首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
二甲基巯基丙酸内盐(dimethylsulfoniopropionate,DMSP)是全球硫循环和碳循环的重要载体物质。海洋浮游植物、大型藻类和临海被子植物是DMSP的主要生产者。每年DMSP的产量可以达到1×10~9吨。在北大西洋表面的某些区域,DMSP的产量可以达到碳固定总量的10%。微生物介导的DMSP的裂解是全球硫循环和碳循环的重要步骤。目前,8种参与裂解DMSP的DMSP裂解酶已被报道。在已发现的8种DMSP裂解酶中,3种DMSP裂解酶的催化机制得到了研究和阐明。本文根据国内外研究成果,主要对DMSP裂解过程的酶促催化机制的研究进展进行综述,认为在今后工作中需要继续发现新的DMSP裂解酶,并进一步揭示海洋微生物裂解DMSP的分子机制。  相似文献   

2.
3.
Dimethylsulfoniopropionate (DMSP) is an abundant osmolyte and anti‐stress compound produced primarily in marine ecosystems. After its release into the environment, microorganisms can exploit DMSP as a source of sulfur and carbon, or accumulate it as an osmoprotectant. However, import systems for this ecophysiologically important compatible solute, and its stress‐protective properties for microorganisms that do not produce it are insufficiently understood. Here we address these questions using a well‐characterized set of Bacillus subtilis mutants to chemically profile the influence of DMSP import on stress resistance, the osmostress‐adaptive proline pool and on osmotically controlled gene expression. We included in this study the naturally occurring selenium analogue of DMSP, dimethylseleniopropionate (DMSeP), as well as a set of synthetic DMSP derivatives. We found that DMSP is not a nutrient for B. subtilis, but it serves as an excellent stress protectant against challenges conferred by sustained high salinity or lasting extremes in both low and high growth temperatures. DMSeP and synthetic DMSP derivatives retain part of these stress protective attributes, but DMSP is clearly the more effective stress protectant. We identified the promiscuous and widely distributed ABC transporter OpuC as a high‐affinity uptake system not only for DMSP, but also for its natural and synthetic derivatives.  相似文献   

4.
This is a report on the purification and characterization of an algal dimethylsulfoniopropionate (DMSP) lyase. This enzyme, also found in bacteria, is responsible for producing most of the dimethylsulfide (DMS) in marine environments. It was purified from the green macroalga, Ulva curvata (Kützing) De Toni. Initial in-vivo experiments showed that DMSP lyase activity from endogenous DMSP in Ulva increased for 24 h and then decreased as the culture aged and endogenous DMSP levels were depleted. When amended with exogenous DMSP, rates of DMSP lyase activity remained high even when the culture was 5 d old. Following disruption of the DMSP-depleted U. curvata cells by grinding, a soluble DMSP lyase was purified. This enzyme is a monomer of 78 kDa which has a K m for DMSP of 0.52 mM. Soluble DMSP lyase had an optimum pH of 8 and an optimum osmotic strength of 75 mM NaCl. Following disruption of the algae by either grinding with sand or blending, and washing out the soluble enzyme, the green tissue, when treated with the non-ionic detergent, Triton X-100, solubilized additional DMSP lyase activity. Three hydrophobic variant forms of Ulva DMSP lyase were isolated and partially characterized from the detergent-solubilized activity. While the molecular and kinetic properties of the algal enzyme are different from the bacterial enzymes we purified earlier, both the soluble and membrane-bound forms did, nevertheless, cross-react with antibodies raised against the bacterial (Alcaligenes strain M3A) DMSP lyase.Abbreviations DMS dimethylsulfide - DMSP dimethylsulfoniopropionate This paper is dedicated to D.I. Arnon (1910–1995). We thank Dr. Richard Zingmark for helpful discussions on the speciation of the natural algal samples used in these experiments, and Robin Krest for collecting samples for us on numerous occasions. This work was supported, in part, by a grant from the University of South Carolina Venture Fund.  相似文献   

