首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolated protein subunits of the crystalline bacterial cell surface layer (S-layer) of Bacillus coagulans E38-66 have been recrystallized on one side of planar black lipid membranes (BLMs) and their influence on the electrical properties, rupture kinetics and mechanical stability of the BLM was investigated. The effect on the boundary potential, the capacitance or the conductance of the membrane was negligible whereas the mechanical properties were considerably changed. The mechanical stability was characterized by applying voltage pulses or ramps to induce irreversible rupture. The amplitude of the voltage pulse leading to rupture allows conclusions on the ability of membranes to resist external forces. Surprisingly, these amplitudes were significantly lower for composite S-layer/lipid membranes compared to undecorated BLMs. In contrast, the delay time between the voltage pulse and the appearance of the initial defect was found to be drastically longer for the S-layer-supported lipid bilayer. Furthermore, the kinetics of the rupture process was recorded. Undecorated membranes show a fast linear increase of the pore conductance in time, indicating an inertia-limited defect growth. The attachment of an S-layer causes a slow exponential increase in the conductance during rupture, indicating a viscosity-determined widening of the pore. In addition, the mechanical properties on a longer time scale were investigated by applying a hydrostatic pressure across the BLMs. This causes the BLM to bulge, as monitored by an increase in capacitance. Compared to undecorated BLMs, a significantly higher pressure gradient has to be applied on the S-layer face of the composite BLMs to observe any change in capacitance. Received: 4 May 1999 / Revised version: 1 July 1999 / Accepted: 1 July 1999  相似文献   

2.
Sensory transduction in living cells is thought to involve a change of electrical parameters at the receptor membrane following specific binding events at the membrane surface. Because of the complexity of the biomembrane structure and the environmental factors associated with it, experimental bilayer lipid membranes (BLMs) have been employed for elucidation of processes at the membrane level. This is because the BLM system can be easily probed by a host of powerful and sensitive electrochemical methods. Further, recent advances in microelectronics and biotechnology suggest that the development of a BLM-based electrochemical biosensor may be possible. This paper describes the use of bilayer lipid membranes on solid substrates for analysis of sensor development problems, with relevance to a possible novel type of biomolecular device. Some electrical parameters of the new structure were measured and compared to usual BLM results. The advantages of the self-assembled structure, together with the measuring system, are discussed in terms of stability and sensitivity.  相似文献   

3.
Characterization and property of DNA incorporated bilayer lipid membranes   总被引:3,自引:0,他引:3  
Calf-thymus DNA-incorporated bilayer lipid membranes supported on a glassy carbon (GC) electrode was prepared by making layers of phosphatidylcholine dimyristoyl (DMPC) on GC electrode. DNA in the BLM was characterized by cyclic voltammetry, IR and AFM, and lipid layers formed on the GC electrode were demonstrated to be a bilayer lipid membrane by electrochemical impedance experiment. In IR and AFM experiments the findings indicated that DNA was incorporated into BLM. The ion channel of bilayer lipid membranes incorporated was studied. The result showed that the ion channel was opened in the presence of the stimulus quinacrine. In the absence of quinacrine the channel was switched. The process can repeat itself many times. The impedance spectroscopy measurements demonstrate that the stimulus quinacrine opens the channel for permeation of marker ion. The mechanism of forming an ion channel was investigated.  相似文献   

4.
Solid-supported bilayer lipid membranes (s-BLMs) that possess some properties similar to those of conventional BLMs can be self-assembled on a freshly cleaved metal wire by a two-step procedure: (i) The tip of a Teflon-coated platinum wire, while immersed in a lipid solution, is cut off with a scalpel; (ii) the new tip of the wire, having become coated with lipid solution, is transferred into 0.1 M KCl. After a few minutes, a stable lipid bilayer forms spontaneously on the tip of the wire, as verified by electrical measurements. An application of such a supported BLM (s-BLM) is reported for the detection of Pb2+ ions. The s-BLM is liquid-crystalline in structure, which makes it amenable to modification for basic studies, as well as for technological applications such as biosensors and molecular electronic devices.  相似文献   

