首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dynamin-mediated Internalization of Caveolae   总被引:30,自引:0,他引:30       下载免费PDF全文
The dynamins comprise an expanding family of ubiquitously expressed 100-kD GTPases that have been implicated in severing clathrin-coated pits during receptor-mediated endocytosis. Currently, it is unclear whether the different dynamin isoforms perform redundant functions or participate in distinct endocytic processes. To define the function of dynamin II in mammalian epithelial cells, we have generated and characterized peptide-specific antibodies to domains that either are unique to this isoform or conserved within the dynamin family. When microinjected into cultured hepatocytes these affinity-purified antibodies inhibited clathrin-mediated endocytosis and induced the formation of long plasmalemmal invaginations with attached clathrin-coated pits. In addition, clusters of distinct, nonclathrin-coated, flask-shaped invaginations resembling caveolae accumulated at the plasma membrane of antibody-injected cells. In support of this, caveola-mediated endocytosis of labeled cholera toxin B was inhibited in antibody-injected hepatocytes. Using immunoisolation techniques an anti-dynamin antibody isolated caveolar membranes directly from a hepatocyte postnuclear membrane fraction. Finally, double label immunofluorescence microscopy revealed a striking colocalization between dynamin and the caveolar coat protein caveolin. Thus, functional in vivo studies as well as ultrastructural and biochemical analyses indicate that dynamin mediates both clathrin-dependent endocytosis and the internalization of caveolae in mammalian cells.  相似文献   

2.
Polypeptides of the Golgi Apparatus of Neurons from Rat Brain   总被引:4,自引:0,他引:4  
An antiserum was raised against fractions of the Golgi apparatus of neurons from rat brain. Immunoblots of these fractions with the antiserum showed two principal bands of 185 and 150 kilodaltons (kd) in apparent molecular mass. The antiserum reacted with five or six bands of 200, 150, 130, 100-110, 64, and 40 kd in apparent molecular mass in immunoblots of several crude brain membrane fractions. Affinity-purified antibodies from the different gel bands transferred to nitrocellulose paper were used in immunoblot and immunocytochemical studies. Antibodies eluted from the 200-, 150-, 100-110-, and 64-kd bands reacted not only with the corresponding band but also with the other three bands. Antibodies eluted from the 40-kd band stained only the corresponding band. On light and/or electron microscopic immunocytochemistry, the antiserum stained the Golgi apparatus of rat neurons, glia, liver, and kidney tubule cells. Weaker, segmented, and less consistent staining was observed in nuclear envelopes, rough endoplasmic reticulum, and plasma membranes of neurons. Antibodies eluted from the bands at 200, 150, 100-110, and 64 kd stained intermediate cisterns of the Golgi apparatus of neurons. These findings suggest that a group of related polypeptides of brain membranes is preferentially expressed or enriched in the Golgi apparatus of neurons. Polypeptides with apparent molecular masses of 185 and 150 kd probably represent moieties endogenous to membranes of the neuronal Golgi apparatus.  相似文献   

3.
The first evidence of dynamin presence and its colocalization with clathrin in the compartment involved in Paramecium receptor-mediated endocytosis is presented. We identified dynamin by cloning, Western blotting, and immunodetection in confocal and electron microscopy. The partial genes, which we have designated ParDyn1 and ParDyn2, are 1091 bp long, 90% identical to one another and encode the N-terminal and middle domains of Paramecium dynamin isoform 1 and isoform 2. The deduced amino acid sequences contain all three guanosine 5'-triphosphate (GTP)-binding motifs and show 67% homology to mammalian dynamins. Antibodies generated against the cloned GTPase domain revealed dynamin association with endosomes containing transferrin, the marker of receptor-mediated endocytosis. In Western blotting a strong immunoreactive polypeptide of approximately 116 kDa, which seems to be phosphorylated, was accompanied by a faint one of approximately 90 kDa in cytosolic fraction (S2). Dynamin level was correlated with internalization of transferrin and it was significantly decreased upon inhibition of this process. Immunogold labeling in electron microscopy revealed colocalization of dynamin and clathrin in coated pits and endocytic vesicles. Moreover, the polypeptide cross-reaction with 2 different antibodies against mammalian clathrin was identified by immunoblotting. These results indicate that dynamin- and clathrin-dependent pathway exists in this evolutionary ancient cell.  相似文献   