5.
Dimethylsulfoniopropionate (DMSP) is a marine organosulfur compound with important roles in stress protection, marine biogeochemical cycling, chemical signalling and atmospheric chemistry. Diverse marine microorganisms catabolize DMSP via DMSP lyases to generate the climate-cooling gas and info-chemical dimethyl sulphide. Abundant marine heterotrophs of the Roseobacter group (MRG) are well known for their ability to catabolize DMSP via diverse DMSP lyases. Here, a new DMSP lyase DddU within the MRG strain Amylibacter cionae H-12 and other related bacteria was identified. DddU is a cupin superfamily DMSP lyase like DddL, DddQ, DddW, DddK and DddY, but shares <15% amino acid sequence identity with these enzymes. Moreover, DddU proteins forms a distinct clade from these other cupin-containing DMSP lyases. Structural prediction and mutational analyses suggested that a conserved tyrosine residue is the key catalytic amino acid residue in DddU. Bioinformatic analysis indicated that the dddU gene, mainly from Alphaproteobacteria, is widely distributed in the Atlantic, Pacific, Indian and polar oceans. For reference, dddU is less abundant than dddP, dddQ and dddK, but much more frequent than dddW, dddY and dddL in marine environments. This study broadens our knowledge on the diversity of DMSP lyases, and enhances our understanding of marine DMSP biotransformation.  相似文献   

6.
Dimethylsulfoniopropionate (DMSP) is an important organic carbon and sulfur source in the surface ocean that fuels microbial activity and significantly impacts Earth's climate. After three decades of research, the cellular role(s) of DMSP and environmental drivers of production remain enigmatic. Recent work suggests that cellular DMSP concentrations, and changes in these concentrations in response to environmental stressors, define two major groups of DMSP producers: high DMSP producers that contain ≥ 50 mM intracellular DMSP and low DMSP producers that contain < 50 mM. Here we show that two recently described DMSP synthesis genes (DSYB and TpMT2) may differentiate these two DMSP phenotypes. A survey of prokaryotic and eukaryotic isolates found a significant correlation between the presence of DSYB and TpMT2 genes and previous measurements of high and low DMSP concentrations, respectively. Phylogenetic analysis demonstrated that DSYB and TpMT2 form two distinct clades. DSYB and TpMT2 were also found to be globally abundant in in situ surface communities, and their taxonomic annotations were similar to those observed for isolates. The strong correlation of the DSYB and TpMT2 synthesis genes with high and low producer phenotypes establishes a foundation for direct quantification of DMSP producers, enabling significantly improved predictions of DMSP in situ.  相似文献   

7.
A fungus, Fusarium lateritium, with dimethylsulfoniopropionate (DMSP) lyase activity was isolated from both seawater and a salt marsh due to its ability to grow on DMSP (with the evolution of dimethyl sulfide) as the sole source of carbon. This is the first reported case of DMSP lyase activity in a fungus. Several other common fungal genera tested did not have DMSP lyase activity. DMSP was taken up more rapidly by F. lateritium than it was utilized, leading to its intracellular accumulation. Inhibitor studies with nystatin and cyanide indicated that DMSP uptake was an energy-dependent process. The lyase was inducible by its substrate, DMSP (Km, 1.2 mM), and by the substrate analogs choline and glycine betaine. During induction, DMSP lyase activity increased with time and then dropped rapidly. This loss of activity could be prevented by spiking the culture with fresh DMSP or choline. The Vmax for DMSP lyase was 34.7 mU · mg of protein−1. The inhibitory effects of nystatin, and p-chloromercuriphenylsulfonate on DMSP lyase activity suggested that the enzyme is cytosolic. Because plants like Spartina (a marsh grass) and marine algae contain high concentrations of DMSP, we speculate that DMSP-utilizing fungi may be involved in their decay.  相似文献   

8.
二甲基巯基丙酸内盐(dimethylsulfoniopropionate,DMSP)是全球重要的有机硫化合物之一,参与全球硫循环、信号传递及气候调节。全球DMSP的产量每年高达109 t。DMSP的主要生产者是海洋浮游植物及大型藻类,近年来发现一些海洋细菌也可以产生DMSP,是海洋中DMSP的一个重要来源。目前已报道的DMSP合成途径有3条:甲基化途径、转氨途径和脱羧途径,其中有5种DMSP合成关键酶被鉴定出来。根据近年来的研究成果,本文对DMSP合成过程中关键酶的研究进展进行综述,以期为进一步的研究提供思路。  相似文献   