5.
Fusion of synaptic vesicle membranes with planar bilayer membranes.   总被引:2,自引:1,他引:1       下载免费PDF全文
The interaction of synaptic vesicles with horizontal bilayer lipid membranes (BLMs) was investigated as a model system for neurotransmitter release. High concentrations (200 mM) of the fluorescent dye, calcein, were trapped within synaptic vesicles by freezing and thawing. In the presence of divalent ions (usually 15 mM CaCl2), these frozen and thawed synaptic vesicles (FTSVs) adhere to squalene-based phosphatidylserine-phosphatidylethanolamine BLMs whereupon they spontaneously release their contents which is visible by fluorescence microscopy as bright flashes. The highest rate of release was obtained in KCl solutions. Release was virtually eliminated in isotonic glucose, but could be elicited by perfusion with KCl or by addition of urea. The fusion and lysis of adhering FTSVs appears to be the consequence of stress resulting from entry of permeable external solute (KCl, urea) and accompanying water. An analysis of flash diameters in experiments where Co+2, which quenches calcein fluorescence, was present on one or both sides of the BLM, indicates that more than half of the flashes represent fusion events, i.e., release of vesicle contents on the trans side of the BLM. A population of small, barely visible FTSVs bind to BLMs at calcium ion concentrations of 100 microM. Although fusion of these small FTSVs to BLMs could not be demonstrated, fusion with giant lipid vesicles was obvious and dramatic, albeit infrequent. Addition of FTSVs or synaptic vesicles to BLMs in the presence of 100 microM-15 mM Ca2+ produced large increases in BLM conductance. The results presented demonstrate that synaptic vesicles are capable of fusing with model lipid membranes in the presence of Ca+2 ion which, at the lower limit, may begin to approach physiological concentrations.  相似文献   

6.
Chemical modification and photodynamic treatment of the colicin E1 channel-forming domain (P178) in vesicular and planar bilayer lipid membranes (BLMs) was used to elucidate the role of tryptophan residues in colicin E1 channel activity. Modification of colicin tryptophan residues by N-bromosuccinimide (NBS), as judged by the loss of tryptophan fluorescence, resulted in complete suppression of wild-type P178 channel activity in BLMs formed from fully saturated (diphytanoyl) phospholipids, both at the macroscopic-current and single-channel levels. The similar effect on both the tryptophan fluorescence and the electric current across BLM was observed also after NBS treatment of gramicidin channels. Of the single-tryptophan P178 mutants studied, W460 showed the highest sensitivity to NBS treatment, pointing to the importance of the water-exposed Trp460 in colicin channel activity. In line with previous work, the photodynamic treatment (illumination with visible light in the presence of a photosensitizer) led to suppression of P178 channel activity in diphytanoyl-phospholipid membranes concomitant with the damage to tryptophan residues detected here by a decrease in tryptophan fluorescence. The present work revealed novel effects: activation of P178 channels as a result of both NBS and photodynamic treatments was observed with BLMs formed from unsaturated (dioleoyl) phospholipids. These phenomena are ascribed to the effect of oxidative modification of double-bond-containing lipids on P178 channel formation. The pronounced stimulation of the colicin-mediated ionic current observed after both pretreatment with NBS and sensitized photomodification of the BLMs support the idea that distortion of membrane structure can facilitate channel formation.Abbreviations: AlPcS3, almininum trisulfophthalocyanine; BLM, bilayer lipid membrane; DOPC, dioleoylphosphatidylcholine; DOPG, dioleoylphosphatidyl-glycerol; DPhPG, diphytanoylphos-phatidylglycerol; DPhPg, diphytanoylphosphatidylcholine; gA, gramicidin A; NBS, N-bromosuccinimideThis revised version was published online in August 2005 with a corrected cover date.  相似文献   

7.
This work reports a technique for the stabilization after storage in air of a lipid film based biosensor for atenolol. Microporous filters composed of glass fibers (nominal pore sizes 0.7 and 1.0 microm) were used as supports for the formation and stabilization of these devices. The lipid film is formed on the filter by polymerization prior to its use. Methacrylic acid was the functional monomer, ethylene glycol dimethacrylate was the crosslinker and 2,2'-azobis-(2-methylpropionitrile) was the initiator. The method for preparation of stabilized lipid film biosensor is studied throughout this work. The response towards atenolol of these stabilized lipid membrane biosensor, for repetitive use, composed of phosphatidylcholine was compared with planar freely suspended bilayer lipid membranes (BLMs). The stabilized lipid membranes provided similar artificial ion gating events as BLMs in the form of transient signals and can function for repetitive uses after storage in air. This will allow the practical use of the techniques for chemical sensing based on lipid films and commercialization of these devices.  相似文献   

