首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are numerous reports that cortical cells senesce in young, otherwise healthy main roots of cereals, including corn. These are based on apparent absence of nuclei in root segments or transverse sections after acridine-orange staining. Senescence is said to progress from the outer to the inner cortex basipetally from the root tip, except cells around branch bases where nuclei always stain. We studied axile roots of soil-grown cereals using various methods to detect nuclei primarily in longitudinal sections. No senescence marked by nuclear loss was found in healthy-looking intact cortices. Cortical cells of mature corn roots remained alive except where aerenchyma developed. No cortical death had occurred in barley, wheat, or oat seminal roots in 15-,17-, and 20-day-old plants, respectively, but cortical cells in older regions of seminal and nodal roots did collapse and slough off, but with no evidence for earlier loss of nuclei. Failure to detect acridine-orange-stained nuclei may not indicate that cells are senescent, and can be an artifact caused by sectioning method and wall impermeability. The effectiveness of other methods for evaluation of root cell vitality is discussed.  相似文献   

2.
Maize (Zea mays L.) is generally considered to be a plant with aerenchyma formation inducible by environmental conditions. In our study, young maize plants, cultivated in various ways in order to minimise the stressing effect of hypoxia, flooding, mechanical impedance or nutrient starvation, were examined for the presence of aerenchyma in their primary roots. The area of aerenchyma in the root cortex was correlated with the root length. Although 12 different maize accessions were used, no plants without aerenchyma were acquired until an ethylene synthesis inhibitor was employed. Using an ACC-synthase inhibitor, it was confirmed that the aerenchyma formation is ethylene-regulated and dependent on irradiance. The presence of TUNEL-positive nuclei and ultrastructural changes in cortical cells suggest a connection between ethylene-dependent aerenchyma formation and programmed cell death. Position of cells with TUNEL-positive nuclei in relation to aerenchyma-channels was described.  相似文献   

3.
In waterlogged soil, deficiency of oxygen triggers development of aerenchyma in roots which facilitates gas diffusion between roots and the aerial environment. However, in contrast to other monocots, roots of rice (Oryza sativa L.) constitutively form aerenchyma even in aerobic conditions. The formation of cortical aerenchyma in roots is thought to occur by either lysigeny or schizogeny. Schizogenous aerenchyma is developed without cortical cell death. However, lysigenous gas-spaces are formed as a consequence of senescence of specific cells in primary cortex followed by their death due to autolysis. In the last stage of aerenchyma formation, a ‘spoked wheel’ arrangement is observed in the cortical region of root. Ultrastructural studies show that cell death is constitutive and no characteristic cell structural differentiation takes place in the dying cells with respect to surrounding cells. Cell collapse initiation occurs in the center of the cortical tissues which are characterized by shorter with radically enlarged diameter. Then, cell death proceeds by acidification of cytoplasm followed by rupturing of plasma membrane, loss of cellular contents and cell wall degradation, while cells nuclei remain intact. Dying cells releases a signal through symplast which initiates cell death in neighboring cells. During early stages, middle lamella-degenerating enzymes are synthesized in the rough endoplasmic reticulum which are transported through dictyosome and discharged through plasmalemma beneath the cell wall. In rice several features of root aerenchyma formation are analogous to a gene regulated developmental process called programmed cell death (PCD), for instance, specific cortical cell death, obligate production of aerenchyma under environmental stresses and early changes in nuclear structure which includes clumping of chromatin, fragmentation, disruption of nuclear membrane and apparent engulfment by the vacuole. These processes are followed by crenulation of plasma membrane, formation of electron-lucent regions in the cytoplasm, tonoplast disintegration, organellar swelling and disruption, loss of cytoplasmic contents, and collapse of cell. Many processes in lysing cells are structural features of apoptosis, but certain characteristics of apoptosis i.e., pycnosis of the nucleus, plasma membrane blebbing, and apoptotic bodies formation are still lacking and thus classified as non-apoptotic PCD. This review article, describes most recent observations alike to PCD involved in aerenchyma formation and their systematic distributions in rice roots.  相似文献   