9.
The kinetics of dimethylsulfoniopropionate (DMSP) uptake and dimethylsulfide (DMS) production from DMSP in two bacterial species, Alcaligenes sp. strain M3A, an isolate from estuarine surface sediments, and Pseudomonas doudoroffii, from seawater, were investigated. In Alcaligenes cells induced for DMSP lyase (DL) activity, DMS production occurred without DMSP uptake. In DL-induced suspensions of P. doudoroffii, uptake of DMSP preceded the production of DMS, indicating an intracellular location of DL; intracellular DMSP levels reached ca. 7 mM. DMSP uptake rates in noninduced cells showed saturation at three concentrations (K(inft) [transport] values, 3.4, 127, and 500 (mu)M). In DL-induced cells of P. doudoroffii, DMSP uptake rates increased ca. threefold (V(infmax), 0.022 versus 0.065 (mu)mol of DMSP taken up min(sup-1) mg of cell protein(sup-1)), suggesting that the uptake binding proteins were inducible. DMSP uptake and DL activity in P. doudoroffii were both inhibited by CN(sup-), 2,4-dinitrophenol, and membrane-impermeable thiol-binding reagents, further indicating active uptake of DMSP by cell surface components. The respiratory inhibitors had limited or no effect on DL activity by the Alcaligenes sp. Of the structural analogs of DMSP tested for their effect on DMSP metabolism, glycine betaine (GBT), but not methyl-3-mercaptopropionic acid (MMPA), inhibited DMSP uptake by P. doudoroffii, suggesting that GBT shares a binding protein with DMSP and that MMPA is taken up at a separate site. Two models of DMSP uptake, induction, and DL location found in marine bacteria are presented.  相似文献   

10.
New Routes for Aerobic Biodegradation of Dimethylsulfoniopropionate   总被引:7,自引:6,他引:1       下载免费PDF全文
Dimethylsulfoniopropionate (DMSP), an osmolyte in marine plants, is biodegraded by cleavage of dimethyl sulfide (DMS) or by demethylation to 3-methiolpropionate (MMPA) and 3-mercaptopropionate (MPA). Sequential demethylation has been observed only with anoxic slurries of coastal sediments. Bacteria that grew aerobically on MMPA and DMSP were isolated from marine environments and phytoplankton cultures. Enrichments with DMSP selected for bacteria that generated DMS, whereas MMPA enrichments selected organisms that produced methanethiol (CH3SH) from either DMSP or MMPA. A bacterium isolated on MMPA grew on MMPA and DMSP, but rapid production of CH3SH from DMSP occurred only with DMSP-grown cells. Low levels of MPA accumulated during growth on MMPA, indicating demethylation as well as demethiolation of MMPA. The alternative routes for DMSP biodegradation via MMPA probably impact on net DMS fluxes to the marine atmosphere.  相似文献   

11.
The demethylation of the algal osmolyte dimethylsulfoniopropionate (DMSP) to methylthiopropionate (MTPA) by (homo)acetogenic bacteria was studied. Five Eubacterium limosum strains (including the type strain), Sporomusa ovata DSM 2662(T), Sporomusa sphaeroides DSM 2875(T), and Acetobacterium woodii DSM 1030(T) were shown to demethylate DMSP stoichiometrically to MTPA. The (homo)acetogenic fermentation based on this demethylation did not result in any significant increase in biomass. The analogous demethylation of glycine betaine to dimethylglycine does support growth of acetogens. In batch cultures of E. limosum PM31 DMSP and glycine betaine were demethylated simultaneously. In mixed substrates experiments with fructose-DMSP or methanol-DMSP, DMSP was used rapidly but only after exhaustion of the fructose or the methanol. In steady-state fructose-limited chemostat cultures (at a dilution rate of 0.03 h(-1)) with DMSP as a second reservoir substrate, DMSP was biotransformed to MTPA but this did not result in higher biomass values than in cultures without DMSP; cells from such cultures demethylated DMSP at rates of approximately 50 nmol min(-1) mg of protein(-1), both after growth in the presence of DMSP and after growth in its absence. In cell extracts of glycine betaine-grown strain PM31, DMSP demethylation activities of 21 to 24 nmol min(-1) mg of protein(-1) were detected with tetrahydrofolate as a methyl acceptor; the activities seen with glycine betaine were approximately 10-fold lower. A speculative explanation for the demethylation of DMSP without an obvious benefit for the organism is that the DMSP-demethylating activity is catalyzed by the glycine betaine-demethylating enzyme and that a transport-related factor, in particular a higher energy demand for DMSP transport across the cytoplasmic membrane than for glycine betaine transport, may reduce the overall ATP yield of the fermentation to virtually zero.  相似文献   