4.
The dynamin family of large GTPases has been implicated in the formation of nascent vesicles in both the endocytic and secretory pathways. It is believed that dynamin interacts with a variety of cellular proteins to constrict membranes. The actin cytoskeleton has also been implicated in altering membrane shape and form during cell migration, endocytosis, and secretion and has been postulated to work synergistically with dynamin and coat proteins in several of these important processes. We have observed that the cytoplasmic distribution of dynamin changes dramatically in fibroblasts that have been stimulated to undergo migration with a motagen/hormone. In quiescent cells, dynamin 2 (Dyn 2) associates predominantly with clathrin-coated vesicles at the plasma membrane and the Golgi apparatus. Upon treatment with PDGF to induce cell migration, dynamin becomes markedly associated with membrane ruffles and lamellipodia. Biochemical and morphological studies using antibodies and GFP-tagged dynamin demonstrate an interaction with cortactin. Cortactin is an actin-binding protein that contains a well defined SH3 domain. Using a variety of biochemical methods we demonstrate that the cortactin-SH3 domain associates with the proline-rich domain (PRD) of dynamin. Functional studies that express wild-type and mutant forms of dynamin and/or cortactin in living cells support these in vitro observations and demonstrate that an increased expression of cortactin leads to a significant recruitment of endogenous or expressed dynamin into the cell ruffle. Further, expression of a cortactin protein lacking the interactive SH3 domain (CortDeltaSH3) significantly reduces dynamin localization to the ruffle. Accordingly, transfected cells expressing Dyn 2 lacking the PRD (Dyn 2(aa)DeltaPRD) sequester little of this protein to the cortactin-rich ruffle. Interestingly, these mutant cells are viable, but display dramatic alterations in morphology. This change in shape appears to be due, in part, to a striking increase in the number of actin stress fibers. These findings provide the first demonstration that dynamin can interact with the actin cytoskeleton to regulate actin reorganization and subsequently cell shape.  相似文献   

5.
The release of a 110-kD peripheral membrane protein from the Golgi apparatus is an early event in brefeldin A (BFA) action, preceding the movement of Golgi membrane into the ER. ATP depletion also causes the reversible redistribution of the 110-kD protein from Golgi membrane into the cytosol, although no Golgi disassembly occurs. To further define the effects of BFA on the association of the 110-kD protein with the Golgi apparatus we have used filter perforation techniques to produce semipermeable cells. All previously observed effects of BFA, including the rapid redistribution of the 110-kD protein and the movement of Golgi membrane into the ER, could be reproduced in the semipermeable cells. The role of guanine nucleotides in this process was investigated using the nonhydrolyzable analogue of GTP, GTP gamma S. Pretreatment of semipermeable cells with GTP gamma S prevented the BFA-induced redistribution of the 110-kD protein from the Golgi apparatus and movement of Golgi membrane into the ER. GTP gamma S could also abrogate the observed release of the 110-kD protein from Golgi membranes which occurred in response to ATP depletion. Additionally, when the 110-kD protein had first been dissociated from Golgi membranes by ATP depletion, GTP gamma S could restore Golgi membrane association of the 110-kD protein, but not if BFA was present. All of these effects observed with GTP gamma S in semipermeable cells could be reproduced in intact cells treated with AlF4-. These results suggest that guanine nucleotides regulate the dynamic association/dissociation of the 110-kD protein with the Golgi apparatus and that BFA perturbs this process by interfering with the association of the 110-kD protein with the Golgi apparatus.  相似文献   