4.
He CJ  Morgan PW  Drew MC 《Plant physiology》1992,98(1):137-142
Adventitious roots of maize (Zea mays L. cv TX 5855), grown in a well-oxygenated nutrient solution, were induced to form cortical gas spaces (aerenchyma) by temporarily omitting nitrate and ammonium (-N), or phosphate (-P), from the solution. Previously this response was shown (MC Drew, CJ He, PW Morgan [1989] Plant Physiology 91: 266-271) to be associated with a slower rate of ethylene biosynthesis, contrasting with the induction of aerenchyma by hypoxia during which ethylene production is strongly stimulated. In the present paper, we show that aerenchyma formation induced by nutrient starvation was blocked, under noninjurious conditions, by addition of low concentrations of Ag+, an inhibitor of ethylene action, or of aminoethoxyvinyl glycine, an inhibitor of ethylene biosynthesis. When extending roots were exposed to low concentrations of ethylene in air sparged through the nutrient solution, N or P starvation enhanced the sensitivity to exogenous ethylene at concentrations as low as 0.05 microliters ethylene per liter air, promoting a more rapid and extensive formation of aerenchyma than in unstarved roots. We conclude that temporary deprivation of N or P enhances the sensitivity of ethylene-responsive cells of the root cortex, leading to cell lysis and aerenchyma.  相似文献   

5.
Root hydraulic conductivity has been shown to decrease under phosphorus (P) deficiency. This study Investigated how the formation of aerenchyma is related to this change. Root anatomy, as well as root hydraulic conductivity was studied In maize (Zea mays L.) roots under different phosphorus nutrition conditions. Plant roots under P stress showed enhanced degradation of cortical cells and the aerenchyma formation was associated with their reduced root hydraulic conductivity, supporting our hypothesis that air spaces that form in the cortex of phosphorusstressed roots Impede the radial transport of water in a root cylinder. Further evidence came from the variation In aerenchyma formation due to genotypic differences. Five maize inbred lines with different porosity in their root cortex showed a significant negative correlation with their root hydraulic conductivity. Shoot relative water content was also found lower In P-deficient maize plants than that in P-sufficient ones when such treatment was prolonged enough, suggesting a limitation of water transport due to lowered root hydraulic conductivity of P-deficient plants.  相似文献   

6.
BACKGROUND AND AIMS: Aerenchyma formation in maize adventitious roots is induced in nutrient solution by the deprivation of sulfate (S) under well-oxygenated conditions. The aim of this research was to examine the extent of aerenchyma formation in the cortex of sulfate-deprived adventitious roots along the root axis, in correlation with the presence of reactive oxygen species (ROS), calcium levels and pH of cortex cells and root lignification. METHODS: The morphometry of the second whorl of adventitious (W2) roots, subject to S-deprivation conditions throughout development, was recorded in terms of root length and lateral root length and distribution. W2 roots divided into sectors according to the mean length of lateral roots, and cross-sections of each were examined for aerenchyma. In-situ detection of alterations in ROS presence, calcium levels and pH were performed by means of fluorescence microscopy using H(2)DCF-DA, fluo-3AM and BCECF, respectively. Lignification was detected using the Wiesner test. KEY RESULTS: S-deprivation reduced shoot growth and enhanced root proliferation. Aerenchyma was found in the cortex of 77 % of the root length, particularly in the region of emerging or developing lateral roots. The basal and apical sectors had no aerenchyma and no aerenchyma connection was found with the shoot. S-deprivation resulted in alterations of ROS, calcium levels and pH in aerenchymatous sectors compared with the basal non-aerenchymatous region. Lignified epidermal layers were located at the basal and the proximal sectors. S-deprivation resulted in shorter lateral roots in the upper sectors and in a limited extension of the lignified layers towards the next lateral root carrying sector. CONCLUSIONS: Lateral root proliferation is accompanied by spatially localized induced cell death in the cortex of developing young maize adventitious roots during S-deprivation.  相似文献   