12.
The demethylation of the algal osmolyte dimethylsulfoniopropionate (DMSP) to methylthiopropionate (MTPA) by (homo)acetogenic bacteria was studied. Five Eubacterium limosum strains (including the type strain), Sporomusa ovata DSM 2662T, Sporomusa sphaeroides DSM 2875T, and Acetobacterium woodii DSM 1030T were shown to demethylate DMSP stoichiometrically to MTPA. The (homo)acetogenic fermentation based on this demethylation did not result in any significant increase in biomass. The analogous demethylation of glycine betaine to dimethylglycine does support growth of acetogens. In batch cultures of E. limosum PM31 DMSP and glycine betaine were demethylated simultaneously. In mixed substrates experiments with fructose-DMSP or methanol-DMSP, DMSP was used rapidly but only after exhaustion of the fructose or the methanol. In steady-state fructose-limited chemostat cultures (at a dilution rate of 0.03 h−1) with DMSP as a second reservoir substrate, DMSP was biotransformed to MTPA but this did not result in higher biomass values than in cultures without DMSP; cells from such cultures demethylated DMSP at rates of approximately 50 nmol min−1 mg of protein−1, both after growth in the presence of DMSP and after growth in its absence. In cell extracts of glycine betaine-grown strain PM31, DMSP demethylation activities of 21 to 24 nmol min−1 mg of protein−1 were detected with tetrahydrofolate as a methyl acceptor; the activities seen with glycine betaine were approximately 10-fold lower. A speculative explanation for the demethylation of DMSP without an obvious benefit for the organism is that the DMSP-demethylating activity is catalyzed by the glycine betaine-demethylating enzyme and that a transport-related factor, in particular a higher energy demand for DMSP transport across the cytoplasmic membrane than for glycine betaine transport, may reduce the overall ATP yield of the fermentation to virtually zero.  相似文献   

13.
Dimethyl sulfide (DMS) is quantitatively the most important biogenic sulfur compound emitted from oceans and salt marshes. It is formed primarily by the action of dimethylsulfoniopropionate (DMSP) lyase which cleaves DMSP, an algal osmolyte, to equimolar amounts of DMS and acrylate. This report is the first to describe the isolation and purification of DMSP lyase. The soluble enzyme was purified to electrophoretic homogeneity from a facultatively anaerobic gram-negative rod-shaped marine bacterium identified as an Alcaligenes species by the Vitek gram-negative identification method. The key to successful purification of the enzyme was its binding to, and hydrophobic chromatography on, a phenyl-Sepharose CL-4B column. DMSP lyase biosynthesis was induced by its substrate, DMSP; its product, acrylate; and also by acrylamide. The relative effectivenesses of the inducers were 100, 90, and 204%, respectively. DMSP lyase is a 48-kDa monomer with a Michaelis-Menten constant (K(infm)) for DMSP of 1.4 mM and a V(infmax) of 408 (mu)mol/min/mg of protein. It converted DMSP to DMS and acrylate stoichiometrically. The similar K(infm) values measured for pure DMSP lyase and the axenic culture, seawater, and surface marsh sediment suggest that the microbes in these ecosystems must have enzymes similar to the one purified from our marine isolate. Anoxic sediment populations, however, have a 40-fold-lower K(infm) for this enzyme (30 (mu)M), possibly giving them the capability to metabolize much lower levels of DMSP than the aerobes.  相似文献   

