomerase activity. Conversely, primary myoblasts (the immediate progeny of satellite cells) quickly and dramatically downregulate telomerase activity. This work thus suggests that satellite cells, and early transient myoblasts, may be more promising therapeutic candidates for regenerative medicine than traditionally utilized myoblast cultures. Muscle atrophy accompanies human aging, and satellite cells endogenous to aged muscle can be triggered to regenerate old tissue by exogenous molecular cues. Therefore, we also examined whether these aged muscle stem cells would produce tissue that is “young” with respect to telomere maintenance. Interestingly, this work shows that the telomerase activity in muscle stem cells is largely retained into old age wintin inbred “long” telomere mice and in wild‐derived short telomere mouse strains, and that age‐specific telomere shortening is undetectable in the old differentiated muscle fibers of either strain. Summarily, this work establishes that young and old muscle stem cells, but not necessarily their progeny, myoblasts, are likely to produce tissue with normal telomere maintenance when used in molecular and regenerative medicine approaches for tissue repair. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

10.
Differences between normal adult tissue stem cells and cancer stem/initiating cells remain poorly defined. For example, it is controversial if cancer stem cells can become fully quiescent, require a stem cell niche, are better at repairing DNA damage than the bulk of the cancer cells, and if and how they regulate symmetric versus asymmetric cell divisions. This minireview will not only provide our personal views to address some of these outstanding questions, but also present evidence that an understanding of telomere dynamics and telomerase activity in normal and cancer stem cells may provide additional insights into how tumors are initiated, and how they should be monitored and treated.  相似文献   

11.
12.
Muscle satellite cells are a stem cell population required for postnatal skeletal muscle development and regeneration, accounting for 2-5% of sublaminal nuclei in muscle fibers. In adult muscle, satellite cells are normally mitotically quiescent. Following injury, however, satellite cells initiate cellular proliferation to produce myoblasts, their progenies, to mediate the regeneration of muscle. Transplantation of satellite cell-derived myoblasts has been widely studied as a possible therapy for several regenerative diseases including muscular dystrophy, heart failure, and urological dysfunction. Myoblast transplantation into dystrophic skeletal muscle, infarcted heart, and dysfunctioning urinary ducts has shown that engrafted myoblasts can differentiate into muscle fibers in the host tissues and display partial functional improvement in these diseases. Therefore, the development of efficient purification methods of quiescent satellite cells from skeletal muscle, as well as the establishment of satellite cell-derived myoblast cultures and transplantation methods for myoblasts, are essential for understanding the molecular mechanisms behind satellite cell self-renewal, activation, and differentiation. Additionally, the development of cell-based therapies for muscular dystrophy and other regenerative diseases are also dependent upon these factors.However, current prospective purification methods of quiescent satellite cells require the use of expensive fluorescence-activated cell sorting (FACS) machines. Here, we present a new method for the rapid, economical, and reliable purification of quiescent satellite cells from adult mouse skeletal muscle by enzymatic dissociation followed by magnetic-activated cell sorting (MACS). Following isolation of pure quiescent satellite cells, these cells can be cultured to obtain large numbers of myoblasts after several passages. These freshly isolated quiescent satellite cells or ex vivo expanded myoblasts can be transplanted into cardiotoxin (CTX)-induced regenerating mouse skeletal muscle to examine the contribution of donor-derived cells to regenerating muscle fibers, as well as to satellite cell compartments for the examination of self-renewal activities.  相似文献   