7.
Aerenchyma formation in roots of maize during sulphate starvation   总被引:6,自引:0,他引:6  
Young maize ( Zea mays L., Poaceae) plants were grown in a complete, well-oxygenated nutrient solution and then deprived of their external source of sulphate. This treatment induced the formation of aerenchyma in roots. In addition to the effect of sulphate starvation on root anatomy, the presence and location of superoxide anions and hydrogen peroxide, and changes in calcium and pH were examined. By day 6 of sulphate deprivation, aerenchyma started to form in the roots of plants and the first aerenchymatous spaces were apparent in the middle of the cortex. S-starvation also induced thickening of the cell walls of the endodermis. Active oxygen species appeared in groups of intact mid-cortex cells. Formation of superoxide anion and hydrogen peroxide was found in degenerating cells of the mid-cortex. Very few nuclei in the cortex of S-starved roots fluoresced, being shrunken and near to the cell wall. By day 12 of S-deprivation, a fully developed aerenchyma was apparent and there were only a few 'chains' of cells bridging hypodermis to endodermis and stele of roots. Cell walls of endodermis of S-starved roots increased 68% in thickness. Intensive fluorescence in the cell walls of the endodermal, hypodermal and to a lesser extent of epidermal cells was observed due to the formation of active oxygen species, while there was no fluorescence in the cortical cells. There was a higher Ca concentration in the cells walls of the endodermis and epidermis, compared to the rest of the S-starved root tissues. A higher pH was observed, mainly in the cell walls of the hypodermis and to a lesser extent in the cell walls of the endodermis. Superoxide anion and hydrogen peroxide was found in degenerating cells of the root cortex. There was no fluorescence of nuclei in the cortex of S-starved roots.  相似文献   

8.
9.
The structure and response to flooding of root cortical aerenchyma(air space tissue) in a variety of wetland (flood-tolerant)species was investigated and compared with some flood-intolerantspecies. In some species aerenchyma consisted of enlarged schizogenousintercellular spaces and in others aerenchyma formation involvedlysigeny. Two types of lysigenous aerenchyma were distinguished.In the first the diaphragms between lacunae were arranged radiallyand consisted of both collapsed and intact cells. In the secondtype, which was confined to the Cyperaceae, the radial diaphragmscontained intact cells, and stretched between them were tangentially-arrangeddiaphragms of collapsed cells. Flooding in sand culture generally increased root porosity (airspace content) although there were exceptions. The flood-intolerantspecies Senecio jacobaea produced aerenchyma but did not survivelong-term flooding. Among the flood-tolerant species, Filipendulaulmaria did not produce extensive aerenchyma even when flooded.Eriophorum angustifolium and E. vaginatum produced extensiveaerenchyma under drained conditions which was not increasedby flooding. In Nardus stricta root porosity was increased bylow nutrient levels as well as by flooding. Aerenchyma, root cortex, wetland plants, waterlogging, flooding-tolerance, Ammophila arenaria, Brachypodium sylvalicum, Caltha palustris, Carex curia, Eriophorum vaginatum, Filipendula ulmaria, Glyceria maxima, Hieracium pilosella, Juncus effusus, Myosotis scorpioides, Nardus stricta, Narthecium ossifragum, Phalaris arundinacea, Senecio jacobaea, Trichophorum cespitosum  相似文献   

10.
Assessments of the anatomy, porosity and profiles of radial O2 loss from adventitious roots of 10 species in the Poaceae (from four subfamilies) and two species in the Cyperaceae identified a combination of features characteristic of species that inhabit wetland environments. These include a strong barrier to radial O2 loss in the basal regions of the adventitious roots and extensive aerenchyma formation when grown not only in stagnant but also in aerated nutrient solution. Adventitious root porosity was greater for plants grown in stagnant compared with aerated solution, for all 10 species in the Poaceae. The ‘wetland root’ archetype was best developed in Oryza sativa and the two species of the Cyperaceae, in which the stele contributed less than 5% of the root cross‐sectional area, the cells of the inner cortex were packed in a cuboidal arrangement, and aerenchyma was up to 35–52%. Variations of this root structure, in which the proportional and absolute area of stele was greater, with hexagonal arrangements of cells in the inner cortex and varying in the extent of aerenchyma formation, were present in the other wetland species from the subfamilies Pooideae, Panicoideae and Arundinoideae. Of particular interest were Vetiveria zizanoides and V. filipes, wetland grass species from the tribe Andropogoneae (the same tribe as sorghum, maize and sugarcane), that had a variant of the root anatomy found in rice. The results are promising with regard to enhancing these traits in waterlogging intolerant crops.  相似文献   