6.
The dynamin family of GTP-binding proteins has been implicated as playing an important role in endocytosis. In Drosophila shibire, mutations of the single dynamin gene cause blockade of endocytosis and neurotransmitter release, manifest as temperature-sensitive neuromuscular paralysis. Mammals express three dynamin genes: the neural specific dynamin I, ubiquitous dynamin II, and predominantly testicular dynamin III. Mutations of dynamin I result in a blockade of synaptic vesicle recycling and receptor-mediated endocytosis. Here, we show that dynamin II plays a key role in controlling constitutive and regulated hormone secretion from mouse pituitary corticotrope (AtT20) cells. Dynamin II is preferentially localized to the Golgi apparatus where it interacts with G-protein betagamma subunit and regulates secretory vesicle release. The presence of dynamin II at the Golgi apparatus and its interaction with the betagamma subunit are mediated by the pleckstrin homology domain of the GTPase. Overexpression of the pleckstrin homology domain, or a dynamin II mutant lacking the C-terminal SH3-binding domain, induces translocation of endogenous dynamin II from the Golgi apparatus to the plasma membrane and transformation of dynamin II from activity in the secretory pathway to receptor-mediated endocytosis. Thus, dynamin II regulates secretory vesicle formation from the Golgi apparatus and hormone release from mammalian neuroendocrine cells.  相似文献   

7.
Dynamins are a family of approximately 100-kDa GTPases that are thought to play a pivotal role in the formation of endocytic coated vesicles. There are three dynamin genes in mammals: dynamin I is neuron-specific, dynamin II shows ubiquitous expression, and dynamin III is expressed in testis, brain, and lung. However, most studies on the functions of dynamins to date have been restricted to dynamin I. In the present study, we show that, like dynamin I, dynamin II is involved in receptor-mediated endocytosis. While this study was in progress, Jones et al. [Jones, S.M., Howell, K.E., Henley, J.R., Cao, H., and McNiven, M.A. (1998) Science 279, 573-577] reported that dynamin II is localized in the trans-Golgi network (TGN) and involved in the formation of constitutive transport vesicles and clathrin-coated vesicles from this compartment. However, immunofluorescence analyses and experiments using cells transfected with dominant-negative dynamin II failed to show any evidence for localization of dynamin II in the TGN or for its involvement in vesicle formation from this compartment. Our data thus indicate that dynamin II is involved in endocytosis but not in the formation of transport vesicles from the TGN.  相似文献   

8.
The dynamins are 100 kDa GTPases involved in the scission of endocytic vesicles from the plasma membrane [1]. Dynamin-1 is present in solution as a tetramer [2], and undergoes further self-assembly following its recruitment to coated pits to form higher-order oligomers that resemble 'collars' around the necks of nascent coated buds [1] [3]. GTP hydrolysis by dynamin in these collars is thought to accompany the 'pinching off' of endocytic vesicles [1] [4]. Dynamin contains a pleckstrin homology (PH) domain that binds phosphoinositides [5] [6], which in turn enhance both the GTPase activity [5] [7] [8] and self-assembly [9] [10] of dynamin. We recently showed that the dynamin PH domain binds phosphoinositides only when it is oligomeric [6]. Here, we demonstrate that interactions between the dynamin PH domain and phosphoinositides are important for dynamin function in vivo. Full-length dynamin-1 containing mutations that abolish phosphoinositide binding by its PH domain was a dominant-negative inhibitor of receptor-mediated endocytosis. Mutated dynamin-1 with both a defective PH domain and impaired GTP binding and hydrolysis also inhibited receptor-mediated endocytosis. These findings suggest that the role of the PH domain in dynamin function differs from that seen for other PH domains. We propose that high-avidity binding to phosphoinositide-rich regions of the membrane by the multiple PH domains in a dynamin oligomer is critical for dynamin's ability to complete vesicle budding.  相似文献   

