首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thymidylate synthase (TS) is essential for DNA replication and is a target for cancer chemotherapy. However, toxicity to normal cells and tumor cell drug resistance necessitate development of new therapeutic strategies. One such strategy is to use antisense (AS) technology to reduce TS mRNA and protein levels in treated cells. We have developed oligodeoxynucleotides (ODNs) that target different regions of TS mRNA, inhibit human tumor cell proliferation as single agents, and enhance cytotoxicity of clinically useful TS protein-targeting drugs. Here we describe ODN 491, a novel 20mer AS ODN complementary to a previously untargeted portion of the TS mRNA coding region. AS ODN 491 decreased TS mRNA levels to different degrees in a panel of human tumor-derived cell lines, and induced different physiological effects in a tumor cell line-dependent manner. ODN 491 (like AS TS ODN 83, previously shown to be effective) decreased TS protein levels in HeLa cells with a concomitant increase in sensitivity to TS-targeting chemotherapeutics. However (and contrary to HeLa cell response to an AS ODN 83), it did not, as a single agent, inhibit HeLa cell proliferation. In MCF-7 cells, ODN 491 treatment was less effective at reducing TS mRNA and did not reduce TS protein, nor did it enhance sensitivity to TS-targeting or other chemotherapeutics. Moreover, specifically in MCF-7 cells but not HeLa cells, ODN 491 as a single agent induced apoptosis. These data indicate that AS TS ODN 491 is an effective AS reagent targeting a novel TS mRNA region. However, treatment of tumor cell lines with AS TS ODNs targeting different TS mRNA regions results in a pattern of physiological effects that varies in a tumor cell line-specific fashion. In addition, the capacity of different AS TS ODNs to induce physiological effects does not correlate well with their capacity to reduce TS mRNA and/or protein and, further, depends on the region of TS mRNA selected for targeting. Recognition of tumor cell-specific and mRNA region-specific variability in response to AS TS ODNs will be important in designing AS TS ODNs for potential clinical use.  相似文献   

2.
Jing N  Xiong W  Guan Y  Pallansch L  Wang S 《Biochemistry》2002,41(17):5397-5403
Several groups have demonstrated that G-rich oligonucleotides forming G-quartet structures display activity as potential drugs, such as potent HIV inhibitors. The delivery of G-quartet oligonucleotides to their intracellular targets is a key obstacle to overcome for their clinical success. Here we have developed a novel system to deliver G-rich oligonucleotides into the cell nucleus, e.g., the site of HIV integration. On the basis of the property of potassium-induced formation of G-quartet structure, we explored the difference of K(+) concentrations inside (140 mM) and outside (4 mM) cells to induce the G-rich oligonucleotides to form different structures inside and outside cells. The key steps of this delivery system include the following: (i) First, the G-quartet structure is denatured to form a lipid-DNA complex, so that the molecules can be well delivered into cells. (ii) Then the delivered molecules are induced to form G-quartet structures by potassium inside cells since the G-quartet structure is the primary requirement for inhibition of HIV-1 HIV integrase (IN) activity. The molecules of a novel G-quartet HIV inhibitor, T40214, with the sequence of (GGGC)(4) were successfully delivered into the nuclei of target cells, which significantly decreased HIV-1 replication and increased the probability to target HIV-1 IN in infected cells.  相似文献   

3.
Short synthetic oligonucleotides (ODNs) can be used to block cellular processes involved in cell growth and proliferation. Often acting as aptamers, these molecules interact with critical proteins that regulate the induction of apoptosis or necrosis. We have used a specialized class of ODNs that contain a monomeric sequence of guanosine to induce apoptosis specifically in the malignant esophageal cell line, OE19, in cell culture, and in a NODscid mouse model. OE19 cells were grown in culture and treated with a stable G-rich oligonucleotide (GRO). Cells were processed and apoptosis was measured by FACS analyses, caspase activity, and Hoescht staining. Circular dichroism (CD) was used to define the structure and stability of various GROs. The GRO works by first inducing retardation in the progression of the cell cycle and then by creating a sub-G1 population of apoptotic cells. The reaction is dose dependent, and appears to rely on the capacity of the G-rich ODN to adopt a G-quartet conformation. Apoptosis was measured by determining caspase 3/7 levels and by staining for nuclear fragmentation using the Hoechst dye. Importantly, nonmalignant esophageal cells or normal human lung fibroblasts are not impeded in their cell cycle progression when incubated with the G-rich ODNs. These results suggest that a selective killing of esophageal tumor cells is directed by G-rich ODNs. Selective killing was demonstrated in the unique activity of the GRO compared to other ODNs of different sequences as well as the response of oncogenic cells compared to nononcogenic cells.  相似文献   