14.
Dimethylsulfoniopropionate (DMSP) cleavage, yielding dimethyl sulfide (DMS) and acrylate, provides vital carbon sources to marine bacteria, is a key component of the global sulfur cycle and effects atmospheric chemistry and potentially climate. Acrylate and its metabolite acryloyl‐CoA are toxic if allowed to accumulate within cells. Thus, organisms cleaving DMSP require effective systems for both the utilization and detoxification of acrylate. Here, we examine the mechanism of acrylate utilization and detoxification in Roseobacters. We propose propionate‐CoA ligase (PrpE) and acryloyl‐CoA reductase (AcuI) as the key enzymes involved and through structural and mutagenesis analyses, provide explanations of their catalytic mechanisms. In most cases, DMSP lyases and DMSP demethylases (DmdAs) have low substrate affinities, but AcuIs have very high substrate affinities, suggesting that an effective detoxification system for acylate catabolism exists in DMSP‐catabolizing Roseobacters. This study provides insight on acrylate metabolism and detoxification and a possible explanation for the high Km values that have been noted for some DMSP lyases. Since acrylate/acryloyl‐CoA is probably produced by other metabolism, and AcuI and PrpE are conserved in many organisms across all domains of life, the detoxification system is likely relevant to many metabolic processes and environments beyond DMSP catabolism.  相似文献   

15.
Dimethylsulfoniopropionate (DMSP) is mainly produced by marine phytoplankton but is released into the microbial food web and degraded by marine bacteria to dimethyl sulfide (DMS) and other products. To reveal the abundance and distribution of bacterial DMSP degradation genes and the corresponding bacterial communities in relation to DMS and DMSP concentrations in seawater, we collected surface seawater samples from DMS hot spot sites during a cruise across the Pacific Ocean. We analyzed the genes encoding DMSP lyase (dddP) and DMSP demethylase (dmdA), which are responsible for the transformation of DMSP to DMS and DMSP assimilation, respectively. The averaged abundance (±standard deviation) of these DMSP degradation genes relative to that of the 16S rRNA genes was 33% ± 12%. The abundances of these genes showed large spatial variations. dddP genes showed more variation in abundances than dmdA genes. Multidimensional analysis based on the abundances of DMSP degradation genes and environmental factors revealed that the distribution pattern of these genes was influenced by chlorophyll a concentrations and temperatures. dddP genes, dmdA subclade C/2 genes, and dmdA subclade D genes exhibited significant correlations with the marine Roseobacter clade, SAR11 subgroup Ib, and SAR11 subgroup Ia, respectively. SAR11 subgroups Ia and Ib, which possessed dmdA genes, were suggested to be the main potential DMSP consumers. The Roseobacter clade members possessing dddP genes in oligotrophic subtropical regions were possible DMS producers. These results suggest that DMSP degradation genes are abundant and widely distributed in the surface seawater and that the marine bacteria possessing these genes influence the degradation of DMSP and regulate the emissions of DMS in subtropical gyres of the Pacific Ocean.  相似文献   

16.
Dimethyl sulfide(DMS) is the most abundant form of volatile sulfur in Earth's oceans, and is mainly produced by the enzymatic clevage of dimethylsulfoniopropionate(DMSP). DMS and DMSP play important roles in driving the global sulfur cycle and may affect climate. DMSP is proposed to serve as an osmolyte, a grazing deterrent, a signaling molecule, an antioxidant, a cryoprotectant and/or as a sink for excess sulfur. It was long believed that only marine eukaryotes such as phytoplankton produce DMSP. However, we recently discovered that marine heterotrophic bacteria can also produce DMSP, making them a potentially important source of DMSP. At present, one prokaryotic and two eukaryotic DMSP synthesis enzymes have been identified.Marine heterotrophic bacteria are likely the major degraders of DMSP, using two known pathways: demethylation and cleavage.Many phytoplankton and some fungi can also cleave DMSP. So far seven different prokaryotic and one eukaryotic DMSP lyases have been identified. This review describes the global distribution pattern of DMSP and DMS, the known genes for biosynthesis and cleavage of DMSP, and the physiological and ecological functions of these important organosulfur molecules, which will improve understanding of the mechanisms of DMSP and DMS production and their roles in the environment.  相似文献   