13.
Carbazole derivatives that stabilized G-quadruplex DNA structure formed by human telomeric sequence have been designed and synthesized. Among them, 3,6-bis(1-methyl-4-vinylpyridinium)carbazole diiodide (BMVC) showed an increase in G-quadruplex melting temperature by 13 degrees C and has a potent inhibitory effect on telomerase activity. Treatment of H1299 cancer cells with 0.5 mumol/L BMVC did not cause acute toxicity and affect DNA replication; however, the BMVC-treated cells ceased to divide after a lag period. Hallmarks of senescence, including morphologic changes, detection of senescence-associated beta-galactosidase activity, and decreased bromodeoxyuridine incorporation, were detected in BMVC-treated cancer cells. The BMVC-induced senescence phenotype is accompanied by progressive telomere shortening and detection of the DNA damage foci, indicating that BMVC caused telomere uncapping after long-term treatments. Unlike other telomerase inhibitors, the BMVC-treated cancer cells showed a fast telomere shortening rate and a lag period of growth before entering senescence. Interestingly, BMVC also suppressed the tumor-related properties of cancer cells, including cell migration, colony-forming ability, and anchorage-independent growth, indicating that the cellular effects of BMVC were not limited to telomeres. Consistent with the observations from cellular experiments, the tumorigenic potential of cancer cells was also reduced in mouse xenografts after BMVC treatments. Thus, BMVC repressed tumor progression through both telomere-dependent and telomere-independent pathways.  相似文献   

14.
15.
16.
It has been proposed that the progressive shortening of telomeres in somatic cells eventually results in senescence. Previous experiments have demonstrated that many immortal cell lines have acquired telomerase activity leading to stabilization of telomere length. Telomere dynamics and telomerase activity were examined in the telomerase-positive immortal cell lines HeLa and 293 and subclones derived from them. A mass culture of HeLa cells had a stable mean telomere length over 60 population doublings (PD)in vitro.Subclones of this culture, however, had a range of mean telomere lengths indicating that telomeric heterogeneity exists within a population with a stable mean telomere length. Some of the subclones lacked detectable telomerase activity soon after isolation but regained it by PD 18, suggesting that at least some of the variation in telomere length can be attributed to variations in telomerase activity levels. 293 subclones also varied in telomere length and telomerase activity. Some telomerase-positive 293 subclones contained long telomeres that gradually shortened, demonstrating that factors other than telomerase also act to modulate telomere length. Fluctuations in telomere length in telomerase-positive immortalized cells may contribute to chromosomal instability and clonal evolution.  相似文献   

17.
18.
19.
Application of hypothermia to autologous stem cell purging   总被引:5,自引:0,他引:5  
Autologous stem cell transplantation is used widely after high-dose chemotherapy for treating hematological and other malignancies. Bone marrow harvested for autologous bone marrow transplantation may contain residual malignant cells even when the cancer is judged to be in remission. Attempts to purge marrow of its putative residual malignant cells may delay hemopoietic reconstitution and are of uncertain efficacy. In this report, we demonstrate the possibility of applying hypothermia to autologous stem cell purging. Using clonogenic assay, we compared the surviving fraction of human leukemia (HL60, K562) and human small cell lung cancer (H69) cell lines with that of normal human bone marrow CFU-GM and BFU-E cells after incubation at 4 +/- 0.1 degrees C for 24 and 48 h. Hypothermia decreased the surviving fraction of HL60, H69, and K562 cells. In contrast, the surviving fractions of stem cells were not affected by the temperature shift. The surviving fraction of HL60 cells at 4 degrees C cooling was significantly lower than that at 22 degrees C cooling. These findings suggest that in vitro hypothermia may selectively purge residual malignant cells in stored remission bone marrow and may be applicable before autologous bone marrow transplantation. In addition, the method is very simple and cost effective.  相似文献   

20.
Embryonic stem (ES) cell is well known as a totipotent cell, which is derived from a blastcyst and has potential to differentiate into every kind of somatic cell. ES cell bears self-renewal characteristic as well as differentiation potential. ES cell bears telomerase activity to avoid telomere shortening, which is a characteristic of differentiated somatic cells. As the differentiation of ES cells proceeds, their telomerase activity is losing. However, it has not been convinced whether suppression of the telomerase activity promotes progression of ES cell differentiation. The effect of telomerase inhibitor on the differentiation potential of marmoset ES cell was assessed, counting cells expressing embryonic markers (alkaline phosphatase and TPA-1-60) under existence of a telomerase inhibitor. Telomerase inhibitor showed a promotional effect for the marmoset ES cell differentiation. This result suggests that exogenous inhibition of telomerase activity leads to induction of an early differentiation of primate ES cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号