8.
The application of voltammetric methods to planar bilayer lipid membranes (BLM) studies is described. BLM-compound interaction experiments lead to the measurement of the membrane current underlying transport phenomena. From measurements of current/voltage of BLM in unstirred solutions as a function of scan rates, it is possible to obtain both thermodynamic and kinetic information. In past years, a variety of techniques have been used to study the electrical properties of BLMs, but in terms of versatility, the cyclic voltammetric technique is outstanding. Cyclic voltammetry is the definitive means of characterizing the redox process of electroactive membranes.  相似文献   

9.
Effect of the constant magnetic field (MF) by the induction of 1.1 T on formation kinetics of bilayer lipid membranes (BLM) from egg lecithin in decane was discovered. Under the effect of MF oriented in parallel to the lipid film place the rate of BLM formation decreases, while at its perpendicular orientation it is accelerated. The stationary value of BLM capacity decreases under MF effect at both orientations. The discovered changes in the rate of BLM formation under MF effect seem to be related to the effect of MF on liquid crystalline structure of colour lipid film.  相似文献   

10.
In this work we report the interaction effects of the local anesthetic dibucaine (DBC) with lipid patches in model membranes by Atomic Force Microscopy (AFM). Supported lipid bilayers (egg phosphatidylcholine, EPC and dimyristoylphosphatidylcholine, DMPC) were prepared by fusion of unilamellar vesicles on mica and imaged in aqueous media. The AFM images show irregularly distributed and sized EPC patches on mica. On the other hand DMPC formation presents extensive bilayer regions on top of which multibilayer patches are formed. In the presence of DBC we observed a progressive disruption of these patches, but for DMPC bilayers this process occurred more slowly than for EPC. In both cases, phase images show the formation of small structures on the bilayer surface suggesting an effect on the elastic properties of the bilayers when DBC is present. Dynamic surface tension and dilatational surface elasticity measurements of EPC and DMPC monolayers in the presence of DBC by the pendant drop technique were also performed, in order to elucidate these results. The curve of lipid monolayer elasticity versus DBC concentration, for both EPC and DMPC cases, shows a maximum for the surface elasticity modulus at the same concentration where we observed the disruption of the bilayer by AFM. Our results suggest that changes in the local curvature of the bilayer induced by DBC could explain the anesthetic action in membranes.  相似文献   

11.
Pohl EE  Peterson U  Sun J  Pohl P 《Biochemistry》2000,39(7):1834-1839
The passive transbilayer movement-flip-flop-was investigated on planar bilayer lipid membranes (BLMs), containing myristic, stearic, or linoleic long-chain fatty acids (FA). In response to a transbilayer pH gradient, a difference in the surface charges between inner and outer leaflets appeared. Because the BLM was formed from FA and neutral lipid, a surface potential difference was originated solely by a concentration difference of the initially equally distributed ionized FA. As revealed by zeta-potential measurements, the corresponding surface potential difference DeltaPhi(s) was at least twice the value expected from a titration of the FA alone. The additional surface charge was attributed to FA flip-flop induced by the transbilayer pH gradient. DeltaPhi(s) was derived from capacitive current measurements carried out with a direct current (dc) bias and was corrected for changes of membrane dipole potential Phi(d). Dual-wavelength ratiometric fluorescence measurements have shown that Phi(d) values of the pure DPhPC bilayers and BLMs containing 40 mol % FA differ by less than 6%. It is concluded that fast FA flip-flop is not restricted to membranes with high curvature. The role of pH gradient as an effective driving force for the regulation of FA uptake is discussed.  相似文献   

12.
The lipid layer membranes were fabricated on the glassy carbon electrode (GC) and demonstrated to be bilayer lipid membranes by impedance spectroscopy. The formation of incorporated poly L-glutamate bilayer lipid membrane was achieved. The ion channel behavior of the incorporated poly L-glutamate membrane was determined. When the stimulus calcium cations were added into the electrolyte, the ion channel was opened immediately and exhibited distinct channel current. Otherwise, the ion channel was closed. The cyclic voltammogram at the GC electrode coated with incorporated poly L-glutamate DMPC film response to calcium ion is very fast compared with that at the GC electrode coated only with DMPC film. Ion channel current is not dependent on the time but on the concentration of calcium. The mechanism of the ion channel formation was investigated.  相似文献   