9.
Victorin-binding proteins (VBPs) in oat (Avena sativa) cells were identified using native victorin and anti-victorin polyclonal antibodies. Homogenates of oat tissues were fractionated in continuous or discontinuous sucrose density gradients or with an aqueous two-phase method, and covalent binding sites of victorin were detected by western blotting. In a 20 to 45% (w/w) sucrose continuous density gradient, the 100-kD VBP was located in fractions of 37 to 44% sucrose, with a peak at 39% sucrose. Based on marker enzyme assays, plasma membranes peaked at 39 to 41% sucrose, mitochondria peaked at 41%, but Golgi and endoplasmic reticulum were in lower density fractions, peaking at 28 to 29% and 22 to 24% sucrose, respectively. The 100-kD VBP was not found in plasma membranes purified by the aqueous two-phase method or in mitochondria purified by discontinuous density gradient centrifugation. Victorin binding to 65- and 45-kD proteins was detected in all fractions in the continuous sucrose density gradients. The 65- and 45-kD proteins were both detected in purified plasma membranes, but only the 65-kD protein was detected in purified mitochondria. The subcellular location of VBPs was the same in sensitive and resistant oat cells.  相似文献   

10.
Glycoproteins of the lysosomal membrane   总被引:51,自引:30,他引:21       下载免费PDF全文
Three glycoprotein antigens (120, 100, and 80 kD) were detected by mono- and/or polyclonal antibodies generated by immunization with highly purified rat liver lysosomal membranes. All of the antigens were judged to be integral membrane proteins based on the binding of Triton X-114. By immunofluorescence on normal rat kidney cells, a mouse monoclonal antibody to the 120-kD antigen co-stained with a polyclonal rabbit antibody that detected the 100- and 80-kD antigens as well as with antibodies to acid phosphatase, indicating that these antigens are preferentially localized in lysosomes. Few 120-kD-positive structures were found to be negative for acid phosphatase, suggesting that the antigen was not concentrated in organelles such as endosomes, which lack acid phosphatase. Immunoperoxidase cytochemistry also showed little reactivity in Golgi cisternae, coated vesicles, or on the plasma membrane. Digestion with endo-beta-N-acetylglucosaminidase H (Endo H) and endo-beta-N-acetylglucosaminidase F (Endo F) demonstrated that each of the antigens contained multiple N-linked oligosaccharide chains, most of which were of the complex (Endo H-resistant) type. The 120-kD protein was very heavily glycosylated, having at least 18 N-linked chains. It was also rich in sialic acid, since neuraminidase digestion increased the pI of the 120-kD protein from less than 4 to greater than 8. Taken together, these results strongly suggest that the glycoprotein components of the lysosomal membrane are synthesized in the rough endoplasmic reticulum and terminally glycosylated in the Golgi before delivery to lysosomes. We have provisionally designated these antigens lysosomal membrane glycoproteins lgp120, lgp100, lgp80.  相似文献   

11.
Abstract. Dynamins are 100-kilodalton guanosine triphosphatases that participate in the formation of nascent vesicles during endocytosis. Here, we have tested if novel dynamin-like proteins are expressed in mammalian cells to support vesicle trafficking processes at cytoplasmic sites distinct from the plasma membrane. Immunological and molecular biological methods were used to isolate a cDNA clone encoding an 80-kilodalton novel dynamin-like protein, DLP1, that shares up to 42% homology with other dynamin-related proteins. DLP1 is expressed in all tissues examined and contains two alternatively spliced regions that are differentially expressed in a tissue-specific manner. DLP1 is enriched in subcellular membrane fractions of cytoplasmic vesicles and endoplasmic reticulum. Morphological studies of DLP1 in cultured cells using either a specific antibody or an expressed green fluorescent protein (GFP)- DLP1 fusion protein revealed that DLP1 associates with punctate cytoplasmic vesicles that do not colocalize with conventional dynamin, clathrin, or endocytic ligands. Remarkably, DLP1-positive structures coalign with microtubules and, most strikingly, with endoplasmic reticulum tubules as verified by double labeling with antibodies to calnexin and Rab1 as well as by immunoelectron microscopy. These observations provide the first evidence that a novel dynamin-like protein is expressed in mammalian cells where it associates with a secretory, rather than endocytic membrane compartment.  相似文献   