17.
18.
Dimethylsulfoniopropionate (DMSP) is an important component of the global sulfur cycle and may be involved, via its cleavage product dimethylsulfide, in climate regulation. Although it is common in many algae, reports of DMSP in animals, particularly tropical invertebrates, are limited. This study examined the distribution of DMSP in a diverse group of coral reef invertebrates. DMSP was present in all 22 species of cnidarians and ranged from 9 to 723 μmol g−1 of dry mass (DM) with a mean (± 1SD) of 110 ± 180 μmol g−1 DM. It was not detected in a flatworm and an ascidian or in two of five sponges. Concentrations in sponges ranged from undetectable to 16 μmol g−1 DM with a mean of 4 ± 7 μmol g−1 DM. Within the cnidarians, DMSP concentrations did not differ among orders. Among cnidarian species, DMSP concentrations were correlated with symbiotic zooxanthellae densities. Within cnidarian species, DMSP concentrations of individuals were positively correlated with zooxanthellae densities in three of the four species examined. We speculate that DMSP is dietarily derived in sponges and derived from zooxanthellae in the cnidarians. The functions of DMSP in coral reef invertebrates are not known.  相似文献   

19.
One of the most abundant organic sulphur molecules in the ocean, dimethylsulphoniopropionate (DMSP) has been implicated in numerous biochemical functions and ecological interactions, from osmotic and oxidative stress regulation within the cell, to the chemical attraction of bacteria, mammals and birds in the environment. Notwithstanding these varied and important discoveries, the primary role of DMSP in the cell remains elusive. In this study, we take a new approach to investigating the role of DMSP in cell physiology. Rather than utilising a known DMSP-producer, we instead exploit the propensity for the non-DMSP producing diatom Thalassiosira weissflogii to take up DMSP from its environment. We characterise the uptake and retention of the molecule under growth conditions and salinity stress with the aim to elucidate its utility as a model system for investigating the cellular function of DMSP. Thalassiosira weissflogii showed concentration-dependent uptake of DMSP and complete retention within the cell for at least 6 h. Saturation of intracellular DMSP occurred at >?87 mM, equivalent to some of the most prolific DMSP-producing species. Salinity shifts resulted in a reduction in DMSP uptake rate, but only at extremely low (17) or very high (45) salinities. These data demonstrate the potential for using T. weissflogii in physiological studies, providing a true (DMSP-free) control, as well as a DMSP-enriched version of the same strain. In this way, orthogonal experiments may be conducted with the aim to uncover the physiological purpose of DMSP in phytoplankton and potentially add key pieces to the enigmatic DMSP puzzle.  相似文献   

20.
Dimethylsulfoniopropionate (DMSP), a globally important organosulfur compound is produced in prodigious amounts (2.0 Pg sulfur) annually in the marine environment by phytoplankton, macroalgae, heterotrophic bacteria, some corals and certain higher plants. It is an important marine osmolyte and a major precursor molecule for the production of climate-active volatile gas dimethyl sulfide (DMS). DMSP synthesis take place via three pathways: a transamination ‘pathway-’ in some marine bacteria and algae, a Met-methylation ‘pathway-’ in angiosperms and bacteria and a decarboxylation ‘pathway-’ in the dinoflagellate, Crypthecodinium. The enzymes DSYB and TpMMT are involved in the DMSP biosynthesis in eukaryotes while marine heterotrophic bacteria engage key enzymes such as DsyB and MmtN. Several marine bacterial communities import DMSP and degrade it via cleavage or demethylation pathways or oxidation pathway, thereby generating DMS, methanethiol, and dimethylsulfoxonium propionate, respectively. DMSP is cleaved through diverse DMSP lyase enzymes in bacteria and via Alma1 enzyme in phytoplankton. The demethylation pathway involves four different enzymes, namely DmdA, DmdB, DmdC and DmdD/AcuH. However, enzymes involved in the oxidation pathway have not been yet identified. We reviewed the recent advances on the synthesis and catabolism of DMSP and enzymes that are involved in these processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号