11.
Gas and Liquids in Intercellular Spaces of Maize Roots   总被引:1,自引:0,他引:1  
Oils are spontaneously absorbed by gas-filled intercellularspaces (IS) in maize root cortex. The network of these spacesin living root sections was imaged by confocal laser scanningmicroscopy using a fluorescent solution of Nile red in oil.The gas volume fraction (GVF) of root segments was quantifiedby the increase in weight (differentiated zones) or tissue density(2–3 mm root tips) due to complete vacuum infiltration.Cooling to 6 °C or inhibition of oxidative phosphorylationdiminished the GVF of root tips but did not significantly affectthe GVF of differentiated root zones. The threshold pressuredifference for measurable infiltration of isolated root segmentsis lower (10 to 15  kPa) than the threshold for infiltrationof comparable zones of attached roots or of detached roots withthe cut surface sealed (>60 kPa). In the absence of an opencut, pressure-driven infiltration of the root cortex is acceleratedby microscopic fissures within the epidermal/hypodermal barrier.The GVF of the root cortex was reduced after transferring rootsfrom sugar solutions (0.1 to 0.3M ) to water. This points toefficient water transport from the medium to sugar-containingcortical cell walls through epidermal and hypodermal protoplasts.When 2-cm-long primary roots were vacuum infiltrated in situand then allowed to grow on aerated mineral medium for a further5 d, cortical IS of the originally infiltrated root bases remainedfilled with liquid but the subsequently grown apical root zoneshad a normal GVF. Copyright 1999 Annals of Botany Company Apoplastic and protoplasmic route, maize, infiltration, intercellular spaces, oil absorption, confocal laser scanning microscope, water transport, Zea mays L.  相似文献   

12.
Jackson, M. B., Fenning, T. M., and Jenkins, W. 1985 Aerenchyma(gas-space) formation in adventitious roots of rice (Oryza sativaL.) is not controlled by ethylene or small partial pressuresof oxygen.—J. exp. Bot. 36: 1566–1572. The extent of gas-filled voids (aerenchyma) within the cortexof adventitious roots of vegetative rice plants (Oryza sativaL. cv. RB3) was estimated microscopically from transverse sectionswith the aid of a computer-linked digitizer drawing board. Gas-spacewas detectable in 1-d-old tissue and increased in extent withage. After 7 d, approximately 70% of the cortex had degeneratedto form aerenchyma. The extent of the voids in 1-4-d-old tissuewas not increased by stagnant, poorly-aerated external environmentscharacterized by sub-ambient oxygen partial pressures and accumulationsof carbon dioxide and ethylene. Treatment with small oxygenpartial pressures, or with carbon dioxide or ethylene appliedin vigorously stirred nutrient solution also failed to promotethe formation of cortical gas-space. Furthermore, ethylene productionby rice roots was slowed by small oxygen partial pressures typicalof stagnant conditions. Silver nitrate, an inhibitor of ethylene action, did not retardgas-space formation; similarly when endogenous ethylene productionwas inhibited by the application of aminoethoxyvinylglycine(A VG), aerenchyma development continued unabated. Cobalt chloride,another presumed inhibitor of ethylene biosynthesis, did notimpair formation of the gas in rice roots nor did it decreasethe extent of aerenchyma even if A VG was supplied simultaneously.These results contrast with those obtained earlier using rootsof Zea mays L. We conclude that in rice, aerenchyma forms speedily even inwell-aerated environments as an integral part of ordinary rootdevelopment There seems to be little or no requirement for ethyleneas a stimulus in stagnant root-environments where aerenchymais likely to increase the probability of survival. Key words: Rice (Oryza sativa L.), ethylene, flooding, aeration, aerenchyma, environmental stress  相似文献   

13.
Enhancement of oxygen transport from shoot to root tip by the formation of aerenchyma and also a barrier to radial oxygen loss (ROL) in roots is common in waterlogging‐tolerant plants. Zea nicaraguensis (teosinte), a wild relative of maize (Zea mays ssp. mays), grows in waterlogged soils. We investigated the formation of aerenchyma and ROL barrier induction in roots of Z. nicaraguensis, in comparison with roots of maize (inbred line Mi29), in a pot soil system and in hydroponics. Furthermore, depositions of suberin in the exodermis/hypodermis and lignin in the epidermis of adventitious roots of Z. nicaraguensis and maize grown in aerated or stagnant deoxygenated nutrient solution were studied. Growth of maize was more adversely affected by low oxygen in the root zone (waterlogged soil or stagnant deoxygenated nutrient solution) compared with Z. nicaraguensis. In stagnant deoxygenated solution, Z. nicaraguensis was superior to maize in transporting oxygen from shoot base to root tip due to formation of larger aerenchyma and a stronger barrier to ROL in adventitious roots. The relationships between the ROL barrier formation and suberin and lignin depositions in roots are discussed. The ROL barrier, in addition to aerenchyma, would contribute to the waterlogging tolerance of Z. nicaraguensis.  相似文献   