12.
We have used an in vitro Golgi protein transport assay dependent on high molecular weight (greater than 100 kD) cytosolic and/or peripheral membrane proteins to study the requirements for transport from the cis- to the medial-compartment. Fractionation of this system indicates that, besides the NEM-sensitive fusion protein (NSF) and the soluble NSF attachment protein (SNAP), at least three high molecular weight protein fractions from bovine liver cytosol are required. The activity from one of these fractions was purified using an assay that included the second and third fractions in a crude state. The result is a protein of 115-kD subunit molecular mass, which we term p115. Immunodepletion of the 115-kD protein from a purified preparation with mAbs removes activity. Peptide sequence analysis of tryptic peptides indicates that p115 is a "novel" protein that has not been described previously. Gel filtration and sedimentation analysis indicate that, in its native state, p115 is a nonglobular homo-oligomer. p115 is present on purified Golgi membranes and can be extracted with high salt concentration or alkaline pH, indicating that it is peripherally associated with the membrane. Indirect immunofluorescence indicates that p115 is associated with the Golgi apparatus in situ.  相似文献   

13.
We used a monoclonal antibody (10A8), derived from mice immunized with fractions enriched in Golgi apparatus of rat brain neurons, to isolate an intrinsic membrane sialoglycoprotein of 160 KD from rat brain. By immunoelectron microscopy the sialoglycoprotein, named MG-160, was localized in medical cisternae of the Golgi apparatus of neurons, glia, adenohypophysis, and cultured rat pheochromocytoma (PC 12). The monoclonal antibody (MAb) reacted only with rat tissues. Because the epitope(s) recognized by a monoclonal antibody may be restricted, localization of an antigen by a single MAb may not reflect the extent of the distribution of antigen in various species and tissues. Therefore, to further investigate the presence and localization of MG-160 or of an antigenically related protein in several species and tissues, we used a polyclonal antiserum raised against MG-160 purified by antibody (10A8) affinity chromatography. Immunoblots of crude microsomal fractions from rat brain probed with the antiserum against MG-160 showed two to three prominent bands of approximately 160, 150, and 68 KD. Immunoblots of crude microsomal fractions from human, chicken, and frog brains showed prominent bands of 130-140 and 68 KD. Immunoblots of crude membrane fractions from Saccharomyces cerevisiae showed prominent bands of approximately 110-120 and 80 KD. Light microscopic immunocytochemical studies with frog, chicken, mouse, rat, rabbit, bovine, and human brains and with several other rat and human tissues showed a staining pattern consistent with the Golgi apparatus. Immunoelectron microscopy with rat and human brain and with rat myocardium and pituitary showed prominent and exclusive staining of cis, medial, and occasionally trans cisternae of the Golgi apparatus. The cisternae of the trans Golgi network were not stained. These findings are consistent with the hypothesis that a polypeptide related to MG-160 is present in the Golgi apparatus of several tissues in human, rodents, chicken, and frog and possibly in Saccharomyces cerevisiae. The antiserum to MG-160 represents a reliable reagent for immunohistochemical visualization of the Golgi apparatus in brain and several other human tissues obtained at autopsy, fixed with Bouin's, and embedded in paraffin.  相似文献   