13.
The interaction of two helical antimicrobial peptides, HPA3 and HPA3P with planar supported lipid membranes was quantitatively analysed using two complementary optical biosensors. The peptides are analogues of Hp(2-20) derived from the N-terminus of Helicobacter pylori ribosomal protein L1 (RpL1). The binding of these two peptide analogues to zwitterionic dimyristoyl-phosphatidylcholine (DMPC) and negatively charged membranes composed of DMPC/dimyristoylphosphatidylglycerol (DMPG) (4:1) was determined using surface plasmon resonance (SPR) and dual polarisation interferometry (DPI). Using SPR analysis, it was shown that the proline substitution in HPA3P resulted in much lower binding for both zwitterionic and anionic membranes than HPA3. Structural changes in the planar DMPC and DMPC/DMPG (4:1) bilayers induced by the binding of both Hp(2-20) analogues were then resolved in real-time with DPI. The overall process of peptide-induced changes in membrane structure was analysed by the real-time changes in bound peptide mass as a function of bilayer birefringence. The insertion of both HPA3 and HPA3P into the supported lipid bilayers resulted in a decrease in birefringence with increasing amounts of bound peptide which reflects a decrease in the order of the bilayer. The binding of HPA3 to each membrane was associated with a higher level of bound peptide and greater membrane lipid disordering and a faster and higher degree of insertion into the membrane than HPA3P. Furthermore, the binding of both HPA3 and HPA3P to negatively charged DMPC/DMPG bilayers also leads to a greater disruption of the lipid ordering. These results demonstrate the geometrical changes in the membrane upon peptide insertion and the extent of membrane structural changes can be obtained quantitatively. Moreover, monitoring the effect of peptides on a structurally characterised bilayer has provided further insight into the role of membrane structure changes in the molecular basis of peptide selectivity and activity and may assist in defining the mode of antimicrobial action.  相似文献   

14.
本实验用人工双分子平板膜系统(BLM)测量了紫膜碎片和在DMPC脂质襄泡膜中的单体菌紫质分子的光电响应以及与温度的关系(处理温度17℃至31℃).温度对紫膜碎片的光电响应影响不大,但对单体菌紫质分子的光电响应有明显影响.用园二色(CD)方法相应地观察了温度对紫膜碎片和单体菌紫质分子在可见波长范围内的CD谱的影响 同样观察到温度对单体菌紫质分子的CD谱有明显影响.两者的影响很可能与脂质襄泡中DMPC的相变温度有关.  相似文献   

15.
The effect of the antiviral preparation rimantadine on lipid bilayer membranes (BLM) was studied by measuring the modulus of elasticity in the direction normal to the surface (E perpendicular) and by estimating the conductance lambda, the lifetime tau of single gramicidin D channels (GRD), and the coefficient of nonlinearity beta of current voltage characteristics (IVC) of GRD-modified BLM. Rimantadine induced a nonmonotonic change in E perpendicular of BLM prepared from a mixture of egg lecithin with cholesterol: at relatively low rimantadine concentrations (0-40 micrograms/ml) E perpendicular first increased, reached a maximum and started to decrease. The effectivity of rimantadine was dependent on the cholesterol concentration in the BLM. Changes in E perpendicular suggest an increased ordering of the lipid bilayer at low rimantadine concentrations and formation of clusters of the preparation at concentrations exceeding those necessary to obtain maximal values of E perpendicular for the given BLM lipid composition. Rimantadine concentrations lifetime by approximately 20 percent, affected the degree of IVC nonlinearity and superlinearity of GRD-modified membranes, which suggests some effect on the height of the barrier at the ionic channel mouth and in its centre.  相似文献   

16.
The drug cisplatin has broad antineoplastic activity against advanced testicular and ovarian cancers, epithelial malignancies, cancers of the head, neck, bladder, oesophagus and lungs. Peripheral neurotoxicity, ototoxicity and nephrotoxicity are its major side effects. The nonspecific action of this drug on the lipid bilayer architecture of membranes has been studied by following the effects produced on the electrical characteristics of model planar bilayer lipid membranes (BLM). The results confirm that the drug has a strong surface interaction with the zwitterionic polar head groups of the amphipathic phospholipids constituting the BLM. The permeability characteristics of cisplatin through the hydrophobic core are limited. Cisplatin does not fluidise the membrane sufficiently to cause its breakdown but creates small ion conducting defects on the membrane bilayer resulting in a marginal increase in ion conductivity. These results indicate that cisplatin exhibits a non-specific action on the lipid bilayer component of the membrane which might be partly responsible for its neurotoxic side effects.  相似文献   