4.
5.
6.
7.
8.
9.
Fluorescence resonance energy transfer (FRET) was used to study hybrid formation and dissociation after microinjection of oligonucleotides (ODNs) into living cells. A 28-mer phosphodiester ODN (+PD) was synthesized and labeled with a 3' rhodamine (+PD-R). The complementary, antisense 5'-fluorescein labeled phosphorothioate ODN (-PT-F) was specifically quenched by addition of the +PD-R. In solution, the -PT-F/+PD-R hybrid had a denaturation temperature of 65 +/- 3 degrees C detected by both absorbance and FRET. Hybridization between the ODNs occurred within 1 minute at 17 microM and was not appreciably affected by the presence of non-specific DNA. The pre-formed hybrid slowly dissociated (T1/2 approximately 3 h) in the presence of a 300-fold excess of the unlabeled complementary ODN and could be degraded by DNAse I. Upon microinjection into the cytoplasm of cells, pre-formed fluorescent hybrids dissociated with a half-time of 15 minutes, which is attributed to the degradation of the phosphodiester. Formation of the hybrid from sequentially injected ODNs was detected by FRET transiently in the cytoplasm and later in the cell nucleus, where nearly all injected ODNs accumulate. This suggests that antisense ODNs can hybridize to an intracellular target, of exogenous origin in these studies, in both the cytoplasm and the nucleus.  相似文献   

10.
11.
Activation of the ras oncogene has been implicated in many types of human tumors. It has been shown that downmodulation of ras expression can lead to the reversion of the transformed phenotype of these tumor cells. Antisense oligodeoxyribonucleotides (ODNs) can inhibit gene expression by hybridization to complementary mRNA sequences. To minimize toxicity associated with all-phosphorothioated ODNs and improve cellular uptake, we used partially phosphorothioate (PPS)-modified ODNs having an additional hydrophobic tail at the 3'-end (PPS-C(16)). The PPS ODNs are protected against degradation by PS internucleotide linkages at both the 3'- and 5'-ends and additionally stabilized at internal pyrimidine sites, which are the major sites of endonuclease cleavage. Here we show that anti-ras PPS-C(16) ODN retains the high sequence-specificity of PPS ODNs and provides maximal inhibition of Ras p21 synthesis with minimal toxicity even without the use of a cellular uptake enhancer. Moreover, treatment of T24, a radiation-resistant human tumor cell line that carries a mutant ras gene, with anti-ras PPS-C(16) ODN resulted in a reduction in the radiation resistance of the cells in vitro. We also demonstrate that the growth of RS504 (a human c-Ha-ras transformed NIH/3T3 cell line) mouse tumors was significantly inhibited by the combination of intratumoral injection of anti-ras PPS-C(16) ODN and radiation treatment. These findings indicate the potential of this combination of antisense and conventional radiation therapy as a highly effective cancer treatment modality.  相似文献   

12.
Antisense oligodeoxynucleotides (ODNs) are short (12-25 nt long) stretches of single-stranded DNA that may be delivered to a cell, where they hybridize to the cognate mRNA in a sequence-specific manner, thereby inhibiting gene expression. Here we used confocal microscopy to monitor the uptake and trafficking of ODNs in barley tissues. We conclude that uptake of ODNs across the plant plasma membrane is mediated by active transport of mono- or disaccharides through sugar translocators. We demonstrate that sugar transport can deliver ODNs to barley seeds, and that this strategy may be employed to suppress gene activity in endosperm cells by antisense ODN inhibition. We further found that sucrose compared favorably with oligofectamine as a vehicle for ODN delivery to human cells in a low-serum environment.  相似文献   

13.
We have previously described how a 16 nucleotides ODN (termed 93del) is capable of inhibiting the activity of recombinant integrase in a cell-free system as well as HIV-1 replication in human-infected cells with IC(50) in the low nanomolar range. Intracellular HIV-1 replication was inhibited when the ODN was added at the onset of infection. These results raise several questions. Is a naked ODN able to enter the cell? Does the virus play a role in ODN entry? The uptake of several ODNs (93del, 60del(sc), TBA, T30923) was evaluated and then tracked by labeling the ODN with a fluorescent dye and assessing its intracellular localization by confocal microscopy. A significant level of cellular uptake of free ODN was observed in several cell lines: HeLa epithelial cells, Huh7 hepatic cells, and H9 lymphocytes, and was detected for all ODNs tested except for TBA. Striking differences were observed when naked ODNs were added to cell in the presence or absence of the virus. When HIV-1 virions were present a sharp increase in cellular fluorescence was observed. These results strongly suggest a role for HIV-1 virions in the uptake of certain ODNs.  相似文献   