14.
Purified Golgi membranes of the human intestinal adenocarcinoma cell line Caco-2 were used as an antigen to produce a monoclonal antibody, G1/93, which specifically labels a tubulovesicular compartment near the cis side of the Golgi apparatus, including the first cis-cisterna itself, as visualized by single and double immunoelectron microscopy with antibodies against galactosyltransferase. The antigen recognized by G1/93 was identified as a protein with a subunit size of 53 kD. Pulse-chase experiments revealed that the 53-kD protein dimerizes immediately after synthesis followed by formation of oligomers of approximately 310 kD, probably homohexamers. The protein has a transmembrane topology with only a short cytoplasmic segment as assessed by protease protection experiments. Glycosidase digestion studies indicated that the protein is probably not glycosylated. The unique subcellular distribution of the G1/93 antigen in close vicinity to the cis-Golgi is in line with the notion that this protein may delineate the biosynthetic transport pathway from the endoplasmic reticulum to the Golgi apparatus. Moreover, G1/93 is a useful marker to identify the cis side of the Golgi apparatus in a variety of human cells.  相似文献   

15.
Dynamin is a GTPase mechanoenzyme most noted for its role in vesicle scission during endocytosis, and belongs to the dynamin family proteins. The dynamin family consists of classical dynamins and dynamin-like proteins (DLPs). Due to structural and functional similarities DLPs are thought to carry out membrane tubulation and scission in a similar manner to dynamin. Here, we discuss the newly emerging roles for DLPs, which include vacuole fission and fusion, peroxisome maintenance, endocytosis and intracellular trafficking. Specific focus is given to the role of DLPs in the budding yeast Saccharomyces cerevisiae because the diverse function of DLPs has been well characterized in this organism. Recent insights into DLPs may provide a better understanding of mammalian dynamin and its associated diseases.  相似文献   

16.
Kinectin, a major kinesin-binding protein on ER   总被引:27,自引:5,他引:22       下载免费PDF全文
Previous studies have shown that microtubule-based organelle transport requires a membrane receptor but no kinesin-binding membrane proteins have been isolated. Chick embryo brain microsomes have kinesin bound to their surface, and after detergent solubilization, a matrix with an antibody to the kinesin head domain (SUK-4) (Ingold et al., 1988) bound the solubilized kinesin and retained an equal amount of a microsome protein of 160-kD. Similarly, velocity sedimentation of solubilized membranes showed that kinesin and the 160-kD polypeptide cosedimented at 13S. After alkaline treatment to remove kinesin from the microsomes, the same 160-kD polypeptide doublet bound to a kinesin affinity resin and not to other proteins tested. Biochemical characterization localized this protein to the cytoplasmic face of brain microsomes and indicated that it was an integral membrane protein since it was resistant to alkaline washing. mAbs raised to chick 160-kD protein demonstrated that it was absent in the supernatant and concentrated in the dense microsome fraction. The dense microsome fraction also had the greatest amount of microtubule-dependent motility. With immunofluorescence, the antibodies labeled the ER in chick embryo fibroblasts (similar to the pattern of bound kinesin staining in the same cells) (Hollenbeck, P. J. 1989. J. Cell Biol. 108:2335-2342), astroglia, Schwann cells and dorsal root ganglion cells but staining was much less in the Golgi regions of these cells. Because this protein is a major kinesin-binding protein of motile vesicles and would be expected to bind kinesin to the organelle membrane, we have chosen the name, kinectin, for this protein.  相似文献   

17.
Dynamins induce membrane vesiculation during endocytosis and Golgi budding in a process that requires assembly-dependent GTPase activation. Brain-specific dynamin 1 has a weaker propensity to self-assemble and self-activate than ubiquitously expressed dynamin 2. Here we show that dynamin 3, which has important functions in neuronal synapses, shares the self-assembly and GTPase activation characteristics of dynamin 2. Analysis of dynamin hybrids and of dynamin 1-dynamin 2 and dynamin 1-dynamin 3 heteropolymers reveals that concentration-dependent GTPase activation is suppressed by the C-terminal proline/arginine-rich domain of dynamin 1. Dynamin proline/arginine-rich domains also mediate interactions with SH3 domain-containing proteins and thus regulate both self-association and heteroassociation of dynamins.  相似文献   