17.
Dependence of channel parameters formed by gramicidin A (conductivity and mean life time) on thickness, composition and tension of planar bilayer lipid membranes (BLM) was studied. BLM were obtained from solutions of alpha-monoglycerides of fatty acids in n-alkanes. It has been shown that channel conductivity depends on the length of lipid radical hydrocarbon and is insensitive to the isomerization of lipid and to the change of solvent. There was no direct relationship between the life time, thickness and composition of BLM. Logarithm tau for all the systems studied is proportional to BLM tension, which points to a significant role of surface phenomena in the formation by grammicidine A of a conducting pore in the lipid bilayer.  相似文献   

18.
Many ion channel proteins have binding sites for toxins and pharmaceutical drugs and therefore have much promise as the sensing entity in high throughput technologies and biosensor devices. Measurement of ionic conductance changes through ion channels requires a robust biological membrane with sufficient longevity for practical applications. The conventional planar BLM is 100-300 μm in diameter and typically contains fewer than a dozen channels whereas pharmaceutical screening methods in cells use current recordings for many ion channels. We present a new, simple method for the fabrication of a disposable porous-supported bilayer lipid membrane (BLM) ion channel biosensor using hydrated Teflon (polytetrafluoroethylene, PTFE) filter material (pore size 5 μm, filter diameter=1 mm). The lipid layer was monitored for its thickness and mechanical stability by electrical impedance spectroscopy. The results showed membrane capacitances of 1.8±0.2 nF and membrane resistances of 25.9±4.1 GΩ, indicating the formation of lipid bilayers. The current level increased upon addition of the pore-forming peptide gramicidin. Following addition of liposomes containing voltage-gated sodium channels, small macroscopic sodium currents (1-80 pA) could be recorded. By preloading the porous Teflon with sodium channel proteoliposomes, prior to BLM formation, currents of 1-10 nA could be recorded in the presence of the activator veratridine that increased with time, and were inhibited by tetrodotoxin. A lack of rectification suggests that the channels incorporated in both orientations. This work demonstrates that PTFE filters can support BLMs that provide an environment in which ion channels can maintain their functional activity relevant for applications in drug discovery, toxin detection, and odour sensing.  相似文献   

19.
It has long been suggested that pore formation is responsible for the increase in membrane permeability by antimicrobial peptides (AMPs). To better understand the mechanism of AMP activity, the disruption of model membrane by protegrin-1 (PG-1), a cationic antimicrobial peptide, was studied using atomic force microscopy. We present here the direct visualization of the full range of structural transformations in supported lipid bilayer patches induced by PG-1 on zwitterionic 1,2-dimyristoyl-snglycero-phospho-choline (DMPC) membranes. When PG-1 is added to DMPC, the peptide first induces edge instability at low concentrations, then pore-like surface defects at intermediate concentrations, and finally wormlike structures with a specific length scale at high concentrations. The formation of these structures can be understood using a mesophase framework of a binary mixture of lipids and peptides, where PG-1 acts as a line-active agent. Atomistic molecular dynamics simulations on lipid bilayer ribbons with PG-1 molecules placed at the edge or interior positions are carried out to calculate the effect of PG-1 in reducing line tension. Further investigation of the placement of PG-1 and its association with defects in the bilayer is carried out using unbiased assembly of a PG-1 containing bilayer from a random mixture of PG-1, DMPC, and water. A generalized model of AMP induced structural transformations is also presented in this work. This article is part of a Special Issue entitled: Membrane protein structure and function.  相似文献   

20.
Insulin interaction with BLM with incorporated fragments of rat liver plasma membranes, containing hormone receptors, was studied by determining Young modulus of elasticity of bilayer lipid membranes in direction perpendicular to the surface, E. The presence of membrane proteins in a concentration of 60 micrograms.ml-1 induced a significant decrease in parameter E (to approx. 50%) as compared with values obtained in non-modified membranes during insulin action (concentration interval 10(-11)-10(-9) mol.l-1). The extent of the effect was dependent on the initial phase state of the membrane, on cholesterol content in BLM as well as on membrane proteins concentration in lipid bilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号