14.
Previous studies have shown that CpG oligodeoxynucleotides (ODNs) have substantial immunostimulatory effects with anticancer applications. The antitumor applications that have been described previously are mediated through the CpG-induced activation of the host immune system, not through direct antitumor effects. Using cytostasis and cell proliferation assays, we demonstrated that specific ODNs inhibit the proliferation of RM-1 cells, a murine prostate cancer cell line. Flow cytometry analysis using propidium iodide (PI) nuclear staining confirmed the direct proapoptotic effect of ODNs on prostate cancer cells. This effect was dose dependent. Further studies using Western blot analysis and electrophoresis mobility shift assay (EMSA) revealed that the treatment of prostate cancer cells with specific ODNs activated the caspase pathway(s) and decreased the binding activities of AP-1 and NF-kappaB in a time-dependent manner. Evaluation of a panel of ODNs containing different DNA motifs demonstrated that the optimal proapoptotic sequences required polyG sequences but that CpG motifs were not essential. Finally, in vivo antitumor studies showed that the proapoptotic polyG motifs significantly inhibited prostate tumor growth. PolyG motifs inhibited tumor growth, and the effects were enhanced by CpG immune activating sequences. ODN containing both polyG and CpG motifs may have enhanced efficacy in tumor therapy through multiple mechanisms of action, including direct antitumor activities and immune activation.  相似文献   

15.
Antisense oligonucleotides (ODNs) are powerful tools with which to determine the consequences of the reduced expression of a selected target gene, and they may have important therapeutic applications. Methods for predicting optimum antisense sites are not always effective because various factors, such as RNA-binding proteins, influence the secondary and tertiary structures of RNAs in vivo. To overcome this obstacle, we have attempted to engineer an antisense system that can unravel secondary and tertiary RNA structures. To create such an antisense system, we connected the constitutive transport element (CTE), an RNA motif that has the ability to interact with intracellular RNA helicases, to an antisense sequence so that helicase-binding hybrid antisense ODN would be produced in cells. We postulated that this modification would enhance antisense activity in vivo, with more frequent hybridization of the antisense ODN with its targeting site. Western blotting analysis demonstrated that a hybrid antisense ODN targeted to the bcl-2 gene suppressed the expression of this gene more effectively than did the antisense ODN alone. Our results suggest that the effects of antisense ODNs can be enhanced when their actions are combined with those of RNA helicases.  相似文献   

16.
Synthetic oligodeoxynucleotides (ODNs) containing cytosine-guanosine (CpG) motifs stimulate B and plasmacytoid dendritic cells of the vertebrate immune system. We found that in primates strong stimulation of these cells could also be achieved using certain non-CpG ODNs. The immunostimulatory motif in this case is a sequence with the general formula PyNTTTTGT in which Py is C or T, and N is A, T, C, or G. Assays performed on purified cells indicated that the immunostimulatory activity is direct. The use of a nuclease-resistant phosphorothioate backbone is not a necessary condition, since phosphodiester PyNTTTTGT ODNs are active. It was also demonstrated that ODN 2006, a widely used immunostimulant of human B cells, possess two kinds of immunostimulatory motifs: one of them mainly composed of two successive TCG trinucleotides located at the 5' end and another one (duplicated) of the PyNTTTTGT kind here described. Even though PyNTTTTGT ODNs are mainly active on primate cells, some of them, bearing the CATTTTGT motif, have a small effect on cells from other mammals. This suggests that the immunostimulatory mechanism activated by these ODNs was present before, but optimized during, evolution of primates. Significant differences in the frequency of PyNTTTTGT sequences between bacterial and human DNA were not found. Thus, the possibility that PyNTTTTGT ODNs represent a class of pathogen-associated molecular pattern is unlikely. They could, more reasonably, be included within the category of danger signals of cell injury.  相似文献   

17.
Regulation of osteoclastogenesis by lipopolysaccharide (LPS) is mediated via its interactions with toll-like receptor 4 (TLR4) on both osteoclast- and osteoblast-lineage cells. We have recently demonstrated that CpG oligodeoxynucleotides (CpG ODNs), known to mimic bacterial DNA, modulate osteoclastogenesis via interactions with osteoclast precursors. In the present study we characterize the interactions of CpG ODNs with osteoblasts, in comparison with LPS. We find that, similar to LPS, CpG ODNs modulate osteoclastogenesis in bone marrow cell/osteoblast co-cultures, although in a somewhat different pattern. Osteoblasts express receptors for both LPS and CpG ODN (TLR4 and TLR9, respectively). The osteoblastic TLR9 transmits signals into the cell as demonstrated by NFkappaB activation as well as by extracellular-regulated kinase (ERK) and p38 phosphorylation. Similar to LPS, CpG ODN increases in osteoblasts the expression of tumor necrosis factor (TNF)-alpha and macrophage-colony stimulating factor (M-CSF). The two TLR ligands do not affect osteoprotegerin expression in osteoblasts. CpG ODN does not significantly affect receptor activator of NFkappaB ligand (RANKL) expression, in contrast to LPS, which induces the expression of this molecule. In the co-cultures CpG ODN induces RANKL expression in osteoblasts as a result of the more efficient TNF-alpha induction. CpG ODN activity (modulation of osteoclastogenesis, gene expression, ERK and p38 phosphorylation, and nuclear translocation of NFkappaB) is specific, because the control oligodeoxynucleotide, not containing CpG, is inactive. Furthermore, these effects (unlike the LPS effects) are inhibited by chloroquine, suggesting a requirement for endosomal maturation/acidification, the classic CpG ODN mode of action. We conclude that CpG ODN, upon TLR9 ligation, induces osteoblasts osteoclastogenic activity.  相似文献   