18.
《The Journal of cell biology》1990,111(6):2295-2306
Brefeldin A (BFA) has a profound effect on the structure of the Golgi apparatus, causing Golgi proteins to redistribute into the ER minutes after drug treatment. Here we describe the dissociation of a 110-kD cytoplasmically oriented peripheral membrane protein (Allan, V. J., and T. E. Kreis. 1986. J. Cell Biol. 103:2229-2239) from the Golgi apparatus as an early event in BFA action, preceding other morphologic changes. In contrast, other peripheral membrane proteins of the Golgi apparatus were not released but followed Golgi membrane into the ER during BFA treatment. The 110-kD protein remained widely dispersed throughout the cytoplasm during drug treatment, but upon removal of BFA it reassociated with membranes during reformation of the Golgi apparatus. Although a 30-s exposure to the drug was sufficient to cause the redistribution of the 110-kD protein, removal of the drug after this short exposure resulted in the reassociation of the 110-kD protein and no change in Golgi structure. If cells were exposed to BFA for 1 min or more, however, a portion of the Golgi membrane was committed to move into and out of the ER after removal of the drug. ATP depletion also caused the reversible release of the 110-kD protein, but without Golgi membrane redistribution into the ER. These findings suggest that the interaction between the 110-kD protein and the Golgi apparatus is dynamic and can be perturbed by metabolic changes or the drug BFA.  相似文献   

19.
A 58-kD cis-Golgi protein has been identified by generating polyclonal antibodies against heavy (cis) Golgi subfractions. Total microsomes isolated from rat pancreatic homogenates were subfractionated to yield a rough microsomal fraction (B1) and three smooth membrane subfractions (B2-B4) enriched in cis-, middle, and trans-Golgi elements, respectively. The heavy (cis) subfraction, B2 (d = 1.17 g/ml), was fractionated by Triton X-114 phase separation, and the proteins recovered in the detergent phase were used to immunize rabbits. One of the anti-B2 antibodies obtained gave a "Golgi"-staining pattern when screened by immunofluorescence on normal rat kidney cells and mouse RPC 5.4 myeloma cells. In rat pancreatic exocrine cells the antibody reacted with the plasmalemma as well as elements in the Golgi region. By immunoelectron microscopy, the antigen recognized by anti-B2 IgG was found to be restricted to cis-Golgi elements in myeloma cells where it was concentrated in the fenestrated cis-most cisterna and in some of the tubules and vesicles located along the cis face of the Golgi complex. By immunoprecipitation and immunoblotting, the anti-B2 IgG exclusively recognized a 58-kD protein in myeloma cells. The anti-B2 IgG reacted with several proteins in solubilized pancreatic B2 membranes, including a 58-kD protein, but affinity-purified anti-58-kD IgG reacted exclusively with the 58-kD protein. These results suggest that the 58-kD protein is a specific component of cis-Golgi membranes.  相似文献   

20.
Profilin I was identified, by mass spectrometric sequencing and immunoblotting, as a component of purified Golgi cisternae from HepG2 cells. Binding to the Golgi was verified by indirect immunofluorescence in MT-1 cells showing that a fraction of profilin I colocalizes with TGN38, a marker of the trans-Golgi network (TGN). Studying the formation of constitutive exocytic vesicles at the TGN in a cell-free system demonstrated that cytosolic profilin I has no effect, while incubation of Golgi cisternae with a profilin I-specific antibody reduced vesicle formation by about 50%. Notably, the antibody displaces a fraction of the Golgi-bound dynamin II indicating that profilin I may indirectly promote vesicle formation by supporting the binding of dynamin II to the Golgi membrane. The impact of dynamin II on vesicle formation is demonstrated by incubating the Golgi with the proline-rich domain of dynamin II which concomitantly displaces dynamin II and inhibits vesicle formation. The data provide evidence that profilin I attaches to the Golgi apparatus and is required for the formation of constitutive transport vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号