14.
During a study of the diffusivity of sulphorhodamine G in the cortical apoplast of maize roots widely discrepant rates were found between different samples. In roots which had developed large aerenchyma spaces, the diffusion in some regions was very fast, indistinguishable from the rate in water. In other regions the rate was as much as 100 times slower. Examination of frozen intact roots with the cryo-scanning electron microscope showed the presence of liquid filling some of the aerenchyma spaces, while other spaces of the same root contained air. X-ray microanalysis of the liquid (for oxygen) showed that the liquid was water with few detectable ions. Similar liquid was present in small intercellular spaces within the spoke-like radial files of cells between the large spaces, or between remnants of collapsed cell walls at the edges of the large spaces. It is proposed that regions of roots with high diffusivity are those in which some of the aerenchyma spaces are filled with water. In seeking the origin of this liquid, the progress of aerenchyma formation could be followed in the frozen tissues. The first change observed in a group of contiguous cells was a loss of vacuolar solutes and of cell turgor. Next the walls broke apart and collapsed back onto the surrounding turgid cells leaving a volume of ion-poor liquid. The liquid was probably not that found in some aerenchyma spaces of the mature roots, because the final stage of space formation was a loss of the liquid, leaving an air filled cavity surrounded by a composite lining formed from the collapsed walls of the broken cells. It is likely that the liquid in the spaces of mature aerenchyma is exuded from the remaining living cortical cells at times when the root turgor is high. This would be consistent with several recent studies which have shown periodic exudation of water from the surface of turgid roots. The spasmodic occurrence of root cortex tissue with enhanced diffusivity would have important implications for the transport of nutrient ions across the root.Abbreviations CSEM cryo-scanning electron microscope - EDX energy dispersive X-ray microanalysis - SR-G sulphorhodamine G  相似文献   

15.
Internal transport of O2 from the aerial tissues along the adventitious roots of intact maize plants was estimated by measuring the concentrations of adenine nucleotides in various zones along the root under an oxygen-free atmosphere. Young maize plants were grown in nutrient solution under conditions that either stimulated or prevented the formation of a lysigenous aerenchyma, and the roots (up to 210 mm long) were then exposed to an anaerobic (oxygen-free) nutrient solution. Aerenchymatous roots showed higher values than non-aerenchymatous ones for ATP content, adenylate energy charge and ATP/ADP ratios. We conclude that the lysigenous cortical gas spaces help maintain a high respiration rate in the tissues along the root, and in the apical zone, by improving internal transport of oxygen over distances of at least 210 mm. This contrasted sharply with the low energy status (poor O2 transport) in non-aerenchymatous roots.Abbreviation AEC adenylate energy charge  相似文献   

16.
? To adapt to waterlogging in soil, some gramineous plants, such as maize (Zea mays), form lysigenous aerenchyma in the root cortex. Ethylene, which is accumulated during waterlogging, promotes aerenchyma formation. However, the molecular mechanism of aerenchyma formation is not understood. ? The aim of this study was to identify aerenchyma formation-associated genes expressed in maize roots as a basis for understanding the molecular mechanism of aerenchyma formation. Maize plants were grown under waterlogged conditions, with or without pretreatment with an ethylene perception inhibitor 1-methylcyclopropene (1-MCP), or under aerobic conditions. Cortical cells were isolated by laser microdissection and their mRNA levels were examined with a microarray. ? The microarray analysis revealed 575 genes in the cortical cells, whose expression was either up-regulated or down-regulated under waterlogged conditions and whose induction or repression was suppressed by pretreatment with 1-MCP. ? The differentially expressed genes included genes related to the generation or scavenging of reactive oxygen species, Ca(2+) signaling, and cell wall loosening and degradation. The results of this study should lead to a better understanding of the mechanism of root lysigenous aerenchyma formation.  相似文献   