18.
Metastasis and disease relapse are hypothesized to result from tumor initiating cells (TICs). Previously, we have defined a CD44+/CD24-/low mammosphere-forming tumorigenic 493-gene signature in breast cancer. Stat3 was identified as a critical node in self-renewal based on an ongoing lentiviral shRNA screen being conducted in two breast cancer cell lines SUM159 and BT549. In corroborating work, targeting the SH2 domain of Stat3 with a novel small molecule decreased the percentage of cells expressing TIC markers (CD44+/CD24-/low and ALDH+) and mammosphere formation in p-Stat3 overexpressing human breast cancer xenografts in SCID-beige mice. Importantly, we observed a four-fold improvement in the 30-day recurrence-free survival relative to docetaxel alone with the addition of the Stat3 inhibitor in the chemoresistant tumor model. Thus, these findings provide a strong impetus for the development of selective Stat3 inhibitors in order to improve survival in patients with p-Stat3 overexpressing tumors.  相似文献   

19.
Stat5a/b exhibits 96% homology and are required for normal immune function. The present studies examined Stat5a/b function in lymphoid cells by specific and simultaneous disruption of both proteins using novel phosphorothioate-2'-O-methoxyethyl antisense oligodeoxynucleotides (asODN). Efficient delivery was confirmed by the presence of fluorescent TAMRA-labeled ODN in >or=55 and 95% in human primary and tumor cell lines, respectively. Acute asODN administration reduced levels of Stat5a (90%) in 6 h, whereas Stat5b required nearly 48 h to attain the same inhibition, suggesting that the apparent turnover rate for Stat5a was 8-fold higher than that for Stat5b. Expression of the closely related Stat3 protein was unchanged after asODN treatment, however. Molecular ablation of Stat5a/b promoted apoptotic cell death in a significant population of primary PHA-activated T cells (72%) and lymphoid tumor cell line (e.g., YT; 74%) within 24 h, as assessed by 1) visualization of karyolytic nuclear degeneration and other generalized cytoarchitectural alterations, 2) enzymatic detection of TdT-positive DNA degradation, and 3) automated cytometric detection of annexin V translocation. Contrary to findings from Stat5a/b-null mice, cell cycle progression did not appear to be significantly affected. Interestingly, IL-2-insensitive and unprimed T cells and Jurkat cells remained mostly unaffected. Finally, evidence is provided that the cytotoxicity associated with Stat5a/b ablation may derive from activation of caspase-8, an initiator protease that contributes to apoptotic cell commitment. We propose that in lymphoid cells competent to activate Stat5a and Stat5b, both proteins preferentially mediate an antiapoptotic survival influence.  相似文献   

20.
DNA sequences containing CpG motifs are recognized as immunomodulators in several species. Phosphodiester oligodeoxyribonucleotides (ODNs) representing sequences from the genome of porcine circovirus type 2 (PCV2) have been identified as potent inducers (ODN PCV2/5) or inhibitors (ODN PCV2/1) of alpha interferon (IFN-alpha) production by porcine peripheral blood mononuclear cells (poPBMCs) in vitro. In this study, the IFN-alpha-inducing or -inhibitory activities of specific phosphodiester ODNs were demonstrated to be dependent on their ability to form secondary structures. When a poly(G) sequence was added to a stimulatory self-complementary ODN, high levels of IFN-alpha were elicited, and the induction was not dependent on pretreatment with the transfecting agent Lipofectin. In addition, the IFN-alpha-inducing ODN required the presence of an intact CpG dinucleotide, whereas the inhibitory activity of ODN PCV2/1 was not affected by methylation or removal of the central CpG dinucleotide. Of particular significance, the IFN-alpha inhibition elicited by ODN PCV2/1 was only effective against induction stimulated by DNA control inducers and not RNA control inducers, indicating activity directed to TLR9 signaling. The PCV2 genome as a whole was demonstrated to induce IFN-alpha in cultures of poPBMCs, and the presence of immune modulatory sequences within the genome of PCV2 may, therefore, have implications with regard to the immune evasion mechanisms utilized by PCV2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号