17.
Root anatomical phenotypes vary among maize (Zea mays) cultivars and may have adaptive value by modifying the metabolic cost of soil exploration. However, the microbial trade‐offs of these phenotypes are unknown. We hypothesized that nodal roots of maize with contrasting cortical anatomy have different patterns of mutualistic and pathogenic fungal colonization. Arbuscular mycorrhizal colonization in the field and mesocosms, root rots in the field, and Fusarium verticillioides colonization in mesocosms were evaluated in maize genotypes with contrasting root cortical anatomy. Increased aerenchyma and decreased living cortical area were associated with decreased mycorrhizal colonization in mesocosm and field experiments with inbred genotypes. In contrast, mycorrhizal colonization of hybrids increased with larger aerenchyma lacunae; this increase coincided with larger root diameters of hybrid roots. F. verticillioides colonization was inversely correlated with living cortical area in mesocosm‐grown inbreds, and no relation was found between root rots and living cortical area or aerenchyma in field‐grown hybrids. Root rots were positively correlated with cortical cell file number and inversely correlated with cortical cell size. Mycorrhizae and root rots were inversely correlated in field‐grown hybrids. We conclude that root anatomy is associated with differential effects on pathogens and mycorrhizal colonization of nodal roots in maize.  相似文献   

18.
Structural features of the mature root cortex and its apoplasticpermeability to dyes have been determined for two dicotyledonouswetland plants of differing habitats: Nymphaea odorata, growingrooted in water and mud, and Caltha palustris, growing in temporalwetlands among cattails. In mature roots, movement of the apoplasticdyes, berberine and safranin, into the roots was blocked atthe hypodermis, indicating the presence of an exodermis. A hypodermiswith an exodermis, i.e. Casparian bands in the outermost uniseriatelayer plus suberin lamellae, is present in both species. InN. odorata, hypodermal walls are further modified with cellulosicsecondary walls. Roots of N. odorata and C. palustris have anendodermis with Casparian bands only. A honeycomb aerenchymais produced by differential expansion in N. odorata and includesastrosclereids and diaphragms, while roots of C. palustris haveno aerenchyma, but some irregular lacunae are found in old roots.These aspects of cortex structure are related to an open meristemorganization, with unusual patterns of cell divisions in certainground meristem cells (called semi-regular hexagon cells) ofN. odorata. The correlation between aerenchyma pattern and hypodermalstructure appears to be related to habitat differences.Copyright2000 Annals of Botany Company Caltha palustris, Nymphaea odorata, root development, cortex, endodermis, aerenchyma, exodermis, hypodermis, permeability, wetland plants  相似文献   

19.
The formation of lysigenous cavities (aerenchyma) in the root cortex of maize, Zea mays L. cv. Capella, under well-aerated conditions has been studied in relation to the composition of the nutrient solutions. Nitrogen, either supplied as nitrate or as ammonium, reduced the cavity formation by the roots. This reduction was most apparent at nitrate concentrations above 2 mM. Cavities were increasingly formed when the nitrate concentration was decreased and they reached their largest dimensions in roots growing in water. Thus, inadequate availability of nitrogen leads, under acrated conditions, to deterioration of cortex cells and cavity formation in the maize roots. It is suggested that cavity formation in these roots is connected with reduced nitrogen assimilation.  相似文献   

20.
We have studied the role of ethylene in accelerating the lytic formation of gas spaces (aerenchyma) in the cortex of adventitious roots of maize (Zea mays L.) growing in poorly aerated conditions. Such roots had previously been shown to contain increased concentrations of ethylene. Ten day-old maize plants bearing seminal roots and one whorl of emerging adventitious roots were grown in nutrient solution bubbled with air, ethylene in air (0.1 to 5.0 l l–1), or allowed to become oxygen-deficient in nonaerated (but not completely anaerobic) solution. Additions of 0.1 l l–1 ethylene or more promoted the formation of aerenchyma, with lysis of up to 47% of the cortical cells. The effects of non-aeration were similar to those of exogenous ethylene. When silver ions, an ethylene antagonist, were present at low, non-toxic concentrations (circa 0.6 M), aerenchyma formation was prevented in ethylene treated roots and in those exposed to oxygen deficiency. Silver ions also blocked the inhibiting effect of exogenous ethylene on root extension. By contrast, the suppression of aerenchyma formation by silver ions under oxygendeficient conditions was associated with a retardation of root extension, indicating the importance of aerenchyma for root growth in poorly aerated media. Rates of production of ethylene by excised roots were stimulated by a previous non-aeration treatment. The effectiveness of Ag+ in inhibiting equally the action on cortical cells of exogenous ethylene and of non-aeration, supports the view that gas space (aerenchyma) formation in adventitious roots adpted to oxygendeficient environments is mediated by increased concentrations of endogenous ethylene. The possibility that extra ethylene could arise from increased biosynthesis of a precursor in root tissues with a restricted oxygen